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INTRODUCTION

Fibonacci words have many amazing combinatorial properties. Like
Fibonacci numbers they are easy to define. and many of their properties are
easy to prove. once discovered. The aim of this survey is to sketch some of the
combinatorial properties related to factors (subwords) of Fibonacci words. and
also to describe basic arithmetic operations (i.e. normalization and addition) in

the Fibonacci number system. No attempt was made to be complete.

Fibonacci words are easily defined by iterating a morphism. In fact.
the Fibonacci morphism is among the absolutely simplest (more precisely
shortest) conceivable morphisms ; discard the one letter aiphabet, and try to
define a nontrivial short morphism on two letters. It suffices. for this, that the
image of one letter has length two. and you already get Fibonacci's morphism }
Fibonacci words also are "simple" because they have few subwords . as we shall
see, Fibonaccl words achieve the minimum for nonperiodic words. Despite of this
weak number of subwords (or perhaps. on the contrary, it is a consequence of
it) there are many repetitions in Fibonacci words : the number of repetitions
grows like nlogn with the length of the word. However. Fibonacci words do not

contain high powers of words. They have cubes. but no fourth power.

Another topic that will be treated here is computation in Fibonacci
base. Fibonacci numbers, as any regularly increasing sequence of natural
numbers. are a candidate for a number system. Nonnegative integers are
expressed as linear combinations of Fibonacci numbers, with coefficients 0 or 1.
There exists a normalized representation computable by several types of

transducers. Alsoc addition and even weak addition can be described.

(*) Contrat ADI B3/695
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1.- FIBONACCI WORDS, BEATTY SEQUENCES AND THE STURMIAN PROPERTY

*

Let A = {a.b} be an alphabet. The Fibonacci morphism 6 : A" =

A Is defined by
e(a) = ab
e(b) = a

lteration of this morphism defines the Flbonacci words

fo = a

f1 = ab

fo = aba
f3 = abaab

f4 = abaababa
fs = abaababaabaab

Since the DOL-system <A.8,a> |Is catenative [17]1. the sequence of Fibonacci
words can also be defined by

{o =a 13 =ab

theg = fasily (0 > O

The infinite Fibonacci word

f = abaababaabaab. . .

is obtained as a “limit" of the sequence (fhd hzo. I.@. simply by requiring that
each fn (n20) is a left factor of f.

For uniformity of exposition. the numbering of the letters in a (finite
or infinite} word will start at 0. So the first letter of a word has index 0, and

SO on.

There is another definition of the Fibonaccl word f related to the
golden ratio

¢ =(1+ Y5y/2
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which is through Beatty’'s Theorem [1], see also Stolarsky [201.

BEATTY'S THEOREM - Let r and s be positive real numbers. The sets
{[nrl -1 | n>» 1} and (Ins) -1 | n2 1)

form a partition of the set IN or natural numbers iff r and s are irrational

numbers and
Vr + 1/s = 1

Observe that ¢ and &2 = 1 + ¢ satisfy the conditions of Beatty's

Theorem. since they are irrational and

/¢ + 1/¢62 = (¢ + 1 /92 = 1

PROPOSITION. - Let a be the letter at the k-th position in the infinite

Fibonacci word f. Then
a I k€ {[npl | n = 1)

b if k€ {{ne2] | n = 1}

Beatty's Theorem shows that the infinitive Fibonacci word is a very
special case among an apparently nice family of infinite words. Let us give an
alternative way of defining them. For this, consider the box in Figure 1 with
sides of length 1. A billard ball starts at a fixed point P in a fixed direction
given by the tangent, say «. Whenever it meets one of the sides of the box,
the ball is perfectly reflected and continues its walk. Of course, if o s
rational. the ray will eventually pass again through P. Thus assume o Is

irrational, and construct an infinite word on a.b as follows

whenever the ball meets a horizontal side. write an "a". and when it meets a
vertical side, write a "b". This defines an infinite word, say w(P,x . It is

easlly seen that f = w(0.9).

1 > )
2" I
7/ \
I'4 \ (P ‘\
? »
< XN
\ \ \
\ \ \
L ] \ ’/
\ 7 \ &k
NS Nt
0 \ X - >

Figure 1. Defining the word abaaba...
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A word w(P,a) defined by this geometrical construction with «
Irrational is called Sturmian (see Coven. Hedlund [4]). Words defined by
Beatty's theorem are special cases of these words. with origin P = 0. For
related topics. see Rauzy [16].

Sturmian words have two nice additional characterizations. First,
consider any finite word w over the alphabet A = {a.b}., and defined its cost
to be the absolute value of the difference of the number of a’'s and of the
number b‘s occuring in w. Thus for instance., the cost of abaaba is 2.
Then an infinite word is Sturmian if and only if it is not ultimately periodic. and

if any two factors of the same length have costs which differ at most by 1.

