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ABSTRACT 

This paper presents a survey of recent results in the theory of rational sets 
in arbitrary monoids. Main topics considered here are : the so-called Kleene 
monoids (i.e. monoids where Kleene's theorem holds), rational functions and rela- 
tions, rational sets in partially commutative monoids, and rational sets in free 
groups. 

INTRODUCTION 

Kleene's Theorem gives a combinatorial characterization of the subsets of a free monoid 
recognized by finite automata. It is well known that the theorem does not hold in arbitrary 
monoids. This fact leads to two directions of investigations. First, it is an interesting task to 
characterize those monoids for which Kleene's Theorem is true. Results in this topic are reported 
in Section I. Second, one may observe that Kteene's Theorem claims the equality of two families 
of subsets of a free monoid: the rational and tile recognizable subsets. A systematic investigation 
of the properties of these two families of subsets in an arbitrary monoid was initiated in 
Eilenberg's treatise [18]. 

Rational relations, i.e. rational subsets of a direct product of free monoids, have been widely 
used, both in theoretical and in practical investigations. These relations, and the special case of 
rational functions, admit several specific representations which are useful in applications. Recent 
results are reported in Section 1L 

There is new interest in rational and recognizable subsets in special monoids that are not 
free, namely the partially commutative monoids. These monoids appear indeed to be a convenient 
structure for representing parallel processes. Although Kleene's Theorem does not hold in these 
monoids, combinatorial characterizations of their recognizable subsets have been given recently by 
Ochmanski [41]. In Section Ill, these and related results are given. 

In the final section, rational and recognizable subsets in groups, and mainly in free groups 
are considered. It is quite satisfactory to see how classical notions in group theory have their 
counterpart in the theory of formal languages, and that some basic results can be formulated as 
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properties of rational or recognizable subsets. 

Consider a monoid M. The family Rat(M) of rational subsets of M is the least family of 
subsets of M containing the tinite subsets, and closed under (finite) union, set product, and the star 
operation (which associates, to a subset K of M, the submonoid of M generated by K). To each of 
the rational operations (union, product and star) corresponds an unambiguous variation. A union 
is unambiguous if it is disjoint; a product is unambiguous if each element in the product can be 
factorized uniquely into factors in the corresponding subsets; a star is unambiguous if the sub- 
monoid is freely generated by the given set. 

Using these unambiguous rational operations, there is, in each monoid M, a family URat(M) 
of unambiguous rational subsets, which is the smallest family of subsets of M containing finite 
subsets and closed under unambiguous rational operations. 

The third family of subsets considered is the family of recognizable subsets of M, denoted 
by Rec(M). A subset K of M is recognizable if, and only if, there exists a finite monoid N, a mor- 
phism a from M into N and a subset F of N in such a way that K = a-t(F).  

Kleene's Theorem states that in a fi'ee finitely generated monoid A*, the rational and the 
recognizable subsets coincide, i.e. Rat(A*) = Rec(A'). The fact that deterministic automata exist 
for recognizing rational sets shows also that Rat(A*)= URat(A*). It is well known that 
Rec(M) c Rat(M) in any finitely generated monoid M. Let us mention that the stronger inclusion 
Rec(M) c URat(M) holds if, and only if, M E URat(M). 

For these definitions and results, and related topics, the reader may consult the treatise of S. 
Eilenberg. The present paper is intended to be a survey, and therefore no proofs are given. 

I. KLEENE MONOIDS 

Kleene's theorem is the basis for the study of rational sets of free monoids. In particular, 
one deduces from this result that rational sets in the free monoid form a Boolean algebra and are 
all unambiguous. We shall consider here the class of monoids in which Kleene's theorem holds, 
that is a monoid in which rational sets are all recognizable. 

