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1. Introduction

Trees are a very basic object in computer science. They intervene in nearly any
domain, and they are studied for their own, or used to represent conveniently a given
situation. There are at least three directions where investigations on trees themselves
are motivated, and this for different reasons. First, the notion of tree is the basis of
algebraic semantics (Nivat [19], Rosen [22], etc.). In this context, the study of special
languages of trees (i.e. forests), their classification, and their behaviour under various
types of transformations are of great importance (Arnold [1], Dauchet 8], Lilin[16],
Mongy [18]). By essence, work in this area is an extension of the algebraic theory of
languages; trees and languages are in fact directly related via the derivation trees of
an algebraic grammar (Thatcher [25]). A second topic heavily related to trces
concerns d-.ca structures. Trees, mainly binary trees and its variants, constitute one of
the most widely known data structures (see e.g. Knuth [15]). The analysis cf the
worst-case, expected or average running time behzviour af certain algorithms
requires sometimes long and delicate computations {(Flajolet [10], Kemp [14],
Flajolet and Steyaert [12]). Finally, trees occupy a distinguished place in the
enumeration of graphs and maps, both because of the simplicity of their structure and
for the relationship between their encodings and aigebraic languages. The nature of
the enumerating series, and especially the question whether they are algebraic or not,
is one of the central problems in this domain (Cori [7], Chottin [4]).

We propose here a theory of formal power serics on trees, and present some of
their basic properties together with various examgples of applications which, as we
hope, will show the interest of its development within the framework we just
sketched.

A formal power series on trees is a function which associates a number to each tree.
Thus we could also have called them ‘tree functions ', in analogy with the term ‘word
function’ used by several authors (Paz and Salomaa {20], Cobham [5]) as an
equivalent denomination for formal power series on words. The main goal of a
formal power series is to count, or to represent the result of some computation on
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trees. Thus oue can count the ‘multiplicity’ in some recognition device, but more
concrete examples (height of a tree, evaluation of arithmetic expressions, pattern
matching) will be considered. Next, power serics are classified according to the
amount of difficulty involved to compute them. The so called linear representations
of magmas introduced in Section 3 give a formalization of linear computation
muthods and rely on standard mathematical concepts (multilinear functions on a
vector space). Formal power series compuied! in that way are called recognizable.
They are the main object of this paper and two characterizations will be given in
Section 6 and 8.

From the point of view of formal language theory, formal power series on trees
appear as an extension of the classical thecry of formal power series on words
(Salomaa and Soittola [23], Eilenberg [9]), developing further the correspondence
beiween properties of (set of) words and trees. They are also a generalization of the
notion of forest, the refinement consisting in the introduction of multiplicities. It
would have been tedious to present a systematic investigation of all properties of
series on words which carry over to formal power series on trees. We focused our
atter:sion on three of them. First we prove (Theorem 6.2 and 6.4) th:e equivalence of
the definition by linear representation, and as solutions of systems of linear equa-
tions. The first definition corresponds to bottom-up computations, whereas the
szcond is a glohal, top-down one. Then we investigate the analogue, for formal
power series, of the relationship between context-free languages and frontiers of
recognizable forest, and prove that the same facts hold in that case (Theorem 8.1 and
8.3). Our third result in this direction is a pumping lemma (Theorem 9.2) for
recognizal .. powvei series on trees. There are interesting applications of this lemma;
thue ior instance the set of AVL-trees cannot be the support of a recognizable power
series (Example 9.3).

Among the applications, the most intriguing one is perhaps the use of formal
power series for the evaluation of arithmetic expressions (Example 4.2, 6.2 and 9.1).
It is well known that arithmetic expressions are representable by trees. The function
which to an arithmetic expression associates its value is a formal power series, and we
verify that it is recognizable when division is forbidden, but is no longer recognizable
when division is admitted. Another type of application repeatedly discussed in the
sequel concerns enumeration. We show that path length, number of occurrences of a
pattern, and others are recognizable power szries, but height is not. More important
from the methodological point of view is perhaps the fact that the system of linear
equation satistied by some recognizable formal power series on trees yields, without
further computatior:, equations for the enumerating functions counting the property
over all trees of a given size. Moreover, the enumerating functions are always
aigebraic provided the series on trees is recognizable (Proposition 7.2).

Section 2 contains basic definition concerning formal power series on trees. Linear
representations of a free magma are introduced in Section 3, and are used to give a
fisst definition of recognizable power series. Section 4 is devoted to a detailed
decription of several examples. The closure under Hadamard product, shown in
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Section 5, has mainly techrical interest. In Section 6, we prove the equivalence
between recognizable power series and solutions of proper systems of linear equa-
tions, and give such systems for some examples. The well-known function ‘glove’
investigated in Section 7 associates, to a recognizable series on trees, an aigebraic
power series in several noncommutative variables. As a corollary, we show that the
corresponding enumerating series is also algebraic. Two examples are computed.
Section 8 contains the proof that the froutier of a recognizable series on trees is
algebraic and conversely. In Section 9, we show a pumping lemma and use it to prove
that several power series on trees are not recognizable.

The results proved here are, as we already said, generalization of corresponding
properties of recognizable forests which are already known for a while (Thatcher 25,
26], Brainerd [3], Thatcher and Wright [27], Maibaum [17], Arnold [1]), even
if the proof are generally more complicated. They are of course also related to
recognizable power series on words [9, 23].

The definition of power series on trees by means of equations and their relation to
enumerating series was already used extensively by Flajolet [10]. A first version of
this paper [2] was presented at the 5th C.L.A.A.P.

2. Formal power series on trees

In this section, we give the basic definitions concerning formal power series on
trees. Let F be a set of function symbls, that is a graded alphabet

F=FyuF,u---VF,u--".

The elements in F, are the function symbols of arity p. We denote by M (F) the free
F-magma generated by F (see e.g. Cohn [6]). The elements in M (F) are called trees.
If t is a tree, and t£ F), then there exist an integer p = 0, a symbol function f € F),, and
trees t4, . .., t, such that

t=f(ty, ..., ).

Some time it is more suggestive to employ, instead of this notation, the more pictorial
representation

t= /].c\
t L,

We shall use indistinctly one or the other notation.

We assume in the sequel that the set F of function symbols is finite. This is not an
essential restriction in most of the subsequent developments, but simplifies the
exposition without a real loss of generality.
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Definition. Let k be a commutative.ﬁeld. A formal power series on M(F) with
coefficienis in k is a mapping

S:M{F)-k.

The value of S for a tree te€ M(F) is denoted by S() or (S, ¢) and is called the
coefficient of ¢t in 8. The series S is written in an expanded notation as

S§= Y (80

te M(F)

The set of all formal power series on M (F) with coefficients in k is denoted by k{{F}}.

Note that we define only formal power series with coefficients in a field, whereas in
the ‘classical’ thecry of formal power series on the free monoid [9, 23] the coefficients
are taken in a semiring. We do this in order to simplify the exposition, and also
because we are ininly interested in applications where the coefficients have a precise
numerical meaning. As already mentioned above, formal power series on trees are to
be used in counting processes, and the result of such a process for a given tree t is
precisely the value of the function § for r.