The second characterization is through the number of factors.
Given an infinite word x. denote by F(x) the set of finite words having at
least one occurence in x. For the Fibonacci word f, this set starts with the

empty word €, and contains

a.b (length 1)
aa. ab. ba (length 2)
aab, aba, baa. bab (length 3)

and so on. Let pp(x) denote the number of factors of length n in x. i.e.
Pn(x) = #(A" n F(x)). It is not too difficult to show that if x is not ultimately
periodic. then pp(x) 2 n+]1 for all n > 0. Thus the minimum realizable for a
nonperiodic word x is pp(x) = n+1 for all n. This is precisely the

characterization of Sturmian words.

THEOREM (Coven, Hedlund (41) - An infinite word x over the alphabet A =

{a.b} s Sturmian if. and only if Pr{x) = n+1 for all n 2 0.

2. FACTORS OF THE FIBONACCI WORD

As a consequence of Coven and Hedlund’'s theorem stated above. the
Infinite Fibonaccl word f has exactly n+1 factors of length n, for all n 2

0. It Is Interesting to know more on these factors.
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PROPOSITION. - If w s a factor of f. then its reversal wR  also is a factor
of 1.

This is an immediate consequence of the following observation :
consider any Fibonacci word f,, and delete its two final letters. For n = 5.
one obtains for instance

abaababaaba

Then the resulting word is palindrom. (A similar property is given in
Knuth, Morris, Pratt [15], see also A. de Luca [71).

PROPOSITION (Karhumaki [131) - The Fibonacci word f has factors which are

cubes, but no fourth power

Indeed. as underlined below. (aba)3 is a factor of f.
f = abaababaabaababaababa...

The result can be strengthened as follows (the statement seems to be

folklore. a proof can be found in Seebold [(19]).

PROPOSITION - If u2 is a factor of f. then u s conjugate to a Fibonacci

word .
(Two words wu.,v are called conjugate if they are cyclic permutations one of
each other). Despite the facts that there are no fourth powers in ., and there

are only few distinct factors in f., one has the astonishing

PROPOSITION (Crochemore [5]) - The number of occurences of maximal

repetitions in _a factor of length n of f grows like n logn.
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A repetition is a word of the form wuKu’. with k > 1 and u' a

nonempty left factor of u. A repetition is maximal if it cannot be extended.

After these global results, we consider more specifically the structure
of the factors of f. Consider an integer n > 0, and the n+1 factors of f
of length n. Each of these factors can be extended to the right. and gives at
least one factor of f of length n+1. However. since there are only n+2
factors of length n+1. only one of the length n factors can be extended to
the right in two different ways. This factor will be called special @ a factor w

of f s special if wa.wb are both factors of f.

aabaa

aa aab ——aaba ~—aoabah

a ~ abow abaad
/- T~ab aba <

c \u‘oak ohalbe

\b———bu-——-’—‘b"l' boba ba bkaa

\Baa baob —ba aba

Figure 2. Factors of f, special factors are underlined.

As already stated. there is exactly one special factor of length n.

Inspection of Figure 2 suggests

THEOREM - The special factor of length n of f s the reversal of the left
factor of length n of f.
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3. FIBONACCI NUMBER SYSTEM

One of the nicest applications of Fibonacci numbers is the Fibonacci
number system. Many other number systems are described by Knuth [14]1. More
recent results on ambiguity in number systems are given by Culik, Salomaa [61.
Honkala [12]. De Luca. Restivo [8]. Generalizations of the Fibonacci arithmetic

are investigated by Fraenkel [10] and Frougny [111].

The Fibonacci numbers are defined by

ZECKENDORF'S THEOREM [21]. Every integer n > 0 admits a representation as

sum of distinct Fibonacci numbers, i.e.

n = Fk‘r + Fk-r—1+"'+ Fk-| (Ky > Ky=7 >...2 k7

Furthermore. this representation is unique if. for each i. kj4q 2 kj + 2.

Many other related resuits are given by Carlitz [2] and Carlitz,

Hoggatt, Scoville [3]. To any representation

n=FkT+ Fk]

we associate the word
ak_r i e a]ao
with

Ak, = oo =ak1=1. a =0

otherwise. The representation satisfying the additional condition will be called the

normalized representation and will be denoted by <n>.

Example : for n = 128 (in base 10). the (words of the) Fibonacci

representations are
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1010001000

1010000110

1001101000

1001100110

1001011110

111101000

111100110

111011110

The first is the normalized representation <128>.

The relation between the infinite Fibonacci word and Fibonacci

representation is the following (see e.g. Knuth [141).

PROPOSITION - The letter in position n in the Fibonacci word f is a or b

according to the word <n> finishes with 0 or 1.