1. Definition and example 

A monoid M is called a Kleene manoid if Rat(M) = Rec(M). This definition implies that a 
Kleene monoid is finitely generated (since a monoid is recognizable in itself). Finite monoids, and 
free monoids over finite alphabets, are clearly Kleene monoids. It is not less clear that a group is 
a Kleene monoid if, and only if, it is finile (section IV of this paper will more precisely describe 
the relationship between rationality and recognizability in the free group) and that a finitely gen- 
erated submonoid of a Kleene monoid is itself a Kleene monoid. We shall define infra (§3) a 
class of monoids which are all Kleene monoids. 

Example 1 (Amar and Putzolu [3]): Starting from the study of a family of linear context-flee 
languages (the Even Linear Languages), Amar and Putzolu have defined a monoid - -  indeed a 
new multiplicative structure on the set of words A* - -  for which Kleene's theorem holds. Given 
any word w of A*, let ;~(w) and 9(w) be respectively the left and the right factor of w both of 

[. J, so a at length 
Z 

w : X(w)zp(w) 
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where zeA  or z = 1A.. The product o on A* is then defined by 

u o v = ~(v)up(v) 

It should be noted that the empty word 1^. is not an identity with respect to that operation: it is 

only a right-identity as is every single letter. In order to make A* a monoid for that product o it is 
necessary to adjoint an identity. It is shown in [3] that the monoid MAp thus defined is a Kleene 
monoid. 

2. Closure under free product 

The study of Kleene monoids is only at its beginning. One closure property is the following. 

Theorem (Reutenauer [44], Sakarovitch [46]): The free product of  two Kleene monoids is a 
Kleene monoid if, and only if, at least one of the two monoids has no divisors of  the identity. 

(Recall that two elements p and q of a monoid M are divisors of the identity if they are 
different from 1M and if pq = 1M) 

Example 2: The free product of Z/2Z by itself is an infinite group and thus is not a Kleene 
monoid. 

This example gives the basic idea for the proof that hypothesis of the theorem is necessary. 

Example 3 (McKnight and Storey [38]): Let N be the cyclic monoid defined the relation 
a = a" (n > 1). This monoid N has no divisors of the identity and the free product of N by itself 
is a Kleene monoid by the theorem above, McKnight and Storey derive this property from their 
study of equidivisible monoids. 

T This notion will be defined in the next section 

3. Rational monoids 

We now define a class of monoids for which it is easy to prove that they are Kleene 
monoids. We say that a monoid M is rational if there exist an alphabet A, a surjective morphism 

from A* onto M, and a rational function t 13 from A* into itself which maps every word w of A* 
onto a fixed representative of its class under the mapping equivalence of ct. 

Example 4 (the Fibonacci monoid): Let Z be the quotient of A* = {0,1}* by the congruence gen- 
erated by the relation 110 ~ 001. It is easy to see that a set of representatives for this congruence 
is the set T = A*kA*110A* of words of A* which do not contain 110 as a factor. It is remarquable 
that the function 13 which maps every word of A* onto its representative in T is a rational function. 
This function may be realized for instance by the following (left) transducer: 

0/0 1 ~  
1 ,o  

1/1 
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For a systematic exposition of this topic cf. [25] in this volume; the reader will also find there 
how the function 13 is connected to the Fibonacci numbers. 

A rational monoid is a Kleene monoid. Let indeed M be a rational monoid defined as above 
by means of a morphism a : A* ---> M and of a rational function 1~ : A* --> A*. If K is a rational set 
of M there exists a rational set L of A* such that c~(L) = K. Hence ~-I(K) = 13-113(L) is a rational 
set of A* and thus K is a recognizable set of M. 

Finite monoids are obviously rational monoids. From the cross-section theorem that will be 
considered in the next section one easily deduces that every finitely generated submonoid of a 
rational monoid is itself a rational monoid. The examples of Kleene monoids given above are 
rational monoids. For the example of McKnight and Storey. this follows from the following result: 

Proposition (Sakarovitcb [47]): The free product of two rational monoids is a rational monoid if, 
and only if, at least one of the two monoids has no divisors of  the identity. 

Up to that point the properties of Kleene monoids and of rational monoids coincide. 
Nevertheless examples can be constructed which show that a Kleene monoid is not necessarily a 
rational monoid [42]. 

