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1. Introduction 

Trees are a very basic object in computer science. They intervene in nearly a;ly 
domain, and they are studied for their own, or used to represent conveniently a given 
situation. There are at least three directions where investigations on trees themselves 
are motivated, and this for different reasons. First, the notion of tree is the basis of 

algebraic semantics (Nivat [19], Rosen [2*2], etc.). In this context, the study of special 
languages of trees (i.e. forests), their classification, and their behaviour under various 
types of transformations are of great importance (Arnold fl], Dauchet [8 J, L,ilin 1161, 

Mongy [18]). By essence, work in this area is an extension of the algebraic theory of 
languages; trees and ianguages are in fact directly related via the derivation trees of 
an algebraic grammar (Thatcher [25]). A second topic heavily related to trees 
concerns dzra structures, Trees, mainly binary trees &and its variants, constitute one of 

the most widely known data structures (see e.g. Hlnuth [15]). The analysis of the 
worst-caLe, expected or average running time t)ehzvGrr nfi’ certain algorithms 

requires sometimes long and delicate computations (Flajolet [lo], Kemp [14], 
Flajolet and Steyaert [12]). Finally, trees occupy a distinguished place in the 
enumeration of graphs and maps, both because of the simplicity of their structure and 

for the relationship between their el-lcodings and aigebraic languages. The nature of 
the enumerating series, and especially the question whether they are algebraic or not, 
is one of the central problems in this domain (Cori [7], Chottin [4]). 

We propose here a theory of formal power series on trees, and present some of 
their basic properties together with various examples of applications which, as we 
hope, will show the interest of its development within the framework we just 

sketched. 
A formal power series on trees is a function which Gssociates a number to esch tree. 

Thus we could also have called them ‘tree functions II in analogy with the term ‘word 

function’ used by several authors (Paz and Salomaa [ZO], Cobham [5]) as an 
equivalent denomination for formal power series on words. The main goal of a 
formal power series is to count, or to represent the result of some computation on 
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trees. Thus 01~~ can count the ‘multiplicity’ in some recognition device, but more 
concrete examples (height of a tree, evaluation of arithmetic expressions, pattern 

matching) will be considered. Next, power series are classified according to the 

amount of difficulty involved to compute them. The so called linear representations 
of magmas introduced in Section 3 give a Formalization of linear computation 
m&o& and rely on standard mlathematical concepts (multilinear functions on a 

vector space). Formal power series computec! in that way are called recognizable. 

They are the main object of this paper and two characterizations will be given in 

Section 6 and 8. 
From the point of view of formal language theory, formal power series on trees 

appear as an extension of the classical thecry of formal power series on words 
(Salomaa and Soittola [23], Eilenberg [9]), developing further the correspondence 
between properties of (set of) words and trees. They are also a generalization of the 

notion of forest., the refinement consisting in the introduction of multiplicities. It 
would have beeln tedious to present a systematic investigation of all properties of 

series on words which carry over to formal power series on trees. We focused our 
attemion on three of them. First we prove (Theorem 6.2 and 6.4) the equivalence of 
the definition by linear representation, and as solutions of systems of linear equa- 

tions. The first definition corresponds to bottom-up computations, whereas the 
second is a glo:)al, top-down one. Then we investigate the analogue, for formal 

power series, of the relationship between context-free languages and frontiers of 
recognizable forest, and prove that the same facts hold in that case (Theorem 8.1 and 
8.3). Out thirdl result in this direction is a pumping lemma (Theorem 9.2) for 
recog.niz&i ;‘c!wei’ series on trees. There are interesting applications of this lemma; 
thu:: Gsr instancle the set of /#L-trees cannot be the support of a recognizable power 
series (Example 9.3). 

Among the applications, the most intriguing one is perhaps the use of formal 

power series for the evaluation of arithmetic expressions (Example 4.2,6.2 and 9.1). 
It is well known that arithmetic expressions are representable by trees. The function 

which to an arithmetic expression associates its value is a formal power series, and we 
verif!! that it is recognizable when division is forbidden, but is no longer recognizable 

when division is admitted. Another type of .application repeatedly discussed in the 
sequr:l concerrrs enumeration. We show that ;Jath length, number of occurrences of a 
pattern, and ot:hers are recognizable power series, but height is not. More important 
from the meth.odological point of view is perhaps the fact that the system of linear 
equation satistied by some recognizable formal power series on trees yields, without 
further computatioc, equations for the enumerating functions counting the property 

over all trees of a given size. Moreover, the enumerating functions are always 
algebraic provided the series on trees is recognizable (Proposition 7.2). 

Section 2 contains basic definition concerning formal power series on trees. Lmear 

representations of a free magma are introduced in Section 3, and are used to give a 
first definition of recognizable power series. Section 4 is devoted to a detailed 

de?&c:ription of several examples. The closure under I-Iadamard product, shown in 
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Section 5, has mainly technical interest. In Section 6, we prove the equivalence 

between recognizable power series and solutions of proper systems of linear equa- 
tions, and give such systems for some examples. The well-known function ‘glove’ 

investigated in Section 7 associates, to a recognizable series on trees, an algebraic 
power series in several noncommutative variables. As a corollary, we show that the 

corresponding enumerating series is also algebraic. Two examples are computed. 
Section 8 contains the proof that the frontier of a recognizable series on trees is 

algebraic and conversely. In Section 9, we show a pumping lemma and use it to prove 
that severa power series on trees are not recognizable. 

The results proved here ate, as we already said, generalization of corresponding 

properties of recognizable lorests which are already known for a while (Thatcher [25, 
261, Brainerd [3], Thatcher and Wright [27], Maibaum [17], Arnold [I]), even 

if the proof are generally more complicated. The, v are of course also related to 

recognizable power series on words [9,23]. 
The definition of power series on trees by means of equations and their relation to 

enumerating series was already used extensively by Flajolet [lo]. A first version of 
this paper [2] was presented at the 5th C.L.A.A.P. 

2. Formal power series on trees 

In this section, we give the basic definitions concerning formal 
trees. Let F be a set of function symbls, that is a graded alphabet 

power series on 

The elements in Fp are the function symbols of arity p. We denote by M(F) the free 

F-magma generated by F (see e.g. Cohn 1163). The elements in M(F) are called trees. 

If t is a tree, and t& FO, then there exist an integer p 3 0, a symbol function f E Fp, and 
trees tl, . . . , tp such that 

t =f(f1, . . . , tp). 

Some time it is rno1.e suggestive to employ, instead of this notation, the: more pictorial 
representation 

f t=/(.\ 
h tP 

We shall use indistinctly one or the other notation. 
We assume in the sequel that the set F of function symbols is finik?. This is not an 

essential restriction in most of the subsequem developments, bult simfrlifies the 
exposition without a real loss of generality. 
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Definition.. Let k be a commutative field. A formal power series on M(F) with 

eoeficieni~s in k is a mapping 

S : M(F) + k. 

The value of S for a tree t E M(F) is denoted by S(t) or (S, t) and is called the 

ccrefficieent of t in S. The series S is written in an expanded notation as 

s= I: is, t)t* 
rfzM(F) 

The set of aill formal power series on M(F) with coefficients in k is denoted by k({F}l. 

