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"F~r die Entwicklung der logischen Wissenschaften 
wird es, ohne ROcksicht auf etwaige Anwendungen, yon 
Bedeutung sein, ausgedehnte Felder f~r Spekulation 
Ober schwierige Probleme zu finden." 

Axel Thue, 1912. 

I. Introduction. 

When Axel Thue wrote these lines in the introduction to his 
1912 paper on squarefree words, he certainly did not feel as a 
theoretical computer scientist. During the past seventy years, 
there was an increasing interest in squarefree words and more 
generally in repetitions in words. However, A. Thue's sentence 
seems still to hold : in some sense, he said that there is no 
reason to study squarefree words, excepted that it's a difficult 
question, and that it is of primary importance to investigate new 
domains. Seventy years later, these questions are no longer new, 
and one may ask if squarefree words served already. 

First, we observe that infinite squarefree, overlap-free or 
cube-free words indeed served as examples or counter-examples in 
several, quite different domains. In symbolic dynamics, they were 
introduced by Morse in 1921 [36] . Another use is in group theory, 
where an infinite square-free word is one (of the numerous) steps 
in disproving the Burnside conjecture (see Adjan[2]). Closer to 
computer science is Morse and Hedlund's interpretatio~ in relation 
with chess [37]. We also mention applications to formal language 
theory : Brzozowsky, K. Culik II and Gabriellian [7] use 
squarefree words in connection with noncounting languages, J. 
Goldstine uses the Morse sequence to show that a property of some 
family of languages [22]. See also Shyr [52], and Reutenauer [a3]. 
All these are cases where repetition-free words served as explicit 
examples. In other cases, questions about these words led to new 
insights in other domains, such as for DOL languages and for 
context-free languages. At the present time, the set of results on 
repetitions constitutes a topic in combinatorics on words. 
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This paper g ives  a survey of  some recent r e s u l t s  
concerning squaref ree words and re l a ted  top i cs .  In the past years, 
the  i n t e r e s t  in  t h i s  t o p i c  was indeed growing, and a number o f  
r e s u l t s  are now a v a i l a b l e .  An account of  basic r esu l t s  may be 
found in Salomaa [a5,46]  and in L o t h a i r e  [30] .  For e a r l i e r  work, 
see a lso Hedlund's paper [25] .  The more general  concept of 
unavoidable pa t t e rn  i s  in t roduced in Bean, Ehrenfeucht, McNulty 
[4 ] .  Part 2 deals w i th  powers and r e p e t i t i o n s ,  part  3 w i th  
l anguage- theo re t i c  r esu l t s ,  part  4 g ives  the es t ima ta t i ons  on 
growth, par t  5 descr ibes r e s u l t s  on morphisms. 

2. Powers and r e p e t i t i o n s .  

A seuare i s  a word of  the form xx, w i th  x a nonempty word. 
Cubes and k - t h  powers are def ined accord ing ly .  A word is  
squarefree i f  none of  h is  f a c t o r s  ( in  the sense of  Lo tha i r e  [30] ,  
or subwords) i s  a square. A word i s  o y e r l a p - f r e e  i f  i t  conta ins  no 
f a c t o r  o f  the form xuxux~ w i th  x nonempty. The concept of  k - t h  
power f ree  words where k i m p l i c i t l y  i s  a p o s i t i v e  i n tege r ,  can be 
extended to  r a t i o n a l  numbers as f o l l o w s  : I f  r = n + s i s  a 
r a t i o n a l  p o s i t i v e  number w i th  n p o s i t i v e  i n t e g e r  and 0 < s < I ,  
then an r - t h  power i s  a word of  the form 

U~U ' 
with exactly n consecutive u's and one left factor u' of u 
satisfying lu' I/lul = s. 