Example 2.1. The height of a tree ¢ in M(F) is inductively defined by
. 0 ifte F(),
height(ti= { ) .
1+ max{height(s,), ..., he ght(s,)} ift=f(t1,...,1).
Thus height is a formal power series on M (F) with coefficients in k =Q (=the field of
rational nurabers). Other examples wili be given below (Sections 4, 6 and 9).
The set k{{F}} of forma! power series is converted into a vector space by tle

formuias

($1+82, 1)=(Sy, 1} +(82, 1),

(a8, t)=a(S,t) {(ack).

The set k{{F}} has also a structure of F-magma. Consider indeed fe F,, and
.8y, ..., 8, in M (F). The formal power series
S=f(51,...,S,)

is defined as follows

(S1, 8:)(S2, 12) - - (Sp, 1) M e=f(t1. ..., 1p)

0 otherwise.

.=

The support of a series § is the forest supp(S) = {#|(S1, ) # 0}. We denote by k{F}
the subset of all elements in k{{F}} having finite support. These elements are called
polynomials. Then k{F} is just the free k-F-algebra [6). It is easily seen that k{F}is a
subvector space and a submagma of k{{F}}.
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3. Recognizable formal power series

Before defining the recognizable formal power series, we introduce the nction of
linear representation of a free magma. This is a straightforward extension of

the corresponding construction for other algebraic structures, and is presumably
interesting for itself.

Let V be a finite dimensional vector space over the (commutative) field k. We
denote by

(VP V)

the set of p-linear mappings from V” into V. In particular, if p = 0, then V° can be
identified with k, and £(V°; V) can be identified with V: indeed, a linear mapping
from k into V can be identified with its value on 1. Set

£=UJ (V" V).

p=0

Then the vector space V is a £-magma with £(V”; V) as the set of functions with
arity p. Thus any mapping u : F -» £ which maps F, into £(V”; V) converts V into a
F-magma.

Definition. A linearrepresentation of the free magma M (F) is a couple (V, w), where
V is a finite dimensional vector space over &, and where
wF->%
maps F, into Z(V?; V) for each p=0.
Thus for each f e F,, u(f): VP > V is p-linear, and since M (F) is free, u extends
uniquely to a morphism
nwMF)>V
by the usual formula

(@) =n(H(t), ..., 1nt)
for

t=f(ty, ... 6
Definition. Let S be a formal powes series or: M (F). Then S is recognizable if there
exists a triple (V, u, A), where (V, w ) is a linear representation of M (F), and
AV-k
is a linear form, such that
(S, )=A(u(r)) forall¢in M(F). 3.1)

(V, ., A) is called a representation for S.
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There are several remarks on this definition. First, and as we will show in the next
section, the notion of represcntation of S is an ‘arithmetization’ (in the sense of [23])
of the well-known concept of bottom—up trec-auicmata (as defined by Thatcher
[25]). Moreover a representation analogue to (3.1) has been given by Arnold [1]. He
shows that a forest L is recognizable iff it can be written as

L={t|A(u(t) =1}

where A, u are defined as above, but the field kfis replaced by the boolran semiring.
In a manner completely parallel to the situationifor recognizable forests, we will give
a top—down definition of recognizable formal pcwer series later, by means of systems
of equations. !

Next, our definition is an extension of the clase ical definition of recognizable power
series over the free monoid (Schiitzenberger [24], Salomaa and Soittola [23]). Let
indeed X be an alphabet. Then X can be considered as a F-magma, where
F=FyuF;,and Fy= 1, F; = X ; to each word w in X is associated the tree w 1. Let
now (V, u, A) be a representation of a series $ over this magma. Then by definition
each ux (x € X) is an endomorphism of V, and w 1) is an element of V, say y. Thus
we have, for a tree w L,

rwl)=pw)y, (Swlh)=A@wWLl)=A uw-y.

This yields the usual definition of recognizable formal power series on the free
monoid X*,

Finally, it is sometimes convenient to use the canonical isomorphism between
Z(V?; V) and the space £, of linear mappings of the p-fold tensor product

V?P=VQ®: - -®V

into V. This isomorphism is given by associating, to f € £,, the p-linear mapping from
/? into V defined by

(Uh-' "vp)Hf(vl®' ° '®vp)-
Setting

¢=U¢

a tinear representation can consequently also be given by a mapping u : F - £ such
that u(F,)< &,

Proposition 3.1. The set of recognizable formal power series is a subvector space of

k{F}}.

Proof. We first show that if S is recognizable and o € k, then aS is recognizable. Let

(V, u, A) be a representation of S. Then (V, W, aA) is a representation of S, and
consequently aS is recognizable.
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Assume now that S; and S are recognizable, and set § = §; +S,. Let (V}, u;, A;) be
a representation of S;(i=1,2). Set V=V;xV,, and observe that for ¢¢
Z(Vi; Vo), ¥ e £(V3; Vs), the mapping

n:VP=V,
(01, 01, ..., (05, )= (@(01, ..., vp), Y01, ..., D))
is p-linear. Consequently, the linear representation (V, u) of M(F) given by
w (N1, 1), ..., (05 7)1 = (iDL, . . ., vp), ol T, ..., V)
is well defined, and it is immediately verified that
p(t) = (p1(2), po1Y), te M(F).
Thus, if A : V> k is defined by
A, v =AY+ A5(0%)
we get
A () = A1(p1(0)) +A2(p2(8) = (81, 1) +(S2, )= (S, 1),
showing that (V, u, A) is a representation for S, whence § is recognizablc.

The set of recognizable formal power series is alsG an sub-F-magma. This will be
shown later (Proposition 6.5).

4. Examples
Example 4.1 (Counting argumenits). The length |t} of a tree ¢ is the number of nodes

of ¢ i.e.

¥ { 1 if t € Fy,

=

T+t +- -+t ifr=flt,...,0).

The formal power series D defined by

(D, t)=lt|

is recognizable. We consider the more general case of the formal power series
D¢(f € F) defined by

(Dy, t) = number of occurrences of f in t.

We show that Dy is reccgnizable. Since F is finite, and D =}, Df it follows by
Proposition 3.1 that D is also recognizable.

To show that Dy is recognizable, we define a representation (V, u, A) as follows:
V =Q> Let ey, e, be the canonical basis of V. Then for each g, it suffices to define
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i (g) on the basis vectors. We define: for ge F,, g #f,
ey ifij=---=iy=1,
ugler,, ..., e, )=4e; if thereisexactly one j with i; = 2,
0 otherwise;

e +er ifi1='..=iq=1,
ufles,...,ep) =qer if there is exactly one j with i; = 2, 4.1)
0 otherwise.

Note that for a € F,, this definition implies that

{e1 if a #f,
a=
ei+es if&l=f€F0.

Finally, A(¢;)=0, A(e2) = 1.
We claim that

pt=e +(Dy t)e, forte M(F). 4.2)
This holds indeed if ¢ € Fy; otherwise

t=g(t1,..., 1)

and by linearity

u(t)=pn(g)e1+(Dy, th)ey, . .., e1+(Dy, ty)e2]

er+ Y (D, t)es ifg#f,
i=1 -

P

erter+ ) (Dpt)e, ifg=f(andq=p).
i=1

i=

This proves the claim (4.2). Next the definition of A gives
Au()=(Dy 1)

showing that (V, u, A) is a representation of Dy which therefore is recognizable.