Note that we define only formal power series with coefficients in a field, whereas in 
the ‘classica1’ theory of formal power series on the free monoi’d [9,23] the coefficients 
are taken in a sermiring. We do this in order to simplify the exposition, and also 
because we a,re in:Gn~fy interested in applications where the coefficients have a precise 
numerical meaning. As alrea.dy mentioned above, formal power series on trees are to 
be used in counting processP=s, and the res’ult of such a process for a given tree t is 
precisely the vahre of the function S for t. 

&ample 2.X. The height of a tree t in M(F) is inductively defined by 

0 
heig&( t i = 

if t E Fo, 

I+ max{height(tl), . . ‘ , he .ght(t,)) if t = f(tI, . . . , tp). 

Thus height is a Iormai power series on M(F) with coefficients in k = Q (= the field of 

rational numbers). Other examples will be given below (Sections 4, 6 and 9). 

The set k{{(F)} of formal power series is converted into a vector space by the 
Sorm tilas 

6, -I- sz, 0 = &, t) + G2, th 

(as, t) = a(S, t) (a E k). 

The set k{{F}) 1 las also a structure of F-magma. Consider indeed f~ FP, and 
s 1$ . . . , Sp in M(F). The formal power series 

s ==,f(S*, . . . ) S,? 

is defined as foIl~ows 

(SI, fM2, t.2) l l - (S,, tP) if I =f(tl, . , . , fp) 

c) othierwise. 

The srqp-9tZ of a series S is the forest supp(S) = {t 1 (Sl, t) # 0). We denote by k(F) 
the subset of al1 elements in k{(F)) having finite support. Tklese elements are called 
poCynomi&. Then k{F} is jus,t the free k-F-algebra [6]. It is easily seen that k(F) is a 

subvector space and a submagma of k{(F)). 
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3. Recognizable formal power series 

Before defining the recognizable formal power series, we introduce the nction of 
linear representation of a free magma. This is a straightforward exte,raion of 

the corresponding construction for other algebraic structures, and is presumably 

interesting for itself. 
Let V be a finite dimensional vector space over the (commutative) field k. We 

denote by 

cqvp; V) 

the set of p-linear mappings from VP into V. In particular, if p = 0, then V” can be 
identified with k, and 2?( V”; V) can be identified with V: indeed, a linear mapping 
from k into V can be identified with its value on 1. Set 

zz= u (VP; V). 
pa0 

Then the vector space V is a s-magma with .2ZYVp; V) as the set of functions .J;lllth 
arity p. Thus any mapping p : F + 2’which maps FP into Z’( VP ; V) converts V into a 

F-magma. 

Definition. A hearrepresentation of the free magma M(F) is a couple ( V, u j, where 

V is a finite dimensional vector space over k, and where 

maps FP into 9( VP; V) for each p 2 0. 

Thus for each f E ,&,, cc(f) : VP + V is p-linear, and since M(E) is free, p extends 
uniquely to a morphism 

p M(F)+ V 

by the usual formula 

for 

t =f(t1, . . . , tp). 

Definition. Let S be a formal power series on M(F). Then S is recognizable if there 

exists a triple (V, cc, A), where (V, p j is a linear representation of M(F), and 

is a linear form, such that 

(S, t) = A (,p(t)) for all t in M(F). (3.1) 

( V, cc, A ) is called a representation for S. 



There are several remarks on this definition. First, and as we will show in the next 

r.ection, the notion of represccntation of S is an ‘arithmetization’ (in the sense of [23]) 
of the well-known concept of bottom-up tre c -;u;c,mata (as defined by Thatcher 

[ 25)). Moreover a representation analogue to (3 I 1) has been given by Arnold [ 11. He 
shows that a forest L is recognizable iff it can ble written as 

where A, p are defined as above, but the field ktis replaced by the boolean semiring. 
kn a manner completely parallel to the situation$or recognizable forests, we will give 

a top-down definition of recognizable formal pc’we r series Eater, by means of systems 
of equations. , / 

Next, our definition is an extension of the clasGca1 definition of recognizable power 

series over the free monoi’d (Schiitzenberger [24], Salomaa and Soittola [23]). Let 
indeed X be an alphabet. Then X can be ‘considered as a F-magma, where 
F = Fo u Fl, and Fo -r 1, Fl= X; to each word w in X is associated the tree w J_. Let 
now ( V, p, A) be a representation of a series S over this magma. Then bjr definition 
each px (x E X) is an endomorphism of V, and ~1 Q_) is an element of V, say y. Thus 
we have, for a tree wl, 

ti;hJ-) = p(w)y, (S, wl)=A(p(wl’+J)=A l piw ’ y. 

Thiis yields the usual definition of recognizable formal power series on the free 
monoid X*. 

Finally, it is sometimes convenient to use the canonical isomorphism between 

9C VP; V) and the space Q of linear mappings of the g-fold tensor product 

into V. This isomorphism is given by associating, to f E 5,, the p-linear mapping from 
VP into V defined by 

a rinear representation can consequently also be given 
t.hat p (F,) c 5,. 

Proposition 3.1. The set of recognizuble formal power 

k WI}. 

by a mapping p : F + 6 such 

series is a subvector space of 

Proof. We first show that if S is recognixable and o! E k, then arS is recognizable. Let 
(V, CL, A) be a representation of S. Then (V, p, ah) is a representation of CUS, and 
consequently &S is recognizable. 
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Assume now that S1 and S2 are recognizable, and set S = S1 + Sz. Let ( Vi, pi, Aif be 

a representation of Si(i = 1,2). Set V = VI x V2, and observe that for cp E 

.9( Vf ; Vi), +b E Z( V,” ; Vz), the mapping 

q:vp+v, 

q[(d, v:), l l l 9 (vi, &I= (cp(d, l l l 9 v;), clr(v:, . ’ l 9 v;)) 
is p-linear. Consequently, the linear representation ( V, EL) of M(F) given by 

df)[(d, 24, . . . , (z$, vg)l= (pdfkd, . . . , &, ~dfk~K . . . 9 ~3 

is well defined, and it is immediately verified that 

p(t) = (PI(t), /L#!, t E M(F). 

Thus, if A : V + k is defined ‘rry 

A (v l, v2) = A l(d) +A2(v2) 

we get 

A (cL (t)) = A dpdt)j + A2b2@)) = 61, t) + 62, t) = 6 0, 

showing that (V, p, A) is a representation for S, whence S is recognizabic. 

The set of recognizable formal power series is also an sub-F-magnx. This will be 
shown later (Proposition 6.5 ). 

4. Examples 

Example 4.1 (Counting arguments). The length 1 ti of d tree t is the number of nodes 
of t, i.e. 

if t E Fo, 

l +lt,l ift=f(tl,...,t,). 

The formal power series D defined by 

(0, t) = it! 

is recognizable. We consider the more general case of the formal power series 

Df( f E F) defined by 

(Df, t) = number of occurrences of f in t. 

We show that Df is recc&zable. Since F is finite, and D = CfEF Df it follows by 

Proposition 3.1 that D is also recognizable. 
To show that Df is recognizable, we define a representation (V, p, A) as follows: 

V =Q2. Let el, e2 be the canonical basis of V, Then for each g, it suffices to define 
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p(g) on the basis vectors. We define: for g E F4, g # f, 

pgh,, l . . , q-J= 

if il = 0 m l = iq = 1, 

if there Fs exactly one j with ii = 2, 

el+e2 ifil=* l .=&=l, 

pfh . . . 9 e,) = e2 if there is exactly one j with ij = 2, (4.1) 
0 otherwise. 