The Thue-Morse sequence 

m = 011010011001011010010110... 

conta ins  squares and is  o v e r l a p - f r e e  (Thue [54] ,  Morse [36])~ the 
word 

t = abcacbabcba... 

der ived from m by the inverse morphism a - - )011,  b -->01 7c - - ) 0  i s  
square- f ree  (Thue [55 ] ) .  The Fibonacci word 

f = abaababaabaababaabab .... 

conta ins  cubes but i s  4 - t h  power f ree  (see e,g.  Karhumaki [ 27 ] ) .  
Many o ther  spec ia l  i n f i n i t e  words w i t h  some r e p e t i t i o n  p roper ty  are 
known. Usual ly ,  they are constructed by i t e r a t i n g  morphisms or by 
tag systems in the sense of Minsky [35] .  (See also Pans io t ' s  paper 
in the proceedings).  Let us mention tha t  some words may a lso be 
def ined by an e x p l i c i t  d e s c r i p t i o n  of  the p o s i t i o n s  of  the l e t t e r s  
occurr ing in  them. This holds f o r  the Thue-Morse sequence~ since 
the i - t h  l e t t e r  can be shown to  be 0 or i according to  the number 
of  " i "  in  the b ina ry  expansion of  i being even or odd. A more 
sys temat ic  t reatement  o f  these d e s c r i p t i o n s  i s  g iven in  Chr is to l~  
Kamae, Mend~s-France, Rauzy [10] ,  One of  the p r o p e r t i e s  of  these 
genera l i zed  sequences i s  g iven by Cerny [9 ] .  He def ines,  f o r  a 
g iven f i x e d  word w over {0, i }  an i n f i n i t e  word by s e t t i n g  the i - t h  
l e t t e r  to 0 or to I when the number of  occurrences of w in the 
b inary  expansion of  i i s  even or i s  odd. Thus the o r i g i n a l  
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Thue-Morse sequence is the special case where w=l. Cerny shows 
that the infinite word that is obtained in this manner has no 
factors of the form (xu)~x 

where k= 2 ~wl and x is nonempty. 

Squares are unavoidable over two letters, and they are 
avoidable over three letters. Here "unavoidable" means that every 
long enough word has a square. On the contrary, avoidable means 
that there are infinite square-free words. So one may ask for the 
minimal avoidable repetition or (almost) equivalently for the 
maximal unavoidable repetition over a fixed k letter alphabet, 
Denote the maximal unavoidable repetition over k letters by s(k). 
If s(k)=r, then every long enough word has a r-th power, and there 
is an infinite word with no factor of the form wa with w an r-th 
power and a the first letter of w. The Thue-Morse sequence shows 
that s(2)=2 (since squares are unavoidable over 2 letters). Over 
three letters, squares are avoidable. So s(3)<2. It has been 
shown by F. Dejean [15] that s(3)=7/a. (Indeed, every word over 
three letters of length 39 contains a 7/4th power!). For four 
letters, the lower bound s(a) b 7/5 has been verified by F. 
Dejean, and her conjecture that this bound is sharp has been proved 
by Pansiot [aO]. For more than four letters, the precise value of 
s(k) is unknown. F. Dejean shows that s(k) ~ k/(k-l) and 
conjectures that this is the right value. 

The interesting question of constructing efficient algorithms 
for testing whether a word is squarefree was considered by several 
authors. The naive algorithm derived from the pattern matching 
algorithm is in time O(n ~ ) for words of length n. The first 
significant improvement was made by Main, Lorentz [32] who proposed 
an O(nlog n) algorithm for testing squarefreeness. A linear 
algorithm, based on the suffix tree of Weiner [56] and McCreight 
[34] is given by Crochemore [13]. (See also Slisenko [53].) 

Another related problem is to determine ALL repetitions in a 
word. Considering for instance the Fibonacci word.( a finite left 
factor of it), one can see that there are "many" repetitions~ even 
if one restricts to maximal repetitions, i.e. those which cannot 
be extended neither to the left nor to the right: there are 
O(nlog n) in this left factor of lenght n. 

THEOREM.- There is an algorithm to compute all powers in a word of 
length n in time O(n log n). 

There are at least three different proofs of this result. By 
alphabetic order, Apostolico, Preparata [3] give an algorithm using 
suffix trees, Crochemore [ii] uses partitioning in his algorithm. 
Main and Lorentz' paper [33] contains an extension of the 
divide-and-conquer method of their previous paper. 

There still remain several open problems. First, to give linear 
algorithms for testing cubefreeness etc. Then, to give efficient 
algorithms (if they exist) for testing abelian squarefreeness. 
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3. The language of squarefree words. 

The study of the language of squarefree words has produced new 
insights in formal language theory. Indeed, the special form of 
words of the complement of this language implies that standard 
techniques cannot be applied. 