II .  RATIONAL RELATIONS AND FUNCTIONS 

A rational relation of a monoid M into a monoid N is a rational subset of the monoid 
M x N. The most frequent case occurs when M and N are both free monoids. In that case, M x N 
is not free but a very special type of partially commutative monoid. Rational relations are a 
widely used class of fundamental transformations, both from the theoretical and from the practical 
points of view (syntactic analysis, arithmetic operations, search procedures in dictionaries, decod- 
ing theory, classification of formal languages). 

Elgot and Mezei [19] have shown that rational relations are realized by transducers, i.e. by 
finite automata with output (note that the underlying automaton may not be deterministic, and 
may have e-moves). Subsequent work on rational relations has been devoted to characterizations 
of transducers for special classes of rational relations or functions which allow efficient implemen- 
tations. Clearly, rational functions are the most important subclass. We first describe a new class 
of rational functions. 

1. Plurisubsequential functions 

It is well-known that it is decidable whether a given rational relation is a function 
(Schlitzenberger [50]) and moreover that an unambiguous transducer realizing the function can 
effectively be constructed. 

As noted by Choffrut and Schi~tzenberger [1 l], the theory of rational functions was initially 
only a theory of finite automata with a literal output function. Elgot and Mezei then introduced 
the more general concept of rational functions. Although these functions have many remarkable 
algebraic properties, there is a annoying counterpart, since one looses the algorithmic efficiency of 
sequential computations. This is the reason why one has looked for larger and larger classes of 
rational functions which can be computed (at least partially) in a sequential manner. Thus have 
been defined the gsm-mappings (Ginsburg and Rose [28]), subsequential functions 
(Schtttzenberger [48], Choffrut [12]), and now plurisubsequential functions (Sch~ttzenberger and 
Choffrut [11]). 
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A plurisubsequential function is a linite union of subsequential functions having pairwise 
disjoint domains. A subsequential function is a function realized by a gsm equipped with an 
addional partial output function p defined on the states of the gsm. If a computation in the gsm 
ends in some state, then the word associated with that state by the function p is concatenated at 
the end of the output, provided p is defined for this state. Otherwise, it indicates that ~e  compu- 
tation is unsuccessful, and therefore that the function realized by this transducer is undefined for 
the given input. 

Example 1: The successor function succ defined over the binary expansion of nonnegative integers 
(with the leading bit on the right) is subsequential. It is indeed realized by the following transduc- 
er: 

1/0 1/1 

0 / 0  

Example 2: Consider the function succ3 fl'om {0,1}* into itself defined as follows. For w a word, 
succ3(w) = succ(w), if w is the binary expansion (still with leading bit on the fight) of an integer 
congruent to 0 mod. 3; otherwise succ3(w) = w. The function succ3 is plurisubsequential without 
being subsequential. It is the sum of the subsequential functions given by the following transduc- 
ers: 

I. , , ,  

A 
1/0\ J ...... ~__~ ..... ~ 1/1~.~ O/C 

- O/O~_(,Z~W~ 1 / 1 /1 
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Example 3: The successor function over the binary expansions of integers but with leading bit on 
the left (as it  is usual) is a rational function, realized for instance by the following transducer: 

0 / 0  1 / O  

However, we shall see as an application of the following theorem that this function is not plu- 
risubsequential. 

Theorem [11]: Let T be an unambiguous transducer and let ot be the function realized by T. The 
function ot is plurisubsequential if, and only if, T has no branching. 

A branching in a transducer 7" is a couple (p, q) of states such that, for any integer n, there 
exist paths 

u/x p . ~ p  

p q 

in T for which the distance d(x,y) is greater than n. As usual, 

d(x,y) = Ixl + lYl - 21x^yl 

where x^y is the longest left factor of bo0a x and y. 

The pair (p, q) of states in the transducer of Example 3 is indeed a branching. To each word 
u = 01 n there correspond two paths 

u/01 ~ p ........ ) p  

u/10 '~. p - q 

and d(01 n, 10") = 2n + 2. 