Note that for a E Fo, this definition implies that 

I a if a # f, 
a = 

e+ez ifa=fEFo. 

Finally, A (tQ = 0, A (e2) = 1. 
We claim that 

pt=el+(Df, r’)e2 for t&M(F). 

This holds indeed if t E Fo; otherwise 

(4.2) 

t = sh l l ’ , tq) 

and by linearity 

p(t) = p(,ig)Cel+ (Df, t&2, . . II 9 el + (of, t&21 

I el+ i (0,. t&2 
i=l 

if g # f, 

el + e2 + i (L)f, ti)(f2 if g = f (and q = p). 
i=l 

This proves the claim (4.2). Next the definition of A gives 

showing that (V, p, A) is a represen.tation of Df which therefore is recognizable. 
&ote that the finiteness of F is not required to show that D is recognizable. It 

suffices to define pf by formula (4.1) for each f in F. Note also that (in the case where 
F is finite) any linear combination of the Df’s is still recognizable. This is interesting 
when a ‘weighted length is considered. 

Example 4.2 (Evaluation of arithmetic expressions). Consider F = PO u FI u F2, 
-where F: = 1, F2 = ,I+, X} (1 is the function symbol for the unary substraction, that is 
the mapping cu H-(Y). It is well known that a tree in this free magma represents an 
arithmetic expression. Such an expression has a well-defined numerical value 
proFAded a value is attributed to each od the elements a E F. which are leafs of the 
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tree,, and provided the symbol functions are interpreted as usual. Thus consider the 

formal power series 

eval: M(F) + Q 

given by a fixed assignment 

eval(a) = a’ E Q for each a E FO 

and extended to trees in the natural way. Then eval(t) is the value of the arithmetic 

expression represented by t for the given numerical values of the leafs. 

For example, if 

/-\ 
t=-l 

I /x\ 
ab c 

and a’ = 7, 6== 2, c” = 3, then evaI = -1. 
We claim that eval is a recognizable formal power series. 
We construct the following representation (V, ,rc, A) for th& series aval. As before, 

V = Q*, {el, e2) is its canonical base, and p : F + Y is defined as follows: 

p(a)==e1+Lie2 foraEF0, 

lu (34 = el, p We2) = -2, 

d+)h 4 = el, ~(+)(el,e*)=I.L(+)(e*,el)-- e2, p.i+j(e2, t?*j=O 

dX>h elj = el, lu Wet, e2j = fi Wj(e2, elj = 0, dXjCe2, e2j = e2. 

Ahj = 0, A(e2)= 1. 

As above, we verify that 

p(t) = el + eval(t)ez, t E M(F). 

By definition, (4.3) holds if t E FO. Next, one has 

p (-10 = P (3 (e1-k eval(t) = el - eval(t)e2 

= el + eval(it)e*, 

p(+t&) = p(+)(et +eval(t*)ez, el feval(t2)ez) 

= el + (eval(tl) + eval(t*))ez = el + eval(+tl t2)e2, 

finally, 

(4.3) 

p (x tl t2) = p (X)(el + eval(tde2, el + evaKt2k2) 

= el + eval(tI)eval( t2)e2 = el + eval( X tl t2)e2. 
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By (4-3) we get for all t E M(F) 

eval(t) = A (p(f)) 

showing that eval is recognizable. 

Examlgle 4.3 (Characteristic series). Given a forest L, we define the chmacteristic 
series, t of L by 

W, t) = 
1 iftEL, 

0 latherwise. 

If L is a recognizable forest, then L is a recognizable formal power series. 
Let indeed & be a (deterministic) bottom-up tree automaton recognizing 1,. Then 

[25 ] & is composed of a finite se: of states Q, an initial state +, a set of final states 
Q+ c Q and, for each p 2 0, and f E Fpa a function p: QP + Q. Thus Q, equippled with 
the ps, is a F-magma. A. tree is accepted by & (i.e. t is in L) iff t^(q_) E Q+. 

Consider now the k-vector space V = kQ with the canonical base (e&Q. For each 
f tz Fp, let 

be gi!Jen by 

(4.4) 

and define A : V + k by 

Me,) = 
1 ifqEQ+, 

0 otherwise. 

Consider al tree t in M(F), and set 14 = &I-). Then it is easily seen that p(t) = e,, 
whence 

Note that in order to get (4.4), we assumed that the automaton ti is deterministic. In 
the (case of nondeterministic automata, each f(q19 . . . , qp) is a subset of Q, and 
replacing (4.4) by 

Mkql, . . . 3 eqp) = C 
q&?*.....qp) 

e, 

defines a formal power series which takes into account the multiplicity of acceptance 
of a tree. 

Exarnrple 4.4. The ‘converse’ of the preceding example is not true, that is: the 
supp+:.:;rt of a recognizable power series is not necessarily a recognizable forest. 
Indeed, consider for instance the recognizable series SLI - Sb (with the notations of 
Example 4.1). Its support is {t 1 (S,, t) # (56, t)} which is not a recognizable forest. 



Recognizable formal power series on trees 125 

Example 4.5, The formal power series height, defined in Section 2, is not recogniz- 

able. This will be proved in Section 9. 

Example 4.6. The pati% Length [15] of a tree is defined to be the sum, taken over aii 
nodes, of the lengths of the paths from the root to each node. Denote by PL(t) the 

path length of the tree t. Then PL is a recognizable formal power series. We show this 

in Section 6. 

5. Hadamard product 

Given two formal power series SI, S2 E k{{F}}, we call I-Ladamard product cf S1 and 
Sz, and denote by S1 0 $2, the series defined by 

(Sl Q S2,t) = &, NS,,t)* 

Since k is a field, one has 

(Sr 0 222, t) # 0 iff (Sl, t) # 0 and (S2, t) # 0. 

Therefore 

supp(S10 S2) = suppcM n supp(S2h 

This shows the relation between Hadamard product and intersection. 

Proposition 5.1. If Sr and S2 are recognizable formal power series on M(F), then 
510 S2 is recognizable. 

Proof. L.et ( Vi, pi, Ai) be a representation of Sj for i = 1, 2. Using the isomorphism 

mentioned in Section 3, each pi(f), for f e Ijb, is a linear mapping from V”p into 

vi. Now define a representation ( V, p, A)/ by 

v = v* 0 v2, A=&@& 

andforp20,fEFp,v: ,..., viEV& ,..., z&V2 

e(f) is indeed a linear mapping in view of the canonical isomorphism 

End( Vy, VI) 0 End (I@‘, V2) = End( V@‘, cl). 

We claim that for all t in M(F), 

t=&t+33&Qt (5.1 j 



126 1. Berstel, (7. Reutenuuer 

This is clear if t E Fo. If t = I’(tl, . . . , tp), Ithen 

#Lw = &x&a 0 ’ l ’ 0 PtpP 

= g(f)((p1t* 0 &a) 0 ” ’ ’ c3 (Plfp 6 E12t2)) 

by the isrduction hypothesis. Thus 

p(t) = CLl(fhwl 0 l l l 0 @l&J 0 p2(f)(~~2~fl) 0 * l 3 0 @t&d 

= p1w 0 P2W 

Thus (5.1) is verified. Finally 

h@(f) = Ml 0 A2NCLlW 0 pz(N = h(CLlN~AZ(PZ(~)) 

= a, w2,o = GlO s2, t> o 

showing that ( V, p, A ) is a representation for $0 S2 

6. !+stenrs of linear equations 

As aiready mentioned, a representation can be considered as a bottom-up 
automaton. Systems of linear equations are then analogue of top-down automata. 
We show in this section the equivalence of these two definitions. 

