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"Fiir die Entwicklung der logischen Wissenschaften
wird es, ohne Ricksicht auf etwaige Anwendungen, von
Bedeutung seirn, ausgedehlnte Felder fir Spekualation
iber schwierige Probleme zu finden."

Axel Thue, 1912

1. Introduction.

When Axel Thue wrote these lines in the introduction to his
1912 paper on squarefree words, he certainly did not feel as a
theoretical computer scientist. During the past seventy years,
there was an increasing interest in squarefree words and more
generally in repetitions in words. However, A. Thue’'s sentence
seems still to hold 1t in sowme sense, he said that there is no
reason to study squarefree words, excepted that it’s a difficult
gquestion, and that it is of primary importance to investigate new
domains. Seventy vyears later, these guestions are no longer new,
and one may ask if sguarefree words served already.

First, we observe that infinite sguarefree, overlap-free or
cube-free words indeed served as examples or counter-exawples in
several, quite different domains. In symbolic dynamics, they were
introduced by Morse in 1921 [38]1 . Another use is in group theory,
where an infinite sguare-free word is one (of the numerous) steps
in disproving the Burnside conjecture (see Adjanl2l)., Closer to
computer science is Morse and Hedlund’s interpretation in relation
with chess [37]. We also mention applications to formal language
theory : Brzozowsky, K. Culik II and Gabriellian [71 wuse
squarefree words in commection with moncounting  languages, J.
Goldstine uses the Morse sequence to show that a property of some
family of languages [22]1. See also Shyr [52], and Reutenaver [431.
A1l these are cases where repetition-free words served as explicit
sxamples. In other cases, gquestions about these words led to new
insights in other domains, such as for DOL languages and for
context-free languages. At the present tiwe, the set of results on
repetitions constitutes a topic in combinatorics on words,
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This paper gives a survey of sowe rerent results
concerning squarefrees words and related topics. In the past years,
the interest in this topic was indeed growing, and a number of
results are now available. fin account of basic results may be
found in Salomaa [45,46] and in Lothaire [301. For earlier work,
see also Hedlund’s paper [235]. The wmore gqeneral concept of
unavoidable pattern is introduced in Bean, Ehrenfeucht, MocNulty
L4d. Part 2 deals with powers and repetitions, part 3 with
language—theoretic results, part 4 gives the estimatations on
growth, part & describes results on morphismwms.

2. Powers and repetitions.

A square is a word of the form xx, with x a nonewpty word.

Cubes and k-th powers are defined accordingly. A word is
squarefree 1if none of his factors (in the sense of Lothaire [3037,
or subwords) is a square. A word is gverlap—free if it contains no

factor of the forwm sxuxux, with x nonempty. The concept of k-th
power free words where k iwplicitly is a positive integer, can be
extended to rational numbers as follows ¢ If r =wn + 5 iz a
rational positive number with n positive integer and 0 (5 (1,
then an r—th power is a word of the forwm

L

o
with exactly n consecutive w's and one left factor W of u
satisfying 1w’ I/lul = s,

The Thue—Morse sequence
mo= 011010011001011010010110, ..

contains sgquares and is overlap~free (Thue [543, Morse [381), the
word

t = abracbabcba...

derived from m by the inverse morphism a ——}01i, b --01 ,¢ -0 is
sguare—free (Thue [551). The Fibonacci word

f = abaababaabaababaabab...

contains cubes but is 4-th power free (see e.g. Harhumaki [271).
Many other special infinite words with some repetition property are

known, Usually, they are constructed by iterating morphisws or by
tag systems in the sense of Minsky [35]. (See also Pansiot’s paper
in the proceedings). Let us mention that some words may also be

defined by an explicit description of the positions of the letters
occurring in them. This holds for the Thue-Morse seguence, since
the i-th letter can be shown to be O or 1 according to the nuwber
of "1" in the binary expansion of i being even or odd, A more
systematic treatement of these descriptions is given in Christoel,
Ramae, Mendés-France, Rauzy [10]1. One of the properties of these
generalized sequences is given by Cerny [91. He defines, for a
given fixed word w over {0,1} an infinite word by setting the i-th
letter to © or to 1 when the number of occurrences of w in the
binary expansion of i is even or is odd. Thus the original
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Thue—-Morse sequence idis the special case where w=l. Cerny shows
that the infinite word that is obtained in this marmer has no
factors of the form k
Wi (xul) x
where k= 2, and x is nonempty.