More precisely, it is a straightforward consequence of the 
pumping lemma that the set of squarefree words over a fixed 
alphabet is not context-free. Consider the complement of this set, 
that is the language of words containing a square. This set is not 
rational. However, the standard pumping technique obviously fails 
in this case, since any strict power of a word is in the language. 
The question whether the language of words containing powers is 
context-free was asked by Autebert, Beauquier, Boasson 7 Nivat [I]. 
The answer is no : 

THEOREM . - The set of words containing a square is not 
c ont ext -free. 

Two different proofs of this result exist, one by Ehrenfeucht, 
Rozenberg [20] (also [19]), and the other one by Ross and Winklmann 
[44] The proofs are quite different, the first shows that there 
is no EOL-language separating squarefree words from the set of 
words containig squares, the second proof uses an argument on 
pushdown automata. 

The second technique is more developed in the socalled Interchange 
Lemma for context-free languages of Ogden, Ross and Winklmann [38]. 
This lemma was used by Main in the proof of the following result 

THEOREM (Main [31]).- The set of words over an alphabet of at least 
16 letters containing an abelian square is not context-free. 

An ~belian square is a word uv, such that v is a permutation of u. 
It is known that there exist infinite words without abelian squares 
over a five letter alphabet (Pleasants [41]). It is easily seen by 
inspection that any word of length 8 over 3 letter contains an 
abelian square. It is open whether there is an infinite word 
without abelian square over a four letter alphabet. 

OPEN PROBLEMS : There are several questions which seem still to be 
open, concerning the language of words containing squares. A 
conjecture by Ehrenfeucht, Haussler and Rozenberg [16] says that 
any context-free language\ which contains all square-containing 
words is cofinite. Another\ question concerns transformatio~s that 
maintain the separation of squarefree and square-containing words : 
squarefree morphisms have this property, but also the reversal 
function. Are there other transformations of this kind ? The set 
of words containing cubes presumably is also noncontext-free. The 
same should hold for the set of words containing overlapping 
fact ors. 
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4. How many words are squarefree ? 

There i s  an i n t e r e s t i n g  quest ion which remained open f o r  
some time and which was solved recently : are there "many" 
squarefree words ? 

Consider a three letter alphabet. Since there Is some 
difficulty involved with constructing squarefree words, one may 
suppose that there are only "few" such words. In other terms, the 
number c(n) of squarefree words of length n on three letters may 
grow as a polynomial. The following table gives the first values 
of c(n), they are token from Brandenburg[5] who gives values up to 
24 : 

n 1 2 3 4 5 6 7 8 9 I0 I I  12 13 14 

c(n) 3 6 12 18 30 42 60 78 108 144 204 264 342 456 

They seem to grow ra the r  s low ly .  However, the re  i s  a su rp r i s i ng  
r esu l t  due to Brandenburg showing tha t  the number c(n) grows 
e x p o n e n t i a l l y  : 

THEOREM (Brandenburg[5]).- Let c(n) be the number of squarefree 
words of length n on a three letter alphabet. Then 

6 * c I ~ c(n) ~ 6 * c z 

where c I ~ 1.032 and c z ~ 1.38 . 

The proof  goes a p p r o x i m a t i v e l y  as f o l l ows .  Take any squarefree 
word of  length  k over t h ree  l e t t e r  a , b , c  and rep lace any l e t t e r  by 
i t s e l f  and by a primed copy in  a l l  poss ib le  ways. This g ives 
exactly 2 ~ squarefree words of length k over a six letter 
alphabet a , a ' , b , b ' , c , c ' .  Next map these words back in to  a th ree  
l e t t e r  a lphabet by a morphism tha t  preserves squarefreeness. Such 
a morphism e x i s t s .  Each of the s i x  l e t t e r s  i s  mapped o~ito a word 
of  length 22. Moreoever, the morphism is  i n j e c t i v e ,  and 
consequent ly the re  are at leas t  2 ~ squaref ree words of  length 22k 
over a th ree  l e t t e r  a lphabet .  Since 

(1/22) 
2 = 1.032..  

t h i s  g ives  the lower bound. The upper bound is  obtained by 
observing t ha t  each squaref ree word w can be extended to the r i g h t  
by at  most c(n) words of  length n. Thus c(n+m) ~ c(n>+c(m), from 
which the conc lus ion f o l l o w s  by tak ing  n=22. 

There s t i l l  remains a gap between the upper and the lower bounds, 
but the ve ry  p rec ise  va lue i s  not so impor tant .  There i s  a lso a 
s i m i l a r  proof  o f  the r e s u l t  by B r i n k h u i s [ 6 ] .  