Let 1= (51, c . . , &) be a set (of ‘variables’). We consider the set 

of function symbols derived from F by adjoining Z to the set of O-ary symbols: 

Fh =FouZ and Fk=F, (palj: 

Now consider a sequence S - ( S1, . . . , S,,) of formal power series in k{(F)} and 
define a mapping w = ws 

w : F; --, k((F)), 

This mapping extends uniquely to a morphism of k-F-algebras, still denoted by (r) 

o : k(F’} -, k-[(F)). 

In particular, for t =f(tl, . . . , tp), 

4) =fWd, l l l , e)(tp))* 

If 17 E k{F’}, we also write p[S1, . . . , S,] for M(P). This notation is consistent since 
ob,p) is obtained by substituting Si to (i ir? p. It follows in particular that for 
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t =f(t1, . . . , tp) E M(F) 

Wl , l . l , &I =f(t& l ’ l 9 &I, l ’ * 9 t&L l l l 9 sll). 

Now let ~1,. . . , pn E k(F). A solution of the system of linear 

Ei=pi, i= 1,. . . , n 

is any n-tuple (Sz, . . . , Sn) of formal power series satisfying 

Si = PiESI, . . . . SJ, i=l,..., n. 

Using the morphism o defined by S = (&, . . . , Sn), (6.2) 

O(pi). i = 1, . . . , n. 
The system (6.1) is called proper if 

EfTSUpp(pi)=0, i=l,...,n. 

equations 

(6.1) 

(6.2) 

is equivalent to: Si = 

Just a word to the specification ‘linear’. This is because the variables appear only on 
the leafs of the trees in supp( pi), and also for the similarity of the properties of such 
systems with the ‘usual’ linear systems. 

Proposition 6.1. A proper system of linear equations has one and only one solution. 

Proof,. Assume first that S = (Sit . . . , S,) is a solution of (6.1 j. Then 

Sj =O(pi)= C (pi, t)w(t), i=l,. 
l ’ 9 n. 

f ESUPPIP, 1 
(6.3) 

Since the system is proper, each t E Supp(pi) either is in M(F), or has the forms 

t =fh 2 ..,tP)forsomefEFr,p~ltl,. . . , tp e M(F). Consequently, setting 

pi =supp(pi)nM(F)v C?i = SUpp( pi J - Pi 

(6.3) becomes 

Si = C (pi, t)t+ C 
1EPi f(f,....&k(2‘ 

Therefore 

(S’, a) = (pi, a) Va EFo, i = I, . 

and if s = g(sl, . . . , sq) E M(F), then 

, fp))fbUl), l ’ . , dt,,) 

Vi = 1, “. . 1 n. 

n (6 -4) 

(Sip S) = (Pi9 SJ + C (pi, g(tls a l l 9 fq))(W(fl), Sl) ’ l l Cwttq)9 Sq)9 C6*!j) 
R(tl*-..wtq1)EC?i 

This formula shows that (Si, s) is uniquely determined by pi and by the values of the 

S, k on trees of length strictly less than the length of s. By (6.4), the Si’s are uniquely 
determined on trees in FO. Consequently, the solution is unique. But (6.4), (6.5) can 
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also be considered as defining equations for the formal power series Si : (6.4) gives the 

values of the S’s on elements in &, and (6.5) allows to compute the values of the 
series by induction on the length. This proves the existence of a solution. 

We now start the proof of the characterisation of recognizable formal power series 

through systems of equations. 

Theorem 6.2. Any recognizable formal power series is a component of the solution of 
some proper s)rd:zm of linear equations. 

Proof, Let S be a recognizable formal power series, and let ( V, cc, h ) be a represen- 
tation of S_ Let E = {&, . . . , &) be a base of the vector space V and let F’ be as 

above, with F:, = F. u Z, in order to carry out the, proof correctly, we need some 

additional notations. If f E FP and w = (i,& . . . (ii, E .?’ we write f (w ) instead of 

f (6,9 . . . , si,,. Thus f(w) E M(F’); for p = 0, we set by convention f( 1) = f. 
Next we observe that 2’ can be identified to a base of V”‘, with w = Q, . . . [i, E 

=’ representing the element &, $5 l l l 0 6, in V’? 

“~efke~l~~?mtals p 

Finally we consider the dual base 

. 
iE 

I k{F } by 

Thus in (6.6), the coefficient (pi, f ( w )) is the ith component of the vector p (fi( W? E K 
with respect to the base Z. Let S, be the series defined by the representation 

( V, IL, 6:). We claim that 

Sj=pi[SI,*..,Sn}, i=l,...,n. 

First if a E Fo, then 

(Pits19 . . l ,SnJ,a)=C C C5f ~~(fWl(f~w)L!h.. .AJA 
P f.w 

= & O p(a)(l) = 5: 0 pa = (Sii, a) 

(of course, we have used here the convention made above identifying pa with .un (I))- 
Next if t = g(tl, . . . , fq), then (f(wEL . . . , SJ, t) equals 0 except if f= g. 

Consequently (by induction 1) 
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= 5: O @t = (Si, t). 

This achieves the verification of the claim. 
Now let &, be a new variable and set 

Then (S, St, . . . , &) is the solution of the system 

Pi = ti9 i=O,l,...,n 

In order to prove the converse of the theorem we first need a reduction step which 
shows that any proper system of equations can be ‘simulated’ by a simple one. 

Lemma 6.3. Let S be cz formal power series on M(F) which is a component of the 

solution of rome proper system of linear equations. Then S is also a component of the 

solictioc of a proper system of linear equations 

ci=pi, i=l,...,n 

with 

supp(pi)cFOUF(E*) 

where 

Proof. The proof is in two steps. Define the height of a polynomial as the maximal 
height off the trees in its support. We first show the existence of a system of equations 
with right parts of height at most one. Then we transform this system to one of the 
desired fern:. 

Let S Se the first component of the solution of a proper system of linear equations 

[i=pi, i = 1,. . . , tl. (6.7) 

We proceed by double induction on the maximal height of the pi’s, and on the 
number of trees in the supports of the pi’s achieving this maximal height. Let t be a 
tree in the support of say pi, and assume t is of maximal height among the trees in 

I J;,i,,, sfupp(pi). C!esiiy we niby zscume that t has height h at least 2. Then 

t =fh l l l , tp) 

forsome f EFp, tl,. . . , tP E M(F’). Fur?her there is a nonempty subset J c {I, . . . , p} 
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consisting of those indices j such that 1; has hekght h - I. Define a new set of variables 

H = (vi 1 j c J) and a new system of equations 

qj = ti, j E J, 

&=pi’, i’E (1, . . . , n)-(i), 

Si=Pi-(Pi9 t)t+(Pi, t)t’ 

where t’=f(sl,. . . , sJ with sA = qA for h E J, and sA = tA for A &J. 
Clearly this system is proper since t.he tj”S and t’ are trees of height at least 1. Next 

there is one tree less of maximal height ci in this new system. Finally one checks easily 
that S is still the component of the solution of this system of equations corresponding 

to 61. 
Now we may assume that (6.7) is a system of equations with each tree in the 

supports of the pi’s having height 0 or 1. Introduce a new variable qa for each a E FO, 
and define a new system of equations 

&=pi, i=I ,..., n, qa=a (6.8) 

p; = C (Pi9 t)t’9 
fCSUPP( Pi) 

{ 

t 
t’ = 

if t E Fo, 

fh w l . 5 z,) if t =f(yb . . . 9 xJ 

and 

yj if yi E Z, 
Zi = 

TJ= if yj = a E Fo. 

