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Word chains are an extension of addition chains to words. We show that over a q-letter alphabet, any 
admits a word chain of length at most (1 + a)n/log,n, for a fixed arbitrary e > 0; there e-xist words with no 
n/log,_ rn. Several examples are given. Finally, we show that words with few factors have short chains. 
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1. Introdustion 

Recently, Diwan [l] suggested to generalize the 
well-known notion of addition chains (see, e.g., 
121) to words, in the following way. A sequence of 
words 

w,,....w, 

is a word chain if for each wi there are indices 
j, k c i with wi = wjwL. (By convention, wj is a 
letter of the underlying alphabet if j < 0.) Clearly, 
addition chains are exactly word chains over a 
one-letter alphabet. The word chain is said to 
compute a word w if w belongs to the chain. The 
chain length of w is the smallest length of a word 
chain computing w. 

Besides the idea of generalizing addition chains, 
the interest of this notion comes from the intui- 
tively clear fact that it lakes into account regular- 
ities in words, much better than for instance finite 
automata can do. This claim will be supported by 
some of the subsequent examples. 

It is well known that the length of a shortest 
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long enough word 
chain shorter t than 

addition chain for some integer n is basically 
log n. The aim of this article is to show that this is 
no longer true for word chains. Our main result 
(Propositions 3.1 and 3.2) states that a word of 
length n over a q-letter alphabet can be computed 
in n/log,n steps, and that there are words achiev- 
ing this bound, up to a constant factor Several 
examples will be given of families of words which 
can be computed in shorter length. The most