An analoguous proof  shows tha t  the number of cubefree words over a 
two l e t t e r  a lphabet a lso grows e x p o n e n t i a l l y .  In con t ras t ,  the re  
i s  a very  i n t e r e s t i n g  polynomial  bound on the number of  
o v e r l a p - f r e e  words : 

THEOREM (Restivo~ Salemi [ 4 2 ] ) . -  There i s  a constant C such tha t  
the number p(n) o f  o v e r l a p - f r e e  words o f  length  n over a two l e t t e r  
a lphabet  s a t b f i e s  

log 15 
p(n) ~ C. n 
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The proof is based on a clever factorization of overlap-free words 
into factors which are the initial factors of length ~ of the 
two letter Thue-Morse sequence and those obtained by exchanging a 
and b. Each overlap-free word is shown to have a unique 
factorization of this kind. A computation of all possible 
factorizations for words of length n then gives the upper bound, 

It remains to investigate the tree of squarefree words in 
more detail. This tree is obtained by assigning a node to each 
squarefree word and by connecting the node of a word to the node 
for each extension by a letter added on the right. Since there are 
infinitely many squarefree words, this tree is infinite. 
Therefore, there are infinite paths in it (Konig's lemma). But 
there are also finite branches in it, as for example abacaba. 
These correspond to maximal squarefree words which cannot be 
extended by any of the three letters. These right-maximal 
squarefree words were described by Li [29] : they have exactly the 
expected form, namely (over three letters) : 

wvuabuacvuabua 
provided they are squaref ree.  They are der ived from the s implest  
of  them, abacaba, by i n s e r t i n g  a word u before the a ' s ,  a word v 
before the uabua's, and w in f r o n t .  

I t  was shown by Kakutani (see [21])  t ha t  t he re  are uncountably many 
i n f i n i t e  squaref ree words over th ree  l e t t e r s .  So one may ask 
"where" these words are in the t r e e  : more p rec i se l y ,  i s  the t r e e  
uniform in  some sense ? One could imagine indeed tha t  the re  are 
i n f i n i t e  paths in the t r e e  where a l l  l eav ing  paths are f i n i t e ,  
y i e l d i n g  a "sparse" i n f i n i t e  branch. That t h i s  cannot happen was 
proved by Shel ton and Soni. 

THEOREM (Shelton, Soni [50~51]).- The set of infinite squarefree 
words over three letters is perfect. 

This statement means tha t  i f  t he re  i s  an i n f i n i t e  word going 
through a node of  the t r ee ,  then t h i s  i n f i n t e  word w i l l  e v e n t u a l l y  
s p l i t  i n t o  two (and t h e r e f o r e  i n t o  i n f i n i t e l y  many) i n f i n i t e  
squarefree words. There is a related result which say8 that one 
must not walk too much in the tree to find an infinite path. 

THEOREM (Shelton, Soni [51]).- There is a constant K such that if u 
is a squarefree finite word on a three letter alphabet of length n 
and if u can be extended to a squarefree word uv of length 
n + K*n 311 , then u can be extended to an infinite squarefree word. 

5. Squarefree morphisms. 

The first, and up to now the only technique to construct 
squarefree words which was systematically investigated are 
morphisms. The method goes as follows. First, a endomorphism is 
iterated, giving an infinite set of words (which can also be 
considered as an infinite word). Then a second morphism is applied 
to  the set ( i n f i n i t e  word). I f  eve ry th ing  i s  conven ien t l y  choosen, 
the r esu l t  i s  squaref ree.  
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This technique was used already by Axel Thue [55] to compute 
the first infinite squarefree word. Of course, there exist 
infinite squarefree words which cannot be constructed this way, 
since there are uncountably many of these words. However~ the 
method still is very useful. The sets of words, squarefree or not, 
obtained by morphism, have interesting combinatorial properties. 
Among these, their '~subword complexity". See Ehrenfeucht et al. 
[17,18,19]. 

One of the basic questions asked in this context is whether a 
given ~YJO rphism 

h : A*--> B ~ 

is squarefree. By definition, 
preserves squarefree words, i.e. 
word whenever w is squarefree. 

h is a squarefree morphism if h 
if the image h(w) is a squarefree 

Examples : The morphis~ of Thue [55] 
h(a)=abcab , h(b)=acabcb , h(c>=acbcacb 

is squarefree. The following morphism (see Hall [23], Istrail[26]) 
h(a)=abc ~ h(b)=ac , h(c)=a 

is not squarefree since h(abc)= abcacabc . 