System (6.8) has the desired form. 

“rheorm~ 6.4. Ary formal power series on M(F) M lhich is a component of the sotutiun 
,of a proper system of linear equation,9 is recognirdde. 

Proof. Let S be a formal power series on M(F), and suppose that S is the first 
component of the solution (Sl, . . . , Sn) of a proper system of linear equations 

(i=pi, i = 1,. . . , ?I. (6.9) 

We may assume that this system satisfies the conditions of the previous lemma. 
Consider the vector space V = kz, with .T = &, . . n , &, as base and define a linear 

representation (V, cc) of M(F) by setting, for p 2 0, f E Fp, ~1, . . . , qp E 5’ 
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Now define Sf , . . . , Sk to be the formal power series having the representations 

(Kti,&)(i=lr-r n). The same computation as in the Iproof of Theorem 6.2 shows 

that (Si, . . , , S&) is a solution of the system (6.9). In view of Proposition 6.1, we ha*ve 
S:=SifOri=l,..., n. This concludes the proof. 

This result has an interesting corollary which completes Proposition 3,l. 

Proposition 6.5. The set of recopnizabl~ fomal power series on M(F) is a sub-F- 
magma of k{(F)). 

Proof. Let f~ Fp and let Sip . , . , Sp E k{(F)}. Then S1, . . . , Sp are components of 
solutions of proper systems of linear equations. Putting these systems together, we 

may assume that S1, , . . , S’,, are the first p components of the solution of the system 

SP=piy i=l,...,n. 

Then T=f&, . . . , S,) is a component of the solution of the system 

According to Theorem 6.2 and 6.4, there is a proper system of linear equations for 
each recognizable formal power series and vice versa. We now give these systems of 

equations for some of the examples of Section 4. 

Example 6.1 (Counting arguments). First, consider the cquations 

rl = c a+ c c fb7db.47). 
aeFo pal fcFp 

Let B be the solution. Then 

B= c a+ C C fU%B,...,B). 
aeFo pal feF, 

Consequently (B, t) = I for each tree t in M(F), i.e. B is the characteristic series of 

M(F). 
Kow fix a symbol f in some Fp, and consider the equation 

Then the solution of this equation (together with the previous one) is the power series 
Of. Indec.d, let S be the power series which solves the equation: Then for ;;r tree 

t = so1 , . . . , t,), one has 

(s, tj = (s, tl) +- (s, tz) + l l 9 + 6, r,i -f fi 

where S = 0 or 1 according to g # f or g = f. Thus S = @. 



132 .I. Bentel, C. Rentenawr 

Example 6.2 (Evaluation of arithmetic expression). With the notations of Example 
4.2, consider ?!!x system of equations 

Then the same vG5cation ;as above shows that the solution of this system is (eval, B), 
where B is the characteristic series of the magma. For illustration, we carry out the 

conputation of eval( t) where 

./*+\ 

t==: ,x\ 
ab <” 

ij=f7,6=2, &z=:3, 

According to (6.10) 

eval(t) = eval (J.8( I 
a 

/x \)+B(YJeval( b/.‘\) 
6 c c 

= -evad(a) + eval(b)eval(c) 

=-a’+j&--J 

Example 6.3 (Path length). For simplicity, we assume the trzes binary, i.e. .FO = {Cl}, 
& = (01. Then by definition, the path length of a tree t is d&red as 

J 0 if t=Cl, 
PL(t) = PL(tn)+!tll+PL(t*)1+It?! 

0 

I 
if t= / 1,. 

t1 t2 

Consider the following system of equations: 
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Then the solution is (PL,, D, B), where 

(B, t) = 1 for each t E M(F), (D, t) = Iti for each t E M(F). 

7. The function ‘glove’ 

We now investigate the relation among formal series on trees, and formal power 
series on words. The correspondance will be made by means of the function ‘glo4, 
which associates, to a given tree, the word obtaine(d by listing the nodes in prefix 
order. The main result of this section states that the glove of a recognizable 

tree-series is an algebraic word-series. We believe that the consequences of this 
theorem for enumeration problems are important. As will be illustrated by examples, 
we get a tool which automatically delivers the generating function f->r counting 

‘recognizable’ properties of trees, and furthermore, all these generating functions 

are algebraic. 
The function 

glove : M(F) + F 

is defined by 

glove(a) = Q if a E Fo, 

glove(f(h, . . . , t,)) = .f glove(tI) l * l glove( $J 

if fE Fp, tl, . . . , tp EM(F). 
It is folkore that glove is injective. The definition is extended to formula power 

series, i.e. 

glove : k{(F)} + k((F)} 

(we use k{(F)} to denote the set of formal po~vwer series aver the free mono’id F*, cf. 
[23]) by setting, for SE k((F)}, 

(glove(S), w) = 0 if w& glove(M(F)j, 

(glove(S), glove(t)) = (S, t), t E M(F). (7.1) 

This definition makes sense since ghe is injective. An equivalent notation for (7. I), 

using expansion, Js 

glove(S) = ,,Lt,, 6 t)gloveW. 

It follows that for f~ Fp, S1,. . . , Sp E k{(F)} 

glove(f&, . . . 9 S,)) =f gkve(S1) l l . glove&). (7.2) 
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= f gbve(S~) l l * glovelS,). 

This proves (7.2). 

Theorem 7.1. If S is a recognizabZ~e formal power series on M(F), then glove(S) is 
atgebruic. More precisely, if 61, . . . , &) is the solution of the proper .ystem of linear 
equations over M(Fj: 

#ken (glove& )$ . . . , glove($)) is the sotution of the proper algebraic system of 
eqtdations over F* : 

& =glove(pi), i = I,. . . li II. ‘\ 

Pmo%. Let (S,, . . . , Sn) be the solution of the proper system 

where pi E k{F’), P = F u E and .5’ =: {&, . . . , &}. Then 

and where w is the morphism defined by 

W(lji)=S,, i = 1,. . . , n, ,u(a) = a, a E l$j. 

Now set 

qi = gllove(pi), i = 1, . . . , n. 

The qi’s are in k(F u E), i.e. are polynomials in the associative variables x E F’. Since 

Z A supp( pi) = 0 and since I & gbve(M(F)), we have 

(lwZ)~4upp(q;)=(d, i:=l,...,n, 
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in other words the system 

135 

ei=qi, i=l,...,n 

is proper. It therefore has a unique proper solution. 
Define Ti = gloie(Si>. We have to show that (Tl, . . . , Tn) is a solutiion, whence the 

solution of the above system, i.e. 

K =qi[Tl, 9 - l 3 T,] 
where 

qi[Tr, l l - 3 T,1 =G(qi) =C (4i9 w@(w) 

and where 6 is the morphism from k(F’)P into k((F)) defined by 

G([t) = Ti, G(a)=a, a EF. 