The characterization of tt~e preceding theorem is effective. This is stated by the following 

Proposi t ion [11]: It is decidable whether a rational function is plurisubsequential. 
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2. Morphic and decreasing rational relations 

It is well-known that a relation r : A*--~ B* is rational if and only if it can be factorized 

r = a o ~ o 13 -1 (*) 

where a and 13 are morphisms of flee monoids and where K e Rat(C*) for some alphabet C. The 
partial function ~ : C*--> 6'* is of course defined by ¢"X(w) = w n K. 

In order to have efficient computations, it is important to know how special properties of 
relations am reflected by the associated representations. Thus, it is known (see e.g. Eilenberg's 
handbook [18]) that for a length-preserving relation r (i.e. such that ve r(u) => lul = Ivl), the mor- 
phisms a and I~ in the representation (*) may be chosen also to be length-preserving. This result 
has been strengthened as follows. 

Proposition (Leguy [361): Let r : A*--* B* be a rational relation which is length-decreasing (i.e. 
ver(u) => Ivl < lul). Then there is a representation 

r = a o c-u~ o ~ -1 

where ct is length-decreasing and ~ is length-preserving. 

Observe that the characterization of length-preserving rational relations is an immediate 
consequence of this result. Observe also that the proposition can be stated in the following way, 
expressing a "Fatou property": Rat(A* × B*) n M = Rat(M) where M is the submonoid of ,4* x B* 
given by 

M = {(u,v) ~ A ° x B* I lul > Ivl} 

Another question investigated concerns relations which are composed only of morphisms 
and inverse morphisms Can arbitrary number of them may appear) but without using intersection 
with a rational set. Such a relation is called morphic. The study was motivated by a paper due to 
Culik II, Fich and Salomaa [15] on morphic representations of rational languages. Concerning 
morphie relations, let us quote the following results. 

Proposition (l.,atteux and Leguy[35]): Let r : A*---> B* be a rational relation and let R be its 
graph, Then the following conditions are equivalent 

i) the relation r is morphic; 
ii) the set R is a submonoid of A* × B*; 
iii) there exists a factorization of r of  the form 

Proposition (Latteux and Leguy [35], Latteux and Turakainen [34]): Any morphic relation is com- 

posed of  at most four morphisms, i.e. admits representations of  the form 

r = ( x o ~ - ¿ o T o ~ - I  and r = G - l o ~ o ~ r ' l o ~  

for  some morphisms ~ ~, 7, 5. 

The proof is long and involved. It is easily verified that three morphisms do not suffice [35]. 

3. Rational equivalence relations and sets of representatives 

Morphisms of free monoids have the following basic property, expressed in the following 
"Cross Section Theorem". 

Theorem (Eilenberg[18]): Let ~ : A*--> B* be a morphism. For any rational subset K o f  A*, there 
exists a cross-section C of  K for o~ which is a rational set. 
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Recall that C is a cross-section of K for a if c¢(C) = cx(K), and if C¢1c is injective. 

The known proofs of Eilenberg's Theorem (Eilenberg [18], Scht~tzenberger [49], Arnold and 
Latteux [6], Kobayashi [33]) all are constructive. Although these proofs do not provide a simple 
characterization of the computed cross-section, they suggest to consider minimal elements in each 
equivalence class mod. a for a given lexicographic order. In fact, one has 

Proposition (Sakarovitch[45], Johnson[30]): Let o~:A*---)B* be a morphism and let K be a 
rational subset of  A*. For any lexicographic order on A °, the set of  minimal elements of  the 
classes of  o~IK is rational. 

Since a lexicographic order is not well-founded, a class akc may have no minimal elements. 
Thus the set 

C = {rain K n c¢-1(x) I x~ a(K)} 

may not represent all classes of c¢ Ix. However, in the case where (z is nonerasing, each class of c~ 
is finite and therefore has always a minimal element: consequently C is a cross-section of K for c¢. 
Observe that in the proposition, the lexicographic order cannot be replaced by the radix order, 
although this order is weli-founded (see [45]). 