Note that the finiteness of F is not required to show that D is recognizable. It
suffices to define .f by formula (4.1) for each f in F. Note also that (in the case where
F is finite) any linear combination of the Dy’s is still recognizable. Ths is interesting
when a ‘weighted length’ is considered.

Example 4.2 (Evaluaiion of arithmetic expressions). Consider F = Fyu F, U F>,
where F: = 1, F, ={+, x} (—is the function symbol for the unary substraction, that is
tihe mapping a — —a). It is well known that a tree in this free magma represents an
arithmetic expression. Such an expression has a well-defined numerical value
provided a value is attributed to each of the elements a € F, which are leafc of the
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tree, and provided the symbol functions are interpreted as usual. Thus consider the
formal power series

eval:M(F)-»Q
given by a fixed assignment
eval(a)=ae Q foreachaekF,

and extended to trees in the natural way. Then eval(¢) is the value of the arithmeiic
expression represented by ¢ for the given numerical values of the leafs.
For example, if

anda=17,b=2,¢=3, then eval(t) = —1.

We claim that eval is a recognizable formal power series.

We construct the following representation (V, u, A ) for the series sval. As before,
V =Q?, {e1, €3} is its canonical base, and u :F > ¥ is defined as follows:

pn(ay=e,+ade; foraekF,,
w()(ey) =ey, w(7)(ezx) = —ey,
p+)e,e)=e, u(+)e, ex)=n(+)eze1)=e  u{t+)eze)=0
u(X)(e, e)=er,  wm(X)er, e2)=pu(x)ez,e)=0,  wp(X)ez ez)=ea.
I\(€1)=0, A(e2)=1.
As above, we verify that
u(t)y=e +eval(t)e,, te M(F). 4.3)
By definition, (4.3) holds if ¢ € F,. Next, one has

w(—t) = u(7)ey +eval(t)e,) = e —eval(f) ez
= ¢, +eval(—t)e,,
w(+t:t2) = p(+)(er +eval(ty)es, er +eval(tz)er)
= e; +(eval(t;) +eval(fy))e; = e, +eval(+t1ty) ez,
finally,
w(Xtitz) = u(x)(e1 +eval(ty)ez, e; +eval(tz)es)

= e, +eval(t))eval(t)es = e +eval(xXti1)es.
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By (4.3) we get for all te M(F)
eval(t) = A (u(1))

showing that eval is recognizable.

Example 4.3 (Characteristic series). Given a forest L, we define the ch.1racteristic
series, L of L by

1 iftelL,

0 otherwise.

If L is a recognizable forest, then L is a recognizable formal power series.

Let indeed & be a (deterministic) bottom-up tree automaton recognizing 1.. Then
[25] 54 is composed of a finite sel of states Q, an initial state q_, a set of final states
Q. < Q and, for each p =0, and f € F,, a function f:Q" > Q. Thus Q, equipped with
the f°s, is a F-magma. A tree is accepted by o (i.e. ¢ is in L) iff f(g_) € Q..

Consider now the k-vector space V = k © with the canonical base (eq)qe@- Foreach
feF, let

w(): VPV
be given by

”r(f)(eqp ooy eqp) = €fiqi,..rdp) (4.4)
and define A : V >k by

1 ifqeQ,,
0 otherwise.

A(e;,)={

Consider a tree ¢ in M(F), and set q = f(q_). Then it is easily seen that u(f)=e,,
whence

Alp(t))=(L.1).

Note that in order to get (4.4), we assumed that the automaton & is deterministic. In
the case of nondeterministic automata, each f(qi,...,qp) is 2 subset of Q, and
replacing (4.4) by

w(f)eqys .. €4)= > €q

aef(@r,...ap)

defines 2 formal power series which takes into account the multiplicity of acceptance
of a tree.

Example 4.4. The ‘converse’ of the preceding exampie is not true, that is: the
supyart of a recognizable power series iz not necessarily a recognizable forest.
Indeed, consider for instance the recognizable series S, — S, (with the notations of
Example 4.1). Its support is {¢|(S,, £) # (S,, £)} which is rot a recognizable forest.
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Example 4.5. The formal power series height, defined in Section 2, is not recogniz-
able. This will be proved in Section 9.

Example 4.6. The path length [15] of a tree is defined to be the sum, taken over aii
nodes, of the lengths of the paths from the root to each node. Denote by PL(¢) the
path length of the tree £. Then PL is a recognizable formal power series. We show this
in Section 6.

5. Hadamard product

Given two formal power series S1, S> € k{{F}}, we call Hadamard product cf S, and
S, and denote by §; © S5, the series defined by

(510 83, 1)=(8, 1)(82, 1).
Since k is a field, one has

($1© 8>, ) #0iff (S1, 1) #02and (S, 1) #0.
Therefore

supp(S; © S,) = supp(S1) N supp(S>).

This shows the relation between Hadamard product and intersection.

Proposition 5.1. If S, and S, are recognizable formal power series on M(F), then
8, © S, is recognizable.

Proof. Let (V;, u;, A;) be a representation of §; for i = 1, 2. Using the isomorphism
mentioned in Section 3, each u;(f), for fe F,, is a linear mapping from V% into
V.. Now define a representation (V, u, A) by

V=V:® V, A=A ®A;
and for p =0, feF,, v1,...,0p€ V4, 03,...,00€ V2

pNPI®N® - ® (v, ®vi)]=
=i (NEI® @ v) ®uaANWI® - D vp).

w(f) is indeed a linear mapping in view of the canonical isomorphism
End(V$?, V1) ® End (V57, V,)=End(V®, V).

We claim that for all ¢ in M (F),
t=pit ® uat 6.1
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This is clear if re Fo. If t =f(t1,...,t,), then
p@®)=p(Hpt®: - O uty)
=u(H(p1t1 @ u2t) @ - - ® (1, € paty))
by the induction hypothesis. Thus
p()=pi(Npit @ -+ ® pitp) ® pa)p2(t) @+ -+ @ palty))
= p1(t) ® pal?).
Thus (5.1} is verified. Finally
A ()= (A1 ® A2)(p1(1) @ pa(8)) = A1 (pa{r3)A2(2(1))
=(5,0(820=(508,0

showing that (V, u, A) is a representation for §, © §,

6. Systems of linear equations

As airzady mentioned, a representation can be considered as a bottom-up
automaton. Systems of linear equations are then analogue of top~down automata.
We show in this section the equivalence of these two definitions.

Let = ={¢,,..., &} be a set (of ‘variables’). We consider the set

F=FouFyu---UF,u---
of function symbols derived from F by adjoining = to the set of 0-ary symbols:
Fo=FouZ and F,=F, (p=1).

Now consider a sequence S = (S, ..., S,) of formal power series in k{{F}} and
define a rapping o = ws

w:Fo > k{{F}}, /
wlaj=a YackF, 7/&)=S.~, v=1,...,n.
This mapping extends uniquely tﬁ) a morphism of &-F-algebras, still denoted by w
w :k{F'}> k{{F}}.
In particular, for t = f(t1,..., t,),
o(t)=flo(t),...,o(t,)).