The last morphism is too "simple" to be squarefree. 
Indeed, A. Carpi [8] has shown that a squarefree morphism over 
three letters must have size at least 18. Here the size is the sum 
of the lengths of the images of the letters. Thue's morphis~, given 
above has size 18, so it is (already) optimal, The second morphism 
has only size 6. 

Several people have investigated squarefreeness of morphisms, 
and have derived conditions that ensure that they are. The most 
precise description is that given by Crochemore : 

THEOREM (Crochemore [12,13]).- Let h : A~---> B'be a morphism, with 
A having at least three letters. Then h is squarefree iff the two 
following conditions hold: 

i) h(x) is squarefree for squarefree words x in A of length 3; 
ii) No h(a), for a in A, contains a internal presquare. 

Roughly speaking, a presquare is a factor u of h(a) such that h<ax) 
or h(xa) contains the square uu for some word x for which ax resp. 
xa is itself squarefree. Another condition is given in 
Ehrenfeucht, Rozenberg [19]. 

The theorem implies that it is decidable whether a morphism is 
squarefree : it suffices to test squarefreeness for long enough 
words. The following bound is derived by Crochemore from his 

• " ~ B~ theorem. For an nonerasing morphism h : A ---> define 

m(h) = min { lh(a) l : a in A } 
M(h) = max { lh(a) l : a in A } 

PROPOSITION (Crochemore [ibid.]>.- Let h: A*---> B~be a morphism. 
Then h is squarefree iff h(x) is squarefree for all squarefree 
words x of length k = max {3, ~M(h)-3)/m(h~ + I}. 
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Examples show that this bound is sharp. For uniform morphisms, 
i.e. when M(h)=m(h), the bound is 3. The nicest corollary of 
Crochemore's theorem is perhaps the following 

THEOREM (Crochemore [ibid.]).-Let h : A*---> B'be a morphism, with 
A a three letter alphabet. Then h is squarefree iff h(x) is 
squarefree for all words x of lengh 5. 

Such an explicit bound which does not depend on the morphism cannot 
exist for bigger alphabets. Crochemore gives counterexamples. The 
results for higher powers than 2 are not yet so complete. I quote 
two of them which are particularly beautiful. The first concerns 
cube-free words generated by iterating a morphism over a two letter 
alphabet. 

THEOREM (Karhumaki [27]>.- Let h : A*---> Aebe a morphism over a 
two letter alphabet, such that h(a) starts with an a. Then the 
infinite word h ~ (a) is cube=free iff the tenth power h4° (a) is 
cube-free. 

Another result concerns power-free morphisms. A morphism h is 
called power-free if for all k ~ 2, h(w) is k-th power free for all 
k-th power free words w. 

THEOREM (Leconte [28]).- Let h: A*---) B'be a morphism. The~ h is 
power-free iff h is squarefree an~ if h(aa) is cube-free for each 
letter a in A. 

The situation for overlap-free morphisms is different : there are 
(essentially) only two such morphisms ! A more general result was 
proved by Seebold. Recall first that the socalled Morse morphism 
(rediscoverded independently by Morse [36] after Thue [5~]) is 
defined by : 

m(a)=ab ; m(b)=ba . 

Pansiot [39] has observed tha t  the only  morphisms generat ing the 
Thue-Morse word are powers of  m. This was extended by Seebold to : 

THEOREM (Seebold [47~48, a9]).- Let x be an infinite overlap-free 
word over the alphabet { a,b } that is generated by iterating some 
morphism h. Then h i s  a power of  m . 

The f o l l o w i n g  is  proved by Harju : 

THEOREM (Harju [24]).- If h : { a,b }~ ---> { a~b }* is an 
overlap-free morphism, then either h is a power of m, of h is the 
product of the morphism that exchanges a and b and of a power of m. 

This shows tha t  t he re  are on ly  ye ry  few non over lapp ing  morphisms 
over two l e t t e r s .  Har ju cha rac te r i zes  also c y c l i c a l l y  non 
over lapp ing words and morphisms and asks f o r  a s i m i l a r  
c h a r a c t e r i z a t i o n  of c y c l i c a l l y  square- f ree  words. 

I gratefully acknowledge helpful discussions with M. Crochemore. 
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