The Cross Section Theorem gives in fact a property of the nuclear equivalence of mor- 
phisms of free monoids. One can look for extensions in two directions. The first consists in con- 
sidering more general equivalence relations, the second concerns morphisms into monoids which 
are no longer free. 

The first problem, on rational equivalence relations, is stated as follows: Given a rational 
equivalence relation R, does there exist a set of representatives of the equivalence classes which is 
rational. The Cross Section Theorem gives a positive answer in the case where R is the nuclear 
equivalence of a morphisna. H. Johnson shows [30] that the answer remains positive if R is a 
deterministic rational equivalence relation in the sense of Fischer and Rosenberg [20]. The general 
case is still open [30]. 

Motivated by this problem, one may ask for the position of the equivalence relations among 
rational relations. 

Proposition (Johnson [31]): It is undecidable whether a rational relation is an equivalence rela- 
tion. 

This result is similar to the well-known fact that it is undecidable whether a rational relation 
is recognizable. In this direction, one has 

Proposition (Johnson [31]): It is decidable whether a rational equivalence relation is recogniz- 
able. 

A second generalization of the Cross Section Theorem consists in considering the nuclear 
equivalence defined by morphisms into arbitrary monoids. This leads to the following definition. 

A function f from A* into a set E is crossable if any rational subset R of A ° has a rational 
cross-section forf. 

As a consequence of the Cross Section Theorem, it is easily seen that if a surjective mor- 
phism ~¢ : A °---} M is crossable, then any morphism from A* into M is crossable. In this case, the 
monoid M itself is called crossable. Observe also (Choffrut, see [8]) that any rational function 
from a free monoid into a crossable monoid is crossable. 

Example : A rational monoid is crossable. 

Consider indeed a rational monoid M and a surjective morphism ct : A °---) M. Let 13 be a 
rational function from A* into itself which associates to each word ueA ° a fixed representative of 
the equivalence class of u modulo c¢. In view of the result of Choffrut mentioned above, the 
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rational function 13 is crossable. Thus c~ = 13 o ~ is crossable. This suffices to ensure that M itself 
is crossable. 

There are other monoids which are crossable. 

Proposition (Sakarovitch [45]): A free group is crossable. 

On the other hand, of course not every monoid is crossable. 

Example: A free commutative monoid is not crossable. Let A = {a,b} and 

R = a*(ab2) * u (a2b)*b * 

There is no rational cross-section of R for the c,'monical morphism of A* onto the free commuta- 
tive monoid over A. 

HI. PARTIALLY COMMUTATIVE MONOIDS 

Let A be a finite alphabet and let O be on symmetrical relation a A which we shall call a 
commutation relation on A. The congruence on A* generated by the relation ab = ba for all pairs 
(a,b) in O will also be denoted by O; the quotient A*/O is the free partially commutative monoid 
generated by A with respect to the relation ~. If @ is empty, A*/O is the free monoid A* itself; if 
O is the universal relation (i.e. 0 = AxA), A*/O is the free commutative monoid generated by A. 
The direct product of  two free monoids that we have considered in the preceding section is 
another example of free partially commutative rnonoid. 

Since long time already, the free partially commutative monoids have been considered in 
connection with combinatorial problems (cf. Cartier and Foata [10], Lothaire [37], Duboc [16]). 
More recently, words over partially commutative alphabet became of interest to computer scien- 
fists for they give a model to problems of concurrency control. In this framework, the alphabet 
consists in functions, and the commutation between these letters corresponds to the commutation 
of the composition of  the corresponding functions (cf. Ullman [52] for instance). Sets of words 
over such partially commutative alphabets were introduced by Masurkiewicz under the name of 
trace languages, as a tool for describing the behaviour of concurrent program schemes, in the 
same way that classical formal languages can describe the behaviour of sequential program 
schemes. Three recent surveys (Masurkiewicz [39], Petrin [43], Aalbersberg and Rozenberg [2]) 
give rather a complete description of the subject. We shall focus here on the properties of recog- 
nizable and rational subsets of free partially commutative monoids. 