If p € k{F'}, we also write p[S}, ..., S.] for w(p). This notation is consistent since
wip) is obtained by substituting §; to & iv p. It follows in particular that for
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t=f(ty,...,t,)e M(F')

S, ..., Sul=f(t:[S1, ..., 8] .. ., [S..., S )).
Now let py, ..., pn € k{F'}. A solution of the system of linear equations

&=py, i=1,...,n (6.1)
is any n-tuple (S3, ..., S,) of formal power series satisfying

S:i=piS1,...,8.]), i=1,...,n (6.2)

Using the morphism « defined by $=(S,,...,S,), (6.2) is equivalent to: S; =
olp)i=1,...,n
The system (6.1) is called proper if

Ensupp(p))=0, i=1,...,n.

Just a word to the specification ‘linear’. This is because the variables appear cnly on
the leafs of the trees in supp(p:), and also for the similarity of the properties of such
systems with the ‘usual’ linear systems.

Proposition 6.1. A proper system of linear equations has one and only one solution.

Proof. Assume first that § =(S,, ..., S,) is a solution of (6.1). Then

S;=w(p,-)= Z ([7,', t)w(t), i=1,...,n. (63)

resuppip,)
Since the system is proper, each t € supp(p;) either is in M(F), or has the forms
t=f(ty,...,t,) forsome fe F,, p=1t,...,1,€ M(F'). Consequently, setting
P;=supp(p;)nM(F),  Qi=supp(p;)—P;

(6.3) becomes

Si=Y (p,)t+ Y (pi fltay ..., L)f(@(t1), ..., @)

te P; flty,....1p)e

Therefore

(S, a)=(p,a) VaeF,, i=1,...,n (6.4)
and if s = g(s1, ..., ;) € M(F), then

Sos)=(prs)+ T (puglts, ..., to)@(tr), s1) - (w(tg), Sq), (6.5)

glt,..estq)e Q;
This formula shows that (S, s) is uniquely determined by p; and by the values oi the
S,’s on trees of length strictly less than the length of s. By (6.4), the S;’s are uniquely
determined on trees in Fy. Consequently, the solution is unique. But (6.4), (6.5) can
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also be considered as defining equations for the formal power series S;: (6.4) gives the
values of the S;’s on elements in Fy, and (6.5) allows to compute the values of the
series by induction on the length. This proves the existence of a solution.

We now start the proof of the characterisation of recognizable formal power series
through systems of equations.

Theorem 6.2. Any recognizable formal power series is a component of the solution of
some proper sysier1 of linear equations.

Proof. Let S be a recognizable formal power series, and let (V, u, A) be a represen-
tation of S. Let = ={£,,..., &} be a base of the vector space V and let F’ be as
above, with F, = Fyu =, in order to carry out the proof correctly, we need some
additional notations. If fe F, and w=¢. ¢, ... & € =7 we write f(w) instead of
f&,, ..., &,). Thus f(w)e M(F"); for p =0, we set by convention f(1)=f.

Next we observe that =” can be identified to a base of V%, with w =¢,, ... & €
Z" representingtheelement ¢, ®© - - - ® ¢, in V™", Finally we consider the dual base
1¢1,.... 7 of =

Define polynomials p; € k{F'} by

pi=Y Y [&eonHwfw), i=1,...,n (6.6)

p=0 feF,

we="P

Thus in (6.6), the coefficient ( p;, f(w)) is the ith component of the vector u(f)(w)e V.

with respect to the base =. Let S; be the series defined by the representation
(V, 1, £]). We claim that

S,-=p,~[Sl,...,S,.], i=1,...,n.

First if a € F,, then

(pi[sl’ ey Sn]s a)=zfz [gl’ ° I-L(f)(“/)](f(W)[S], sy sn]9 a)
p fiw

=¢&iop(a)l)=¢1 oua =(5; a)

(of course, we have used here the convention made above identifying ua with ua(1)).
Next if t=g(t,...,1,), then (f(w)[S1,...,8,],¢) equals O except if f=g.
Consequently (by inductior)

(LS. Sl 0= T [€ ougwI@WIS,, ..., S.1,0)

wez=

= ¥ - (& onglé, ®- - ®&))elSh, ..., S, 1)

i=iy,. lig=s

=Y [¢iongl,® - ® ENNSi, 1) - (S, ty)
=Y (& cuglts ®- - ®E)NEL »utr) -+ (£, o pty)



Recognizable formal power series on trees 129
=&iougly (£ out) - (€, o ut)6, @ ®¢,]

=£$°#»g[ ® (&1 °il«tj)§1+"-+(§ﬁ.°wi)§n]

1=sj=q
=¢opglpnh ®- - @ ut,]
= f: ° #’t = (si: t)-

This achieves the verification of the claim.
Now let &, be a new variable and set

Po=Al&)p1+ - -+ A(&)Dne

Then (§, 81, ..., 8,) is the solution of the system
pi=¢& i=0,1,...,n

since A = A(£)€1 +- - - +A(E )€

In order to prove the converse of the theorem we first need a reduction step which
shows that any proper system of equations can be ‘simulated’ by a simple one.

Lemma 6.3. Let S be a formal power series on M(F) which is a componeni of the
solution of some proper system of linear equations. Then S is also a component of the
solutior: of a proper system of linear equations

&=p, i=1,...,n
with

supp(p;)) = Fou F(E™)
where

F(EY={f(ts ... &) feFp &y, &, € E).

Proof. The proof is in two steps. Define the height of a polynomial as the maximal
height of the trees in its support. We first show the existence of a system of equations
with right parts of height at most one. Then we transform this system to one of the
desired forni.

Let S be the first component of the solution of a proper system of linear equations

§E=Pi» i=1’-'-’n- (6.7)

We proceed by double induction on the maximal height of the p;’s, and on the
number of trees in the supports of the p;’s achieving this maximal height. Let f be a
iree in the support of say p;, and assume ¢ is of maximal height among the trees in
{_);<;e. supp(p:). Cleaily we may assume that ¢ has height / at least 2. Then

t=f(t1,...,t)

for some fe Fy, t1, . . ., t, € M(F"). Further there is a nonempty subsetJ < {1, ..., p}
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consisting of those indices j such that #; has height h — 1. Define a new set of variables
H ={n,| j € J} and a new system of equations

ni=t Jje€J,
gt":pi', i'e{ly---vn}—{i}’
&=pi—(p, )t+(p, 1)

where t' = f(s1,...,s,) with s, =m, for A eJ,and s, =1, for AZJ.

Clearly this system is proper since the #;'s and ¢’ are trees of height at least 1. Next
thicre is one tree less of maximal height / in this new system. Finally one checks easily
1hat $ is still the component of the solution of this system of equations corresponding
10 &;.

Now we may assume that (6.7) is a system of equations with each tree in the
supports of the p;’s having height 0 or 1. Introduce a new variable 7, for each a € F,,
and define a new system of equations

&=pi, i=1,...,n, Ma=a (6.8)
where
pi= ¥ (p,D)V,
resupp(po)
, |t if re Fy,
t=if(zl,...5z,,) i1=f1s- ., ya)
and

{yi ifYI'eE’
zj= .
N. if yj=ac€kF,.