Sguares are unavaidable over two letters, and they are
avoidable over three letters. Here "unavoidable" means that every
long enough word has a sguare. On the contrary, avoidable means
that there are infinite sguare~free words. Bo one may ask for the
minimal avoidable repetition or ({(almost) equivalently for the
maximal unavoidable repetition over a fixed k letter alphabet.
Denote the maximal unaveidable repetition over k letters by s(k).
If sd{ki=r, then every long enough word has a r~th power, and there
is an infinite word with no factor of the form wa with w an r—th
power and a the first letter of w. The Thue-Morse sequence shows
that s{2)=2 (since sguares are unavoidable over 2 letters). 0Over
three letters, sguares are avoidable. So s(3) (& It has been
shown by F. Dejean [1531 that s(3)=7/4. {Indeed, every word over
three letters of length 39 contains a 7/4th power!). For four
letters, +the lower bound s{4) % 7/5 has been verified by F.
Dejearn, and her conjecture that this bound is sharp has been proved
by Parnsiot [403. For wmore than four letters, the precise value of
s{ky is unknown. F. Dejean shows that sk} ¥ k/{k-1) and
conjectures that this is the right value.

The interesting gquestion of constructing efficient algorithws
for testing whether a word is squarefree was considered by several
authors. The naive algorithm derived from the pattern matching
algorithm is in time Din?) for words of length n. The first
significant improvement was made by Main, Lorentz [32]1 who proposed
an O(nleg n) algorithm for testing sguarvefreeness. A linear
algerithm, based on the suffix tree of Weiner [B56] and McCreight
[341 is given by Crochemore [131. (See also Slisenko [531.)

finother related probles is to determine ALL repetitions in a
word. Congsidering for instance the Fibonacci werd. ( a finite left
factor of it), one can see that there are "many” repetitions, even
if one restricts to maximal repetitions, i.e. those which cammot
be extended , mneither to the left nor to the right! there are
Dinlag m) in this left factor of lenght n.

THEOREM. -~ There is an algorithm to compute all powers in a word of
length n in time O(n log n).

There are at least three different proofs of this result, By
alphabetic order, Apostolice, Preparata [3]1 give an algorithm using
suffix +trees. CUrochemore [11] uses partitioning in his algorithm.
Main and Lorentz? paper [33] contains an extension of the
divide-and—conguer method of their previous paper.

There still remain several open problems. First, to give linear
algorithms for testing cubefreensss etc. Then, to give efficient
algorithms (if they exist) for testing abelian sguarefreeness.
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Z. The language of squarefree words.

The study of the language of sguarefree woards has produced new
ingights in formal language theory. Indeed, the special form of
words of the complement of this language implies that standard
techniques cannot be applied.

More precisely, it is a straightforward consequence of the
pumping lewma that the set of sguarefree words over a fixed
alphabet is not context~free. Consider the complement of this set,
that is the language of words containing a sguare. This set is not
rational. However, the standard pumping technique obviously fails
in this case, since any strict power of a word is in the language.
The gquestion whether the language of words containing powsrs is
context—-free was asked by Auteberit, Beauguier, Boasson, Nivat [11.
The answey is no ?

THEDREM . The set of words containing a sguare is  not
context-free.

Two different proofs of this result exist, one by Ehrenfeucht,
Rozenberg [20]1 (a&lse [131), and the other one by Ross and Winklmann
[441 . The proofs are quite different, the first shows that there
is no EOL-language separating sgquarefree words from the set of
words containig squares, the second proof uses an arguwment on
pushdown automata.

The second technigue is wmore developed in the socalled Interchange
Lemma for context-free languages of Ogden, Ross and Winklmanw [381.
This lemma was used by Main in the proof of the following result

THEOREM (Main [311).- The set of words over an alphabet of at least
1& letters containing an abelian sguare is not contexi-free,

An abelian sguare is a word uv, such that v is a permutation of u.
It is known that there exist infinite words without abelian squares
aver a five letter alphabet (Pleasants [411). It is easily seen by
ingpection that any word of length 8 over 3 letter containsg an
abelian sguare. It is open whether there iz an infinite word
without abelian sguare over a four letter alphabet.

OPEN  PROBLEMS # There are several guestions which seewm still to be
oper, concerning the language of words containing sguares. A
conjecture by Ehrenfeucht, Haussler and Rozenberg [16]1 says that
any context-free language which contains all square-containing
words is cofinite. Qﬂothe§\questinn concerns transformations that
maintain the separation of squarefree and square-containing words @
squarefree morphisms bave this property, but also the reversal
function. Are there other transformations of this kind ? The set
of words containing cubes presumably is also noncontext-free. The
same should held for the set of words containing overlapping
factors.
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4. How many words are sguarefree ?

There is an interesting guestion which remained open for
some time and which was solved recently ¢ are there "wmany"
squarefres words ?