For thgs, we will show that for all t E N(F’) 

glove(o (t)) = (s (glove(t)). (7.3) 

Assume (7.3) for granted for a moment. Then 

= C (pi9 t)gloveWN 
ZE M(F) 

= glove(o( pi)) = glOve(Si) = Tia 

Thus, it suffices to prove (7.3). We do it by induction on the length t of a tree t. If 
t=aEFo,then 

glove@(a)) = glove(a) = a = cS(glove(a)). 

If t = 6, then 

glove(o (&)) = glove(Si) = Ti = G (5) = G (glove(&)) 

Next if t =f(tl, . . . , tp) with f~ Fp, tl, . . . , tp E M(F), then using (7.2) 

glove(0 (t)) = glowto (f(h, . . . , &JN 

= ti$~ve(fkdtd, . . . , w(t,N 

=f glove(w(t1)) . 9 l glove(w(t,h 

by the induction hypotheses, it follows that 

gllove(o(t)) = f&(glove(tl)) l 0 0 &I? (glove(t,)) 

= &(f glove(t,) 9 9 l g 

!love(f(t*, . D . , tp))) 

= 6 (gIove( t)). 
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Consider now a recognizable formal power series SE k{(F)), and let T = 

@we(S) E K{(F)). Th e previous theorem shows that T is algebraic. Let z be a new 

letter, and define a morphism Q! : F* + z* by a(f) = 2: forf E F. Thus a! maps all letters 

into z,, and any word w E F* of length n into z n. If further w is the glove of some tree t, 
then the length ItI of t is also n. Thus a! (gIove(t)) = z ” for all trees in M(F) of length n. 

Next it is well known 1231 that ac extends uniquely to a morphism 

ard that a preserves algebraic formal power series. One even knows more: 

If T is a component of the solution of a proper system of equations 

Ej=qi, i=l,...,n, 

then cy (T’) is the: corresponding component of the solution of the system (over the 
unique letter 2) 

ei=cU(qi), i=l,...,n 

when cy is extended to F u E by LY (6) = 5 fcr 5 E Z 

Given S E k{(F)), we call enumerating series of S the formal power series 

G, (glove(S)). If 

tlen 

cy iglove = C a,2 n, 
nZ1 

a, = 
,; (s 

9 t) 
t n 

(7.4) 

In the particular case where S = e is the characteristic series of a forest L, we say 

that a(glove(S)j is the enumerating series of L. Then (7.4) becomes 

an = Cnrd(t E L 1 it] = n). 

According to the preceding discussion, we have 

Proposition 7.2. The enumerating series of a recognizable formal po wer series on trees 
(resp. of a recognizable forest) is an algebraic series. 

We now give two examples to show how this result can be applied. 

Example 7.1 (Path length). According to Example 6.3, the formal power series PL 

(path length), D (length), B (characteristic series) satisfy: 

0 0 0 0 
pL= J\ + /\+/\+/\ 

B PL PL B D B B D’ 

D= Cl 
c: 0 0 

fB/ \B+D/ \B+B/\ 
D’ 

0 
B= i-J fB/ \ l 

B 
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Denote by p(z j, d(z), b(z) the series a(glove(PL)), cu(glove!D)) and cu(gloveU?j) 

respectively. Then by Proposition 7.2, 

p(z) = 2z&)b(t) + 2zd(z)b(z), 

d(2) = 2 +t(~(2))*+2td(z)b(z), 

b(z) = z +2(6(z))* 

whence 

d(z) = 
b(z) 

PM = 
2td(z)b(z j WbWJ* 2(6(z)-r) 

1 - 2zb(z)’ 1-2zb(z) = (1-2zbg‘- 1 -4r2 

since (I-2zb(z))* = l-42*, 

Example 7.2 (Pattern matching in trees [12]). Given M(F), thie set of function in 
several variables from M(F) into M(F) is again a F-magma; we consider the 

sub-F-magma A% generated by the identical function and by the functions 
associated to the elements in E Then A%(F) is isomorphic to the magma M(F’) where 
F’ = Fu {x}, with x a new O-ary symbol. The correspondance is established by 

associating, to each m’ E M(F) the function m E G(F) which substitutes trees (in 
M(F)) to the leafs of m’ with value X. 

Let m be an element of &(I;); then m is a pattern We say that m occurs in a tree t 
in M(F) iff there exist tl, t EM(F) and n E&&F) such that ***9 4 

t = n(m(tl, . . . , t,)). (7.5) 

Perhaps, the pictorial description of Fig. 1 is useful. 

. 
m- 43 .* . . -. 

Fig. 1. 

Let D,,, : M(F) + Q denote the formal power series which associates, to each tree t 

in M(F), the number (D,, t) of occurrences of m in t, i.e. the number of distinct 
factorizations (7.5) of t. 

’ Given a tree t = g(tI, . . . , t,), then m occun at the root of t or in one of the subtrees 

h t 9**-? p* Consequently, D, satisfies the following equation: 

n?l =m(B,B,...,B) 

+ C C [g(D,,B ,..., B)+g(B,~,,B,...,B)+.~*+g(B,...,B,hl,,)], 
pal gcFp 

\ 

.!J = F. gFF g@, B, . . . ) W. 
3 P 
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Let cp = Card &( p 3 Cl), and let k = IrnlF be the number of symbols of m in F. Setting 
& (2) - a (glow@,)), b (2) := f2 (glawe(l3) j, Proposition 7.2 gives 

d,(z) = zk(b(Z))q -I- c eppzd,(z)b(z)P- *, 
pal 

b(z)= 1 CpzMZ))P. 
pa0 

SolvJng 

gives 

the first, and computing the derivative of the second of these two equations 

drn(z) = 
z%(z)” 

9 b’(d 
l- ‘C c,~z~(z)~--’ 

pal 

= b Cd 
1 

(l- c cpp*b(z)P’) 
gal 

whence 

d m (z) = zk”(b~z))q-‘b’Czj 

which is ox” course the equation given by Flajolet and Steyaert [12]. 

8. Frontier 

There is a well-known relation. between algebraic (context-free) languages and 
recognizable forest; thd: set of derivation trees of a given algebraic language is a 
recognizable forest, and conversely the frontiers of the trees in a recognizable forest 
form an algebraic language [25]. This section is devoted to the generalisation, to 
formal power series, of these facts. However, there is an inherent difficulty to 
perform this task: if a word has infinitely many derivation trees, then the cor- 
responding coefficient in the formal power series is infinite, To overcome this 
obstMe: there are two standard techniques (see e.g. [9]): either one considers 
comylete semirings or one makes the necessary restrictions to avoid this situation. 
Since we deal with fields, we choose the second alternative. 

The mapping ‘frontier’, denoted by 

fr : M(F) -a F: 

is defined by 

fr(a ) = a, a E Fo, 

wvl, l l . , tpjj = fr(t*)fr(t*) l ’ . fr(tp). 

In other terms, if 7c : F* -3 Fg is the projection erasing all letters not in Fo, then 
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If F1 =- 8, then it is easily seen that for each w E Fg there are only finitely many trees t 

in M(F) such that fr(t) = w. Thus, if S E k{(F)}, one can define the formal power 
series fr(S) E k((Fo)) by 

(WS), w) = c (ST d. 
fr(r)= w 

Theorem 8.1. Assume that Fl = 0. Then the frontier of a recognizable formal power 
series on M(F) is algebraic. 