System (6.8) has the desired form.

Theorem 6.4. Any formal power series on M(F) which is a component of the solution
of a proper system of linear equations is recognizable.

Proof. Let $ be a formal power series on M (F), ard suppose that S is the first
component of the solution (S, ..., S,) of a proper system of linear equations

&=p, i=1,...,n (6.9)

We may assume that this system satisfies the coaditions of the previoué lemma.
Consider the vector space V =k=, with T =§,,..., &, as base and define a linear
representation (V, u) of M(F) by setting, for p=0, feF,, ny,..., M, € &

l"(f)(nb L) Tl’p) = Z (pi, f(n’h LRI "ip))fi-

I=<i<n
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Mow define Si,..., S, to be the formal power series having the representations
(V, i, € (i=1,..., n). The same computation as in the proof of Theorem 6.2 shows
that (S, ..., S.)is a solution of the system (6.9). In view of Proposition 6.1, we have
$i=8;fori=1,...,n. This concludes the proof.

This result has an interesting corollary which completes Proposition 3.1.

Proposition 6.5. The set of recognizable formal power series on M(F) is a sub-F-
magma of k{{F}}.

Proof. Let feF, and let S;, ..., S, € k{{F}}. Then S,, ..., S, are components of
solutions of proper systems of linear equations. Putting these systems together, we
may assume that S, ..., S, are the first p components of the solution of the system

§i=p(‘, i=1,..»,n.
Then T =f(S,, ..., S,) is a component of the solution of the system
fizpi’ i‘:l’""n’ n=f(§1’-”:§p)-

According to Theorem 6.2 and 6.4, there is a proper system of linear equations for
each recognizable formal power series and vice versa. We now give these systems of
equations for some of the examples of Section 4.

Example 6.1 (Counting arguments). First, consider the equations

n=Y a+ Y ¥ f(n,n...,m).

aeFy p=1 feF,

Let B be the solution. Then
B=Y a+ Y Y f(B,B,...,B).

aeFy p=1 feF,

Consequently (B, t) =1 for each tree ¢ in M(F), i.e. B is the characteristic series of
M(F).
Now fix a symbol f in some F,, and consider the equation

E=f(n,...,mM+ ¥ L (g&m...,m)

q=0 geF,

rgm g,y kgn M ).

Then the solution of this equation (together with the previous one) is the power series
Dy. Inde.d, let S be the power series which solves the equation. Then for a tiee
t=g(t,..., ), one has

S, )=(S, 1)+ (S, ta)+- - - +(8, 1)+ 8

where 8 =0 or 1 accordingto g#f or g=f. Thus S=Dy.
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Example 6.2 (FEvaluation of arithmetic expression). With the notations of Example
4.2, consider t"e system of equations

- + + X
E= 3 da-1-+ / N+, N +. N\,
a:Fo £ n ¢ ¢ n & 3
(6.10)
| + K
n=Y a+-l+ / N\ + /
acFo M 7 nn ]

Then the same veiification as above shows that the solution of this system is (eval, B),
where B is the characteristic scries of the magma. For illustration, we carry out the
conputation of eval(t) where
+
VRN
- X

t=| / N\, d=7,b=2, ¢=3.
a b <

According to (6.10)

eval(t)=eval( ¢l:> . B( /x \)+B(:|:)eval( b/'>< \c)

- X
=eval( | )+eval( VAN )
a b c

= —eval(a) +eval(b)eval(c)

=—G+bc=-1.

Example 6.3 (Path length). For simplicity, we assume the trzes binary, i.e. Fp = {1},
F, ={0}. Then by definition, the path length of a tree ¢ is dcfined as

0 if e =00,
PLm:lPL(tg)+[t1|+PL(tz)+|t7l ifr= / \.
t t

Consider the following system of equaiions:

O @) @) O
{=/ N+ ./ N+ ./ N+ /\,
n & ¢ n ¢ 7 7 4

@) O O
O +// N+/ N\ +/\,
[3 n n & n

O
n= 0O + /\ .

Ea
Il
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Then the soiuation is (PL, D, B), where
(B,1)=1 foreachte M(F), (D, t)y=|t| foreachte M(F).

7. The function ‘glove’

We now investigate the relation among formal series on trees, and forma! power
series on words. The correspondance will be made by means of the function ‘giove’,
which associates, to a given tree, the word obtained by listing the nodes in prefix
order. The main result of this section states that the glove of a recognizable
tree-series is an algebraic word-series. We believe that the consequences of this
theorem for enumeration problems are important. As will be illustrated by examples,
we get a tool which automatically delivers the generating function f~r counting
‘recognizable’ properties of trees, and furthermore, all these generating functions
are algebraic.
The function

glove: M(F)>F
is defined by

glove(a)=a ifack,,

glove(f(t1, ..., 1)) =f glove(t;) - - - glove(s,)
if feF, t,...,t,€ M(F).

It is folkore that glove is injective. The definition is extended to formula power
series, i.e.

glove: k{{F}}> k{F)

(we use k{F) to denote the set of formal power series over the free monoid F*, cf.
[23)) by setting, for S € k{{F}},

(glove(S), w)=0 if we glove(M(F)),
(glove(5), glove(r)) =(S, 1), te M(F). (7.1)

This definition makes sense since glove is injective. An equivalent notation for (7.1),
using expansion, is

glove(S)= 3 (S, t)glove(s).

te M(F)

It follows that for fe F,, S1,..., S, € k{{F}}

glove(f(S1,...,Sy)) =1 glove(S)) - - - glove(S,). {7.2)
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indeed, since

f(slqv--ysp)z Z (S], tl)"'(sps tp)f(tl)'--’tp)a

e wlpeM(F)

glove(f(Sy,...,S)= X (S1,01) (S, p)glove(f(ny, ..., 1))

HrenrfpEM(F)

,...tpe M(F)
=j‘(:.e1\§u=) (81, t!)glo"e(ﬁ)) e (:peﬁ(F) (Sp, tp)glove(tp))

= f glove(S,) - - - glove(S,).
This proves (7.2).
Theorem 7.1. If S is a recognizable formal power series on M(F), then glove(S) is

algebraic. More precisely, if (S, ..., S,) is the solution of the proper svstem of linear
equations over M (F):

gf = pi:

then (glove(Sy), . .., glove(S,)) is the solution of the proper algebraic system of
equations over F*:

& =glove(p;), i=1,...,n
Proof. Let (S, ..., S,) be the solution of the proper system

§,=p,~, i=1,...,n
where piek{F'}, FF=FU X and Z ={¢,,..., &}. Then

sl' =pi[Slv Y Sn]

where
pi{sls s ey Sn]:: w(px) 22 (p'iu t)w(t)
and where w is the morphism defined by

w(&)=$1, i=1,...,n, w(a)=a, aGF‘().
Now set

q:=glove(p;), i=1,...,n

The q;’s are in k(F U E), i.e. are polynomials in the associative variables x € F’'. Since
E nsupp(p;) =@ and since | € glove(M (F)), we have

(1UE)nsupply:)=0, i=1,...,n,
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in other words the system
§i=Qia i=1"°',n

is proper. It therefore has a unique proper solution.
Define T; =glove{(S;). We have to show that (T, .. ., T,) is a solution, whence the
solution of the above system, i.e.