Consider a three letter alphabet. Since there is sowe
difficulty involved with constructing squarefree words, one may
suppose that there are only "few" such words. In other terms, the
mumber cin} of sguarefree words of length v on three letters may
grow as a polynomial. The following table gives the first values
of ©i(n), they are token from Brandenburgl3l who gives values up to
24 :

n 1 2 3 4 S & 7 8 3 10 11 iz 13 14

cin) 3 &€ 12 18 30 2 6O 7B 108 144 04 264 34E 456

They s=egem to grow rather slowly. However, there is a surprising
result due to Brandenburg showing that the number cin) grows
exponentially *

THEQREM (BrandenburglSl).~- Let co(n} be the number of sgquarefree
words of length n on a three letter alphabet. Then

n . n
& * c, § cim § & % €,

where c4> 1.032 and o, { 1.38 .
The proof goes approximatively as follows. Take any sguarefree
word of length k over three letter a,b,c and replace any letter by
itself and by a primed copy in all possible ways. This gives
exactly z® squarefree words of length k over a six letter
alphabet a,a’,b,b’,c,c0”. Next wmap these words back into a three
letter alphabet by a morphism that preserves sguarefreerness. Such
a morphism exists. Each of the six letters is wmapped onto a word
of length 22, Maorecever, the wmorphism is ingective, awnd
consgquaently there are at least 2® squarefree words of length 22k
over a thres letter alphabet. Since
(1722}

2 = 1,032, .
this gives the lower bound. The wupper bound is obtained by
observing that each squarefree word w can be extended to the right
by at wmost c(n) words of length ne Thus cintm) £ c{m+cim), from
which the conclusion follows by taking n=2Z.

There still remains a gap between the upper and the lower bounds,
but the very precise value is not so important. There is also a
similar proof of the result by Brinkhuisi[&l.

An analoguous proof shows that the rumber of cubefree words over a
two letter alphabet also grows exponentially. In contrast, there
is a very interesting polynomial bound on the nuwmber of
overlap-free words &

THEOREM (Restivo, Balemi [42]1).- There is a constant C such that
the number pin) of overlap—free words of length n over a two letter
alphabet satifies
log 15
piny §{ C. n
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The proof is based on a clever Tactorization of overlap-free words
into factors which are the initial factars of length 4% of the
two letter Thus—Morse seguence and those obtained by exchanging a
and . Eackh overlap-free word is shown to have & - unigue
factorization of this kind. A computation of all possible
factorizations for words of length n then gives the upper bound.

It remains to investigate the tree of sguarefree words in
more detail. Thizs tree is obtained by assigning a node to each
squarefree word and by cormecting the node of a word to the node
for each extension by a letter added on the vight. B8ince there are
infinitely BANY asquarefree words, this itree is infinite.
Therefore, there are infinite paths in it (Konig’s lewmal. But
there are also finite branches in it, as for exawple abacaba.
These correspond to maximal sguarefree words which cannot be
extended by any of the threse letters. These right-maximal
asquarefres words were described by Li [231 f they have exactly the
expected form, namely (over three letters) i

wvuabuacvuabua
provided they are squarefree. They are derived from the simplest
of them, abacaba, by inserting a word u before the a’s, a word v
before the uabua’s, and w in front.

It was shown by Kahkubtani (ses [213) that there are uncountably many
infinite squarefree words over three letters. So one may ask
"where" these words are in the tree ! more precisely, is the tree
uniform in some sense ? One couwld imagine indeed that there are
infinite paths in the tree where all leaving paths are Finite,
yvielding a ‘“sparse” infinite branch. That this camopt happen was
proved by Shelton and Soni.

THEOREM {(8helton, B8Soni [80,511).- The set of infinite squarefree
words over three letters is perfect.

This statement means that if there is an infinite word going
through a node of the tree, then this infinte word will eventually
split into two {and therefore into infinitely wmany) infinite
squarefree words. There is a related result which saya that one
must not walk too wmuch in the tree to find an infinite path.

THEQREM (Bhelton, Soni [513).~ There is a constant K such that if u
is a sguarefree Tinite word on a three letter alphabet of length n
and if_ u can be extended to & sguarefree word uv of length
n o+ Ken'? , then u can be extended to an infinite squarefree word.

5. SBguarefree morphiswms.

The first, and up to now the only tecknigque to construct
squarefree wards which was systematically investigated are
morphisms. The wmethod goes as fTollows. First, a endomorphism is
iterated, giving an infinite set of words (which can also be
considered as an infinite word). Then a second morphism is applied
to the set (infinite word). If everything is conveniently choosen,
the result is sguarefree.



20

This teckhnigue was used already by fixel Thue (557 to compute
the first infinite squarefree word. Of course, there exisgt
infinite sguarefree words which canmet be constructed this way,
since there are uncountably many of these words. However, the
method still is very useful. The sets of wprds, sguarefree or not,
gbtained by wmorphism, have interesting combinatorial properties.
Among these, their ‘'"subwovrd complexity”. See Ehrenfeucht et al.
[17,18, 193,

One of the basic questions asked in this context is whether a
given morphism
hot A - B

is squarefree. By definition, bk is a sguarefree morphism if h
preserves squarefres words, i.e. if the image hiw) is a squarefree
word whenever w is sguarafres.

Examples : The wmorphism of Thuese [55]
hi{al=abcab , hi{bi=acabecb , hic)=acbcach

is sguarefree. The following morphisw {see Hall [231, Istraill2&l)
hi{a)=abe , hibi=ac , hi{ci=a

iz not sgquarefree since h{abol= abcacabo .

The last wmorphise is too ‘“siwmple” to be sguarefree.
Indesd, A. Carpi  [B1 has shown that a sguarefree wmorphiswm over
three letters must have size at least 18. Here the size is the sum
of the lengths of the images of the letters. Thue’s morphiswm given
above has size 18, so it is (already) optimal. The second morphism
has only size 6.

Several people have investigated squarefreeness of wmorphisms,
and have derived conditions that ensure that they are. The most
precise description is that given by Crochewore :

THEOREM (Crochemore [12,131).- Let h & A" ———) E¥be a morphism, with
A having at least three letters. Then h is sguarefree iff the two
following conditions hold:
i) hix) is squarefree for sguarefree words x in A of length 3
ii) No hia), for a in A, contains a internal presquare.

Roughly speaking, a presqguare is a factor u of h{a) such that h{ax)
ar hixa) contains the sguare uu for some word x for which ax resp.
Xa is itself sguaref ree. Another condition is given in
Ehvenfeucht, Rozenberg [1921.

The theorem implies that it is decidable whether & morphisn is
squarefree § it suffices to test sguarefreeness for long enough
words. The following bound is derived by Crochemore from his
theorem. For an nonerasing movphism b ¢ | B? define

wmih) = min { Th(ad)! @ a in A ¥
M(hy = max { th(ay!l = &a in A ¥

PROPOSITION (Crochemore [ibid.31).- Let h:t A™—) EF'be a morphiswm.
Then h is squarefres iff hix) is sguarefree for all sguarefres
words x of length k = max {3, MV -3)/mih] + 13,
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Examples show that this bound is sharp. For uniform smorphisss,
i.e. when Mhl=m{h), the bound is 3. The nicest corollary of
Crochemore’s theorem is perhaps the following

THEDREM (Crochemore [ibid.1).- Let h t A*———) B*be a morphism, with
A a three letter alphabet. Thea b is squarefree iff hix) is
squarefree for all words x of lengh .

Such an explicit bound which does not depend on the morphism cannot
exist for bigger alphabets. Crochemore gives counterexawmples. The
results for higher powers than 2 are not yet so complete. 1 quote
two of thHew which are particularly beautiful., The first concerns
cube~free words generated by iterativg a wmovrphism over a two letter

alphabet.

THEDOREM {Karhumaki 2710~ Let h t A*——) A®be a morphism over a
two letter alphabet, such that hi{a) starts with an a. Then the
infinite word k™ (a) is cube~free iff the tenth power h"™ (a) is
cube~-free.

Another result concerns power-free morphisms. A wmovrphism h is

called power-free if for all k ) 2, blw) is k—-th power free for all
k—th power free words w.

THEOREM {(Leconte [281).~ Let h: A%~ F*be a morphism. Then h is
power~free iff h is squarefree and if h{aa) is cube-free for each
letter a in A

The situation for overlap-free morphisms is different @ there are
{essentially) only two such morphisws ! A more general result was
proved by GSeebold. Recall first that the socalled Morse wmorphism
{rediscoverded independently by Morse [36] after Thue [341) is
defined by :

mi{a)=ab 2 m{b)=ba .

Pansiot 391 has observed that the only morphisms generating the
Thue-Morse word are powers of w. This was extended by Seebold to

THEDREM (Seebold ([47,48,431).- Let x be an infinite overlap~-fres
word over the alphabet { a,b ¥ that is gernerated by iterating some
worphism h. Then h is a power of m .

The following is proved by Harju :

THEDREM (Hargu [241).~ If h : { a,b 3" - { a,b ¥ is an
overlap~free wmorphisw, then either h is a power of m, of h is the
product of the wmorphism that exchanges a and b and of a power of m.

This shows that there are only very few non overlapping worphisms
over two letters. Harju characterizes also cyclically non
overlapping words and morphismns and asks for a similar
characterization of cyelically square—free words.

I gratefully acknowledge helpful discussions with M. Crochemore.
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