We first give a definition and a lemma. Let G be a subset of E We denote by ItIc; 

the number of occurrences of elements of G in t, i.e. 

1 if tEGnF*, 

0 if tEFo-G, 

with 6 = 0 or 1 according to j’& G or f E G. 

Lemma 8.2. Assume F1 = 0. For t E M(F), one has 

l&ii 2 :I4 
In particular, t& F0 implies ItIF0 2 2. 

Proof. Straightforward. 

Proof of Theorem 8.1. Consider a proper system of linear equations 

ei=?i, i=l,...,n 

with.?={& ,... &},andp+k(Fus},i=l,...,n.Let(S1 ,..., S,)bethesolution 

of this system. Let qi = glove( pi) for i = 1, . . . , n. Then (glove(&), . . . , glove($)) is 
the solution of the system 

ri=qi, i=l,...,n. 

Now consider the projection 

d:(Fus)*+(F~,uE)* 

defined by g’(ti) = 6, i = 1, . . . , n and g’(f) = n( f)(f E F). Then vi = r’(qi) is in 

k&u EQ. Now in view of Lemma 8.2, fx each t E SUpp(pi)? either t E FE) or 

I I t FouSA > 2. Consequently, for each w E supp(qi), one has w E Ej or 1 w ~~~~~ 2 2. This 

implies that for each v E supp(ri), either v E Fo or ]@I&& 3 2, and in pa--titular 
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Consequently the system of equations 

is proper. On the other hand setting ‘ri = glove(Si), the formal power series 

tr(?3= z (Ti, w)v(w)= c (w(TAv)v 
weF* tlEF;: 

is well defined; indeed 

i7r( z)9 0) - c (G w) 
WE SUPP~ Ti 1 

a(wj=u 

arrd the set (w E glove(M(F)) 1 n(w) = v} is finite since if w is in this set, then 
=iwl+&lwl by Lemma 8.2. Thus 

r(Ti) - tr(qi[Tl, . . . , ‘r,]) = ri[n(Tt), . . , , r(T,)], i = 1,. . . , n 

or eqciivalently 

fr/Si) fzz Ji[tr(S*), . . . , fr(S,)], i = 1, . . . , VI. 

We now prove a converse of Theorem 8.1. 

Theorem 0.3. Let T E k&Y)) be an algebraic formal po wer series. There exist a magma 
M(F) with Fo = X and a recognizable formal power series S in k{(F)) such that 
T = fr(S). 

Proof. Let 

ti=ri, i=l,...,n 

be a proper s?istem of algebraic equations, ri E k(X u E} having the solution 

:Tl,..., Tn9 with Tl = T. Let 

where F” = X, and for each p aq, FP = {&‘, . . . ,tE} is a copy of E’. Let V be the 
k-vector space with base X u .Z As already done in the proof of Theorem 6.2, we 
identify (Xu 3)’ with a Ibase of V”” by considering a word w = ‘>7lr12 

l . . 7&J E 

(X c) 2)” as the: base element ql @ q2 @ . l l @ qP E V@‘. 
Define a linear, represenltation ( V9 p) of M(F) by 

p (a ) =:: tz, a E Fb, 

for p 3 1, and FY in (X u E’)P 

/A (Sp>( W) = {Pi, W)[p. 
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Let S 1,, . . f Sn be the formal power series on M(F) defined by the representations 

(V, p, &), i = 1, . . . , a, where {& . . .,&ju(x’fn~X} is the dual base of XuZ. 
According to the proof of Theorem 6.2, the n-tuple (Sl, . . . , S,J is the solution of the 
system of linear equations 

ei=Pir i=l,...,n 

with 

= c E [51 urj, w >~j>lS~(W)=CC (ri9 W)5’iw>. 
P i.w PW 

It follows from the construction of Theorem 8.1 that the n -tuple (fr(& ), . . , , fr(S,)) 
is the solution of the system 

~i”‘ft(pi)=r:, i=l,...,n 

with ri = CP (rf, W)W = ri. 

Since the solution of a proprr system of algc braic equations is unique [23 J, one has 

fr(Si) = Ti, i 

9. A pumping lemma 

It is well known that there exist pumping lemmas for recognizable forests. These 

= 1 n. , l . . ?I 

lemmas cannot hold for recognizable formal power series on trees since there are 

supports of such power series which are shown not to be recognizable forests by using 
precisely a pumping lemma. Thus the situation is analogue to that encountered when 
one tries to prove a pumping lemma for recognizable formal power series on words. 

For these a deep result of Jacob [ 131, making use of so called pseudoregular matrices, 
shows the existence of a weakened version of the pumping lemma. We use a slightly 
sharper statement [21] to prove a pumping lemma for recognizable formal power 

series on trees, and give then some examples. 
Let F be a graded alphabet, x a new symbol, F’ = F u (x}, and F.; = Fo u(x). A 

tree t in M(F’) defines a morphism 

tj?r : M(F’) + M(F’) 

by setting 



142 J. Berstel, C. Reutenauer 

Thus &(s) is the tree obtained by replacing each occurrence of x in the tree s by t. In a 

dual manner, we obtain a mapping 

by setting 

We denote by dip, the restriction of C& to Mr(F). Then co, is a mapping into M(F). Next 
we define 

A = (P E MF’) 1 Is\, = l}, 

B=(..&UR)js =f(tl,. . . , tJ,fe t,,3i such 

that ti = x and fi E M(F) for all j f i}. 

f 
/ \ 

g i? EA, E B. 
/ ‘1 

a X a ba a 

Finally we set 

‘Z’he notation is consistent in view of the following 

Proposition 9’.l. C* is a free monoi’d freely generated by C. Its neutral element is qpx. 

Proof. (1) 2’” is generated by C. Let indeed 40~ be in C* and assume s ti B u {x}. Then 

for some f E & ex2 3!y one among sr , . . . , s,, say sip is in A, the other sj are in M(F). 
Consequently 

o- =.fh - l l 9 *si--l9 X9 Si+lv l l l 9 sp) 

is in B. We claim that 

Qs = Qu O Qsp 

Indeed. let r be in M(F). Setting 

(9.1) 
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we have 

Qa * Q&j = Qu(U) = +uifh . . 0 , %--I, -& si-tl, l l l 7 sp)) 

This proves (9.1). 

=f(sl, l l l 9 Si-19 4 Si+l, l l l 9 Sg) 

= f(Sl, . , . $ Si-19 @t(Si), Si+l9 . m 9 L Sp) 

= #t(f(sl, l l l 9 Si-1, J’i, Si+l, l l . 9 Sp) = Q,(t)* 

By repeating this argument we get for each s in A a sequence 

Ul , . . . , a, of elements in B such that 

Qs=QuIoQcr20”‘oQ~,,~ (9.2) 

(2) x* is freely generated by Z. Assume that for some Q, ES*, there is a 
decomposition (9.2), and a decomposition 

Qs = QT~ O ’ l l O QT, 

for some 71,. . . , rm in R, 

We prove, by induction on m + n, the following claim: if for a tree t E M(E) with 
height(t) > height(rl), . . . , height(Tm), height(nl), . . . , height(cr,) one has 

QT, O l ““Q7m(~!=Qcrlo* ’ l oQ,(f), 

thenm=n,rl=ul ,..., rm=cr,,,. 