T'i =qi[Tla vy Tn]
where

alT, ..., T.]1=d(q) =X (g, w)o(w)
and where @ is the morphism from k(F')° into k{F) defined by

o(&)=T, o(a)=a, acF.
For this, we will show that for all t€ M(F')

glove(w (1)) = @(glove(r)). (7.3)
Assume (7.3) for granted for a moment. Then

q[Ty, ..., T.]= d(glove(p:))

= Y (pst)d(gloveir))

te M(F)

= Y (p,!glove(w(t))

teM(F)
=glove(w(p:)) = glove(S;) = T.

Thus, it suffices to prove (7.3). We do it by induction on the length ¢ of a tree ¢ If
t=a € F,, then

glove(w(a)) = glove(a) = a = @ (glove(a)).
If t =&, then
glove(w(£)) = glove(S)) = T; = 3(&) = & (glove(£)
Next if t=f(t1, ..., t,) with fe F,, t1, . .., 1, € M(F), then using (7.2)
glove(w (7)) =glove(w(f(f1, ..., )
=glove(f(w(t), ..., w(t,))
=f glove(w(t1)) - - - glove(w(z,));
by the induction hypotkeses, it follows that
glove(w () = fd (glove(ty)) - - - @ (glove(s,))
=& (f glove(t,) - - - glove(t,))
= @ (glove(f(t, ..., 1))
= @ (glove(?)).
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Consider now a recognizable formal power series Sek{{F}}, and let T=
glcve(S)e K(F). The previous theorem shows that T is algebraic. Let z be a new
let:er, and define a morphism a : F* » z* by a(f) = z for f € F. Thus « maps all letters
intd z,and any word w € F* of lenigth n into z". If further w is the glove of some tree ¢,
then the length |¢] of ¢ is also n. Thus a (glove(t)) = z” for all trees in M (F) of length n.

Next it is well known [23] that a extends uniquely to a morphism

a:k{F)->k[[z]]

ard that o preserves algebraic formal power series. One even knows more:
¥f T is a component of the solution of a proper system of equations

§i=qi1 i=19°'-sns
then a(7') is the corresponding component of the solution of the system (over the
unique letter z)

é&i=alg), i=1,...,n

vhen a is extended to FU Z by a(£é)=¢ for ée E.
Given Sek{{F}}, we call enumerating series of S the formal power series
¢ (glove(S)). If

a\(glove(S)) = Z anz ns

n=1

tken
a,= Y (5,1) (7.4)

frl=n

In the particular case where S = L is the characteristic series of a forest L, we say
that a (glove(S)) is the enumerating series of L. Then (7.4) becomes

a,=Card{teL||t|=n}.

Acccrding to the preceding discussion, we have

Proposition 7.2. The enumerating series of a recognizable formal power series on trees
(resp. of a recognizable forest) is an algebraic series.

We now give two examples to show how this result can be applied.

Example 7.1 (Path length). According to Example 6.3, the formal power series PL
(path length), D (length), B (characteristic series) satisfy:

O O O O
FL= 7/ \_+ / N+ / N\ + / \,
B PL PL B D B B D

C O O
D= 0O + / N+ /N _+_ /N,
B B D B B D
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Denote by p(z), d(z), b(z) the series a(glove(PL)), a(glove(D)) and a{glove(B))
respectively. Then by Proposition 7.2,

p(z)=2zp(2)b(z)+2zd(z)b(z),
d(z)=z+2(b(2))*+22d(2)b(z),

b(z)=z +2(b(2))?
whence

__b@) ()2 224@G) 2:(6(2))° _ 2b(2)~2)
1-2zb(z) °? 1-22b(z) (1-2zb(z)°  1-4z°

since (1-2zb(z2))*=1-4z2

d(z)

Example 7.2 (Pattern matching in trees [12]). Given M (F), the set of function in
several variables from M (F) into M(F) is again a F-magma; we consider the
sub-F-magma M(F) generated by the identical function and by the functions
associated to the elements in F, Then M (F)is isomorphic to the magma M (F’') where
F'=F u{x}, with x a new 0-ary symbol. The correspondance is established by
associating, to each m'e M(F") the function m eM (F) which substitutes trees (in
M (F)) to the leafs of m' with value x.

Let m be an element of M(F); then m isa pattern. We say that m occurs in a tree ¢
in M(F) iff there exist t,, . .., t,€ M(F) and n € M(F) such that

t=n(m(ty,...,4)). (7.5)
Perhaps, the pictorial description of Fig. 1 is useful.

Fig. 1.

Let D,, : M(F) - Q denote the formal power series which associates, to each tree ¢
in M(F), the number (D,,, t) of occurrences of m in ¢, i.e. the number of distinct
factorizations (7.5) of ¢.

Givenatreet=g(t,,.. . 1,), then m occurs at the root of ¢ or in one of the subtrees
ti, ..., k. Consequently, D,, satisfies the following equaiion:

D,=m(B,B,...,B)
+ Z Z [g(DmsBs-~-’B)+g(BQDm’Bs---,B)+' * '+g(B,---,B’Dm)]9

p=1 gefFp
\

B=Y Y gB,B,...,B).

p=0 geF,
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Let ¢, = Card F,(p =0), and let kK = |m|r be the number of symbols of m in F. Setting
d.(2) = a(glove(D,,)), b(z) = a(glove(B)), Proposition: 7.2 gives

dm(z)=25(B(2))+ ¥ copzdn(2)b(z)""",

p=1

b(z)= Y c,2(b(2))".

p=0

Solving the first, and computing the derivative of the second of these two equations
gives
k
b(z)?
226 per=bie) 1
1-Y c,,pzb(z)""l) 1- ¥ c,,pzb(z)""l)
p=1

p=1

dn(z)=

whence

dn(z)=2""1(biz))" 'b'(2)

which is of course the equation given by Flajolet and Steyaert {12].

8. Frontier

There is a well-known relation between algebraic (context-free) languages and
recognizable forest; the set of derivation trees of a given algebraic language is a
reccgnizable forest, and conversely the frontiers of the trees in a recognizable forest
form an algebraic langaage [25]. This section is devoted to the generalisation, to
formal power series, of these facts. However, there is an inherent difficulty to
perform this task: if a word has infinitely many derivation trees, then the cor-
responding coefficient in the formal power series is infinite. To overcome this
obstacle, there are two standard techniques (see e.g. [9]): either one considers
complete semirings or one makes the necessary restrictions to avoid this situation.
Since we deal with fieids, we choose the second alternative.

The mapping ‘frontier’, denoted by

fr: M(F)->F§
is defined by
fr(a)=a, ackF,,
W(f(t1, .. ., 1)) =Ee(0)fi () - - - fx(s,).
In other terins, if = : F*-» F{§ is the projection erasing all letters not in Fy, then

fr = 7 o glove.
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If F = 0, then it is easily seen that for each w € F§ there are only finitely many trees ¢
in M(F) such that fr(z) = w. Thus, if S € k{{F}}, one can define the formal power
series fr(S) € k (Fo) by

(ir(S),w)= Y (S, 0.

fr(t)=w

Theorem 8.1. Assume that Fy, =0. Then the frontier of a recognizable formal power
series on M (F) is algebraic.