1. Recognizable subsets of free partially commutative monoids 

In a free partially commutative monoid, the family of recognizable sets do not coincide with 
the family of rational sets. Before coming to the problem of characterizing recognizable sets, let 
us quote an interesting closure property which is one of the oldest results on recognizable sets of 
free partially commutative monoids: 

Proposition (Fliess [23]): The family of recognizable sets of a free partially commutative monoid 
is closed under product. 

For the remaining of this section, let A be a finite alphabet, and let O be a commutation 
relation on A. We denote again by O tile canonical (surjective) morphism from A* onto A*/®. As 
for the subsets of any quotient monoid, a subset 7" of A*/O is recognizable if, and only if, O-I(T) 
is a recognizable (and thus a rational) subset of A*. If A*/O is a direct product of free monoids, 



24 

recognizable sets of A*/O are the finite unions of direct products of rational sets of the direct com- 
ponents of A*IO (this is a theorem due to Mezei). In the general case, recognizable sets are 
characterised by the following: 

Theorem (Ochmanski [41]): A subset T of  A*/O is recognizable ~, and only ~, the set 
{min(o-l(t)) I tET} is a rational subset of A*. 

In this statement, as in Section 1I, we denote by min(R) the smallest element of the set R in 
a lexieographical ordering of A*. Since O-1(0 is finite for any t, such a smallest element always 
exists. Note that the fact that the lexicographic cross-section of O is a rational set of A* (Anisi- 
mov and Knuth [4]) is an immediate consequence of the theorem. 

The next result gives a constructive characterization of the recognizable sets that is in some 
sense similar to Kleene's theorem in the free monoid. Let us first define the graph of  conflicts'of 
an element t of A*/O: the vertices of this graph are the letters which occur in t and a pair (a,b) of 
such vertices is an edge of this graph if (a,b) is not in O. An element t is said to be connex if so 
is its graph of conflicts. A subset T of A*/O is connex if each of its elements is connex. The fam- 
ily CRat(A'IO) is then defined to be the smallest family of subsets of A*/O which contains the 
finite subsets and which is closed under (finite) union, product, and star restricted to connex sub- 
sets. One can then state 

Theorem (Ochmanski [41]): Let M be a free partially commutative monoid. Then 
Rec(M) = CRat(M). 

It may be noted that this result implies earlier results giving sufficient conditions on a 
recognizable set T of a free partially commutative monoid for the set T* be again recognizable 
(FIG and Roucairol [21], Cori and Perrin [13], Cod and M~tivier [14], M~tivier [40]). 

2. Rational sets of  a free partially commutative monoid 

For further reference it is convenient to recall first the known results concerning the rational 
sets of commutative monoids. 

Theorem A (Ginsburg and Spanier [26], Eilenberg and Schtitzenberger [17]): The rational sets of 
a finitely generated commutative monoid form a Boolean algebra. 

Theorem B (Eilanberg and Schbtzenberger [17]): The rational sets in a commutative monoid are 
unambiguous rational. 

Theorem C (Ginsburg and Spanier [27]): It is decidable whether a rational set of  a free commu- 
tative monoid is recognizable. 

Note that a new proof of Theorem C has recently been given by Gohon([29]). It is based on 
Theorem B where the original one is based on the decidability of Presburger arithmetic. An 
often-used example shows that the previous results will not extend without further hypothesis. The 
monoid C = {a,b}*x{c}* is a free partially commutative monoid. Let P and Q be the subsets of C 
defined by 

It is readily seen that 

P = (a,c)*(b,1)* Q= (a,l)*(b,c)* 

P ~ Q = {(a~b~,c ~) I n~ N} 

is not a rational subset of C and it belongs to folklore (cf. Eilenberg [18]) that P u Q is an 
inherently ambiguous rational subset of C. However one has 
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Theorem (Aalbersberg and Welzl [1], Bertoni et al. [9], Sakarovitch [46]): Let A be afinite al- 
phabet and let M = A*/O be a free partially commutative monoid. The following three conditions 
are equivalent: 

i) the rational sets of  M form a Boolean algebra; 
ii) the rational sets of  M are unambiguous rational; 
iii) the relation 0 is transitive. 

It easily seen that the relation O on A is transitive if, and only if, A*/O is isomorphic to a 
free product of  free commutative monoids. 

The above example shows that conditions (i) or (ii) imply condition (iii). Indeed, if ® is 
not a transitive relation on A there exist three letters a, b, and c in A such that (a,c) and (c,b) are 
both in O while (a,b) is not in O. Thus the monoid C is isomorphic to a submonoid of A*/O. Up 
to that isomorphism the above sets P and Q are rational subsets of C and the conclusion follows. 

The converse implications may be deduced from Theorems A and B above and from the 
two following results ([46]). 

Theorem : Let M and N be two monoids the rational subsets o f  which form a Boolean algebra. 
Then the rational subsets of  the free product M * N form a Boolean algebra. 

Theorem : Let M and N be two monoids the rational subsets of  which form a Boolean algebra 
and are unambiguous rational. The rational subsets of  the free product M * N are unambiguous 
rational. 

As a final remark on this subject, we may observe that equality between two rational sets, 
as well as recognizability of a given rational set of a partially commutative monoid are both unde- 
cidable questions in the general case. However these questions become decidable in the case of a 
free product of free commutative monoids. 

IV. FREE GROUPS 

The deep connection between the structure of free groups and some chapters of formal 
language theory has long been recognized (of. Chomsky-Schl~tzenberger's theorem for context- 
free languages). It is also remarkable, and worth mentioning, that the most usual finiteness condi- 
tions on a subgroup of any group all have equivalent formulations in terms of formal languages 
theory. This can be stated as follows (for a systematic survey, see e.g. Frougny et al. [24]) 

Proposition: Let G be a group and H a subgroup of G. 
a) The subgroup H has finite index i[, and only if, it is recognizable in G. 
b) The subgroup H is finitely generated if, and only if, it is a rational subset of  G. 
c) The subgroup H is the normal closure of finitely many elements if, and only if, H is normal 

and is a context free subset of  G (i.e. H is the image of  a context-free subset in a surjective mor- 
phism from a free monoid onto G). 

Statement (a) in the above is indeed immediate from the definition. Statement (b) is due to 
Anisimov and Seiffert [5]; from their proof one can deduce a stronger statement which expresses 
a kind of Fatou property for groups : 

Proposition: Let H be a subgroup of  a group G. A rational set of  G contained in H is a rational 
set of  H. 

Remark that this proposition does not hold in the general case, i.e. if G is replaced by any 
monoid M. Consider for instance the free monoid A* with A = {a,b} and the (recognizable) 
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submonoid 

N = (a'b)* of A*. This submonoid N is a rational set of A* but is not a rational set of itself since it 
is not finitely generated. 

Let us now turn to the free group. It is know for long time already that the rational sets of a 
(finitely generated) free group form a Boolean algebra (Benois [7]) and that they are all unambi- 
guous (Fliess [22]). Since any subgroup of the free group is free and thus infinite, any finite subset 
of a free group is disjunctive, i.e. is not a union of classes for a non-trivial congruence. Hence a 
free group is not a Kleene monoid. Nevertheless, the following result has been proved by G. 
S6nizergues [51], and gives a kind of weak Kleene's theorem for the free group: 

Theorem: A rational set of  a free group is either recognizable or disjunctive. 

The proof of theorem is effective and thus : 

Corollary [51]: It is decidable whether a rational set of  a free group is recognizable. 

We may also note that the theorem can be generalized the following way : a group is called 
virtually free if  it contains a free group of finite index. Then 

Theorem [51]: Let H be a rational subset of  a virtually free group G and let N be the syntactic 
normal subgroup of  H. Then either N or GIN is finite. 
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