Indeed, set 

CT1 =_f(Sl, l l l 9 Si-19 X9 Si+l, l l l 9 Sp), 71 = g(h, l l l 9 bj-19 X9 tj+l, . . . , *A 

with Sk E M(F) for k # i, tl E M(F) for i #j. 

SUppOSe QT1 O l ’ l 0 Qr,,, (t) = QuI O ’ l l 0 Q&) f:>r a tree t with the above height 
property. Set w = ~~~ CJ l l l 0 Q&), v = (pT2 0 . l . 0 Q~,,,. Then height(u), height(v) 3 
height(t). 

Next 

Q&d = Q,(u) 

that is 

fbl, l 
. . 9 Si-1, U, Si+l, . . . 9 Sp) = g(tl, n l l 9 tj-19 V, tj+lt t r* *‘*I 4 

Hence 

f = g and (~1, . . . , it-1, U, Si+l, . . . , sp) = (tl, l l m , tj-1, VT tj, l l . 9 &)a 

Because of the inequali‘ies height(u) > height( 71) :> height& ), I Z j one has i = j and 

Sk = fk(k # I) and u = v, whence CT1 = TV. The claim follows by induction. 

This proves (2) 

Definition. Let t E M(F). A walk in t is a pair (Q, a) with Q E z*, la E &I wzh that 

t = Q(a). The kngth of the walk is the length of Q In the free monoid ii?*. 
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Theorem 9.2. Let S E k{(F)) be recugnitable. There exists a co-istant N such that for 
each tree t E supp(S), and for any walk (cp, a) in t of length at least N, tp decotnpmes, in 
P, into (B = ql(pz(p3 such that q&&a) n supx,(S) is infinite. 

Proof. Let ( V, j4, A) be a representation of S. For each CT = 

f(sr 9 l l l 9 &-I, -& &+I, l l l 9 sJ in B, we define an endomorphkm 

& : v -9 v 

by Mting, for c E V, 

6tF~tr)=P(.fl~@(sl~9 0 8 l 9 P(Si-l)r V, p(Si+l), l l l 9 fi(zgj), 

The mapping cpo - & is extended to C* by composition. 
Note that 

ij(cLW = p(a(tN 

for all y, E 2” and t c M(F). Indeed, if rp = (P-, then by (9.3), 

(9.3) 

(9.4) 

=P(f(Sl, l l l 9 Si-19 6 Si+l9 0 l l 9 Sp)) = fi(Vm(t))- 

Next if cp = rp’ 0 qV, then by induction 

$(.u 0)) = 6’!&(P (0) = G’(P (G(0)) 

= J&P’ O cPa(t)) = P(cpW). 

Now let N = N(dim V) be the integer of Theorem 3 of 1:21], let l be a tree in 
supp(S) and let (cp* a) be a walk of t of length at least N. According to the theorem 
quoted, there exists a decotinposition 

Iwith q1 f id, and 4~2 a pseudo-regular endomorphism.. Set 

Then 81 = A&ka) = hp (q(a)) = A@ (:‘) = (S, t) # 0. Consequently, Llemma 1 of [21] 
asserts that u,, # 0 for infinitely many n. Since 

Un =A oP(Q O Q; O Q&J)) = (s, (FlQ;Q&)), 

this proves the theorem. 

During the proof of Theorem 9.2, we also verified the following proposition: 

Proposition 9.3. LX% SE k{(F)) be a recognizable formal power series, and let 
( V, p, A) be a representation for 5, For all ~1, ~2, ~3 E iii*, a E &,, the formal power 
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series in one vrrriable 

is rational, and the sequence (S, Q&pJ(a)) satisfies a linear recurrence relation of 
length at most dim( V). 

Example 9.1. -We show that the formal power series evald evaluating arithmetic 
expressions with division is not recognizable (whereas Example 4.2. showed without 

the division, evaluation is recognizable). It suffice to consider the case where 
F = Fo u F2, with Fo = {a}, Fz = {+, X, :} (the general case reduces to the present one 
by Hadamard product (Proposition 5 .l)). Define 

evald(a) = 1. 

Then for instance 

/‘\ 
eval( a + >=:. 

/ ‘\ 
a a 

Consider the two elements pa, (pT E C defined by 

a= A; r= ,+\. 
a a x 

The tree ~&:(a, is 

/y 

“/\ nt 

a z 
/+x, 

‘+ 

a ‘\ 

imes 

a 

Fig. 2. 

whence un = (evald, p&y(a)) = l/(n c 1). Thus the series u(z) =xnsO UJ” is not 

rational, since 

m(x) = -log( 4 -X). 

In view of Proposition 9.3, evald is not recognizable. 

Exampie 9.2. The formal power series height is not recognizable provided F lit 
&u FI. We assume for simplicity that F = fQ_r &, F. = {U}, Fz = (0). Suppose that 
height is recognizable, let (V, p, A) be a representation and set ,K = dim ( V). Define 
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with height(t) = K. Then for n 2 0, the tree tn = ~JP: (Cl) is 

Fig. 3. 

and 

lleight( tn j = I l+K: n=C”,...,K, 

1 +vr, n > K. 

c)r; the other hand, height(t,) satisfies, according to Proposition 9.3, a linear 

recurrence relation of length at most K. Since the K + 1 first elements of the sequence 

(heightk, )Lo are equal to K + 1, this implies height&) = K + 1 for all n. 
Contradiction. 

Remark. Flajolet [l l] has another proof of the fact that height is not recognizable 
which runs as follows: Consider the enun crating series a (4~) = cx (glove(height)). By 
analyzing the singularities of 2 (z), Fla jolet shows that a(x) is not algebrai:. 
Consequently, height cannot be recogniz;able in view of Theorem 7.1. 

Example 9.3 (AVL-trees). It is easy to show that the set of AVL-trees is not a 
recognizable forest. We verify that it is even not the support of a recognizable formal 
power series. (This does not prove that :rts generating series is non-algebraic, but 
perhaps explains to some extent why it is not ypt known.) 

Let F == &u Fz, with Fo = {III}, Fz - {O}. A tree t is AVL if either t = Cl or 

t = O(tl, t2) and the following two conditilons a; r: satisfied: 
(i) tr and t2 are AVL; 
(ii) Iheight - height( G 1. 

The Fibonnacci trees defined inductively by 

fo=f1 =u, 
0 

f-z+* = / 1, 
fn fn+l 

are AVL-trees ard height ( fn ) = n - 1. 
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Let Q~ = (own f C be defined by 

0 
= / \* 

un fn t 

Then dfn+d =fn+2, whence 

f n+2=Qn”Qn-10”‘oQ~oQo(~). 

Assume now that the set A of AVL-trees is the support of some recognizable 

formal power series S. Then by Theorem 9.2 for a sufficiently large II, 

Qn O Qn-1 O l l •OQo=Q'O~"O~"' 

for some Q’, Q”, Q” such that 

& = Q’ 0 Qsk 0 Q”‘(n) E A 

for infinitely many k. Now 

gk = Qn ’ ’ l l 0 Qq+l 0 (Qq 0 l ’ l 0 Qp\/kQp 0 l l l 0 Qc,(o) 

for some p, 4 with 0 <p C 4 s ~1, and setting gk = Qn (gi I, one has 

0 
gk=/ \ 

fn dd 

and 

height(gh)=n-l+(k-l)(q-p) @al). 

Consequently no gk (k 2 2) is in A. Contradiction. 
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