We first give a definition and a lemma. Let G be a subset of F. We denote by |¢|g
the number of occurrences of elements of G in ¢, i.e.

" ={1 if te G F,,
¢“lo ifteF,-G,

fts, .. .o t)la=8+|tlc+  *+|tle

with 6 =0 or 1 according to f& G or fe G.

Lemma 8.2. Assume F;=0. Forte M(F), one has
ltll‘b = %ltl'

In particuiar, té Fy implies |t|g,=2.

Proof. Straightforward.

Proof of Theorem 8.1. Consider a proper system of linear equations
§,'=p,', i=1,...,n

with E ={&,... &bandp e k{FUELi=1,...,n.Let(Sy,..., S,) be the solution
of this system. Let q; = glove(p,) for i =1, ..., n. Then (glove(S)), . . ., glove(S,)) is
the soluiion of the system

&=q, i=1,...,n
Now consider the projection
m' ((FUE)*>(Fou E)*
defined by #'(&)=¢, i=1,...,n and #'(f)=n(f)(feF). Then ri='(q:) is in
k(F,u E). Now in view of Lemma 8.2, for each tesupp(p:), either 1€ F, or

|t|ru= = 2. Consequently, for each w € supp(q;), one has w € F, or |wig.L= =2. This
implies that for each v € supp(r:), either v € Fp or ||z =2, and in particular

supp(r;) N E =0.
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Consequently the system of equations

&i=r
is proper. Or. the other hand setting T; = glove(S;), the formal power series

w(T)= ¥ (T,w)r(w)= ¥ (m(T5),v)v

weF* veFg
is well defined; indeed
(m(T)o)= Y (T,w)

wesuppi T;)
w(wi=v

and the set {w e glove{A(F))|m(w)=0v} is finite since if w is in this set, then
|v) = |w|g,=3lw| by Lemma 8.2. Thus

m(T)=m(q(T, .., T,D)=rlm(T0),...,m(T)], i=1,...,n
or equivalently

fr(S;))=7[fr (S, ..., fx(S,)]), i=1,...,n.

We now prove a conveise of Theorem 8.1.

Theorem8.3. Let T € k{X)) be an algebraic formal power series. There exist a magma
M(F) with Fo=X and a recognizable formal power series S in k{{F}} such that
T =fr(S).

Proof. Let
g,':fi, i=1,...,n

be a proper system of algebraic equations, ;€ k(X U E) having the solution
{T], PRPIPI T,,) with Tl =T.Let

k=max max |w|zux.

1<i= n wesupp(r)
Define
F=F,0F v --UF;
where Fo=X, and for each p=gq, F,={£l,..., £} is a copy of E. Let V be the
k -vector space with base X U Z. As already done in the proof of Theorem 6.2, we
identify (X U Z)° with a base of V*° by considering a word w=mm2 ... M €
(X UE)" as the base element , ® 7, ® - - - @, e V.
Define a linear representation (V, u) of M(F) by

utka)=a, ack,,
forp=1,and win (X UZE)’

wAED W) = {r, w)&rl.
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Let Sy, ..., S, be the formal power series on M (F) defined by the representations
(V,m, &), i=1,..., ks where {£1, ..., & 0{x'|x € X} is the dual base of X U =,
According to the proof of Theorem 6.2, the n-tuple (§4, . . ., S,) is the solution of the
system of linear equations

fi-:p,', i=1,...,n

with

p=XY Y ¥ [&ouf(w)lf(w)

p=0 feF, we(ZUuX)?

k n
=3 [fiopux]+ L X X [&ousf(w)]Ei(w)

xeX p=1j=1 we(EuX)®
=X Y L&, wEIET (W) =L X (ri, w)él (w).
P Lw pw

It follows from the construction of Theorem 8.1 that the n-tuple (fr(S)), . . ., fr(S,))
is the solution of the system

gi:::fl‘(p,-)=r:-’ i=1,...,n

with ri =Y (r, wlw =r..
Since thie solution of a proper system of alge braic equations is unique {23], one has

ir(S)=T, i=1,...,n

9. A pumping lemma

It is well known that there exist puinping lemmas for recognizable forests. These
lemmas cannot hold for recognizable formal power series on trees since there are
supports of such power series which are shown not to be recognizable forests by using
precisely a pumping lemma. Thus the situation is analogue to that encountered when
one tries to prove a pumping lemma for recognizable formal power series on words.
For these a deep result of Jacob [13], making use of so called pseudoregular matrices,
shows the existence of a weakened version of the puraping lemma. We use a slightly
sharper statement [21] to prove a pumping lemma for recognizable formal power
series on trees, and give then some examples. '

Let F be a graded alphabet, x a new symbol, F' = F u{x}, and F;, = Fou{x}. A
tree t in M (F') defines a morphism

U :M(F')-> M(F')
by setting
(\bl(x):t, (l’t(a):aeFo.
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Thus ¢,(s) is the tree obtained by replaciig each occurrence of x inthe tree s by . Ina
dual manner, we obtain a mapping

@s: M(F")» M(F')
by setting
&5 (8) = Y (5).

We denote by ip; the restriction of @; to M (F). Then ¢, is a mapping into M (F). Next
we define

A={se M(F)||s|. =1},
B={scMF)|s=f(t1,...,1), f€t, Jisuch
that 1, = x and t;e M(F) for all j # i}.

Example:

/ h
7\ VAN
g h €A, f x g
VRN VRN 7N
a X b
Finally we set
S*={p,|5€A}, Z=lp;|seB}.

The notation is consistent in view of the following
Proposition 9.1. 3* is a free monoid freely generated by X. Its neutral element is ¢,.

Proof. (1) T*isgenerated by 3. Letindeed ¢, be in £* and assume s B U {x}. Then
s=f(s1,...,5)

for some f € F,,, ex~:t'y one among sy, . . . , Sp, SaY S, is in A, the other s; are in M (F).
Consequently

O=f(S1,..., 515X Si+1s - - - s Sp)
is in B. We claim that

@5 = Qo ° Ps;e 9.1)
Indeed. let ¢ be in M(F). Setting

u =@ (t)=4(s)
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we have
@0 © @5, (1) = Qo) = {fs1, . . ., Siz1, X, Sin1, - - -5 Sp))
=f(S1y e e ey Sizts Uy SitlseevsSy)
=f(s1,..., 8i-1, 'ﬁt(si);‘sHh e s Sp)
=Y (f(S15 .« s Si15 Sis Sit1s 0+ + 5 Sp) = s (£).

This proves (9.1). By repezating this argument we get for each s in A a sequence
o, ..., 0, of elements in B such that

Ps T @o °Pay°* " ° Po,,. (92)
(2) T* is freely generated by Z. Assume that for some ¢,€X*, there is a
decomposition ($.2), and a decomposition
Ps =@r°" " P,
for some 74,..., 7, in B,
We prove, by induction on m + n, the following ciaim: if for a tree t € M (F) with
height(¢) > height(r1), . . ., height(7.,), height(c), . . . , height(o,) one has
P00 ‘P‘r,,.(t) =@, %0 (Pon(t)a
thenm=n,r=01,...,Tm =Om.
Indeed, set
o, =f(51, e Sic1s Xy Sitls e e Sp), Ty = g(tl, e i1, X bivs e e e s tq)

with s, e M(F) for k #i, t,e M(F) for | #j.

Suppose @, °* o @, (1) =@y " °@q,(f) for a tree ¢ with the above height
property. Set U =@q,° " °@q,(t), V=@, °¢,,. Then height(u), height(v)=
height(z).

Next

@oy(U) = ¢r,(v)
that is
F(S1y e vy Sicty Uy Sivts e ns Sp) =8ty ooy tio1, U, Giv1s e v s Ig)e
Hence
f=g and (S1,...,8i-1, U Sicts---sSp) =ty ooy limiy D, by oo o5 fg)

Because of the inequaliiies height(u) > height(7;) >> height(# ), / # j one has i = j and
st = t(k # 1) and u = v, whence o, = 71. The claim: follows by induction.
This proves (2)

Definition. Let e M(F). A walk in ¢ is a pair (¢, a) with ¢ € 2*, a € F such that
t = ¢(a). The length of the walk is the length of ¢ in the free monoid X *,
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Tueorem 9.2. Let S € k{{F}} be recignizable. There exists a co-istant N such that for
each tree t € supp(S), and for any walk (¢, a) in t of length at leas: N, ¢ decomposes, in
3*, into ¢ = @ 19193 such that ¢1¢% p3(a) Nsupp(S) is infinite.

Proof. Let (V,u,A) be a representation of S. For each o=
flS1,.. .4 8i-15 X, Sis15- .., Sp) in B, we define an endomorphism
VoV

by setting, for v € V,

‘ﬁ'ﬂ(v) =yf(,f)(“(sl)’ ey “(si—l)s v, ”'(sl'+l)a s oy M(S,;)) (9'3)
The mapping ¢, — @, is extended to * by composition.
Note that
G (p () = pule(1) (9.4)

for all ¢ € £* and € M(F). Indeed, if ¢ = ¢,, then by (9.3),
Go ()= () p(s1)s - -, pi5im1), w8), e (Sin), . . ., (s,))
=w(f(S15 s Sicts b Sivta - 4 55)) = (@ (1)),
Next if ¢ = ¢’ © ¢,, then by induction
G(u(0))=¢'(@.(n (1) = ¢'(u (e, (1))
=ul(p o @a(1) = pu(p(1)).

Now let N =N(dim V) be the integer of Theorem 3 of [21], let ¢ be a tree in
supp(S) and let (¢, a) be a walk of ¢ of length at least N. According to the theorem
quoted, there exists a decomnposition

P=P1°92°¢s3
with ¢ #id, and ¢, a pseudo-regular endomorphism. Set
Up= Ao @roPsops(ua), n=0.

Then u; =A¢(na)=Au(p(a)) =Au(:) = (S, t) # 0. Consequently, Lemma 1 of [21]
asserts that u, # 0 for infinitely many n. Since

Un=A° (@ @2 ° @3(a)) = (S, ¢10303(a)),
this proves the theorem.
During the proof of Theorem 9.2, we also verified the following proposition:

Proposition 9.3. Le: Sek{{F}} be a recognizable formal power series, and let
(V, i, A) be a representation for S. For ali ¢1, 2, ¢3€ 3%, a e Fy, the formal power



Recognizable formal power series on trzes

St
e
(7]

series in one variable

u(z)= ZO (S, er0303(a))z"”

is rational, and the sequence (S, ¢1¢2¢3(a)) satisfies a linear recurrence relation of
length at most dim(V).

Example 9.i. We show that the formal power series evald evaluating arithmetic
expressions with division is not recognizable (whereas Example 4.2. showed without
the division, evaluation is recognizable). It suffice to consider the case where
F =Fy U F,, with Fy={a}, F, ={+, X, :} (the general case reduces to the present one
by Hadamard product (Proposition 5.1)). Define

evald(a) = 1.

Then for instance

evala + )=3.
AN
a a

Consider the two elements ¢,, ¢, € X defined by
: +
o= /\, = / \..
a x a x
The tree @07 (a) is

N\

+

/ \ n times
/

\

/ N\
Fig. 2. )

whence u, = (evald, g,¢-(a))=1/(n+1). Thus the series u(z)=2,., 42" is not
rational, since

zu(x)=—log(1 —x).
In view of Proposition 9.3, evald is not recognizable.
Example 9.2. The formal power series height is not recognizable provided F #

Fou F,. We assume for simplicity that F = 5, u ,, Fy = {0}, F, ={C}. Suppose that
height is recognizable, let (V, u, A) be a representation and set X = dim (V). Define
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o ¢r in 2 by
@) O
o=/ \, ™=/ \
X t x O

with beight(r) = K. Then for n =0, the tree ¢, = ¢ () is

AN
n times '/{/: .\n
.l”' \'“ o
/N
u/ \n

Fig. 3.
and

1+K. n=0,...,K,

eight(, ={
eight(r,) 1+n, n>K

Or. the other hand, height(z,) satisfies, according to Proposition 9.3, a linear
recurrence relation of length at most K. Since the K + 1 first elements of the sequence
(heignt(t,)).=0 are equal to K +1, this implies height(s,)=K +1 for ail n.
Contradiction.

Remark. Flajolet [11] has another proof of the fact that height is not recognizable
which runs as follows: Consider the enurrerating series a(x) = a (glove(height)). By
analyzing the singularities of u(z), Flajolet shows that a(x) is not algebrai-.
Consequently, height cannot be recognizible in view of Theorem 7.1.

Example 9.3 (AVL-trees). It is easy to show that the set of AVL-trees is not a
recognizable forest. We verify that it is even not the support of a recognizable formal
power series. ({This does not prove that its generating series is non-algebraic, but
perhaps explains to some extent why it is not v/t known.)

Let F=FyUF,, with Fo={Cl}, F,={O}. A tree ¢ is AVL if either t=0 or
t = O(t4, t;) and the following two conditions 3: = satisfied:

(i) t, and ¢, are AVL;

(i) |height(t;)—height(s,)|<1.

The Fibonnacci trees defined inductively by

f0=f1=D’ fn+2= /

are AVL-trees ard height (f,)=n—1.
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Let on = @o, € 2 be defined by

O
o=/ \.
fn t

Then @, (fu+1) = fa+2, Whence
fas2=@n o @n-1° 2 @1° @o((J).

Assume now that the set A of AVL-trees is the support of some recognizable
formal power series S. Then by Theorem 9.2 for a sufficiently large n,

Pro@n-1°" " C@o=@ 0@ 0"
for some ¢', ¢", ¢" such that
ge=¢ 0" cp"([D)eA
for infinitely many k. Now
Bk=@n° " °@qs1°(@g0 0@y @y 0 o @u(d)
for some p, g with 0 <p <q <n, and setting g, = ¢,.(gk), one has
B O
5 _fn/ \giu
and

height(gi)=n-1+(k-1)(g—-p) (k=1).

Consequentiy no g, (k =2) is in A. Contradiction.
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