This result has been considerably extended by Carlitz. Scoville and
Hoggatt [3]1. We are interested here in the complexity of constructing the
normalized representation from a given one. The problem clearly consists of
replacing adjacent "1" in a representation. more precisely of replacing a bloc
011 by a bloc 100 (and a leading bloc 11 by 100, but we may agree that
a representation starts with enough leading 0 if necessary). Thus one has to
compute a canonical element in the congruence class of a word, for the

congruence generated by

011 = 100

It appears that this can be done by a finite transducer. but not by an
arbitrary one. General theory of rational transductions says that an unambiguous
transducer exists (Eilenberg [91). The following subsequential transducer has

been given by M.P. Schitzenberger (private communication):
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The input is read from right to left, and when it is completely read.

the word on the dotted line is output at the end. Final states are doubly circled.
Example : Consider the word

1101110011
The path in the transducer is as follows

1/00 171 0/e 1700 /1 1/e 0/01 O/e 1/00 /e

@ +0@ +0 +@+0@+0+0+0 +@ +Q +@©
Thus the result is, as desired

10010010100

A general result on transductions says that a rational function is a
composition of a left sequential and a right sequential function (Eilenberg [9 1)
and vice-versa. It is easily seen that a (left or right) sequential transduction
cannot realize normalization. but very interesting and natural left and right
sequential transducers have been given by J. Sakarovitch [18]. The idea is very
natural : proceeding from left to right or from right to left. normalize as much
as you can do sequentially. The amazing point is that it works. The right
sequential transducer reads the word from right to left and outputs an

intermediate word which is not yet completely normalized.

Al 4 E

A/ Als /e

0/00d o/0|

The left sequential transducer takes the word, reads it from left to

right, and its output is normalized.
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An wonderful property of these sequential transducers is that they can

be applied in an arbitrary order and still produce the normalized representation |.

Addition is almost like normalization. Given two numbers represented
in the Fibonacci number system, the first step for addition is to add the digits at
the corresponding positions. This gives a sequence of 0.1, and 2. This
sequence is fed into the adder, which gives as output the corresponding

sequence. written only with 0 and 1.

m‘ do [

olo

Alo _2/0
000\ [ 5

201
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The automaton works as follows. The input word is read from left to
right, starting in the initial state 000. For each input symbol. the corresponding
output letter is written. When the end of the input is reached. the part of the
state on the left of the dot is written on the output tape. There may be several

useless leading zeros in the output word.

Example : Inv order to add the words 10110 and 117111. which are non
normalized representations of 13 and 19. we first form their bitwise sum.
namely 21221. This gives the following computation :

2/0 11 2/0 2/1 1/0

< i » [00.01 + [0on] +

Thus the resulting word is
01010100

which is indeed a representation of 13 + 19 = 32.

For a proof of a more general case and for a systematic exposition,

see Frougny [111].
WEAK ADDITION - The following method for "easy" addition of numbers is known
in folklore as weak addition. Write integers n.m in base 10. but allow two
additional digits to {0.1.....9). namely 10 and 11. Then n.m may be
represented as

n = nad0t + ne_q10t1 4+, .+ ng

m = mg10t + my_q70t 1 4+ 4+ mg
with o, o & (O, Voo 10.11). Of course., this representation, called the weak
representation, is by no means unique. For each index i, one has

0 €£n + m <22, thus

nj + mj = pi+110 + g; *
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with pj+7 = 0,1,2 and 0 < gq; = 9. The sum s = n + m then admits the

expression

s = st4710 145010t +. . . +s,
with
5j = pj + Qj (i=0,.... t+1)

Observe that there is no ‘“carry" through several places. The ith "digit”

sj depends only on nj.mj. and on nj-j. mMj-3.

Example
n = 10 11 3 10 11 11
m = 9 11 7 8 9 M1
q = 2 0 0
p = 1 1 1 2 2 0
5 = 1 11 3 1 10 2 2

The practical interest is in the fact that the computation of q.p and
s can be performed in 2 cycles on a parallel computer. so addition can be
very fast. The same method holds for any base k instead of 10. in the binary

case, one needs one more row to compute the intermediate resuit.

A similar property also exists for Fibonacci addition. Consider a weak

representation of an integer n to be
n = mFy + neFq +..F Ng

with ng.....ny no longer restricted to {0.1}, but taken in a set

{0 Tawso 5 N} for some N > 1. It is not too hard to see that these
representations also can be normalized. In order to define weak addition. we
need an analog of formula (*) in Fibonacci base. This formula will be an

extension of the formula



2 Fn = Fpsl + Fp-2

In fact, a tedious but easy computation shows that for

for any d € {(0.1.....24}. one has an expression
dF, = E;d)Fn.q.] C IR, ﬂ_édJFn_ﬁ
with
(d) (d)
g ag €€{0mn
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n 2 6. and

Consequently. weak addition in Fibonacci base exists provided the additional

digits ({2....,172) are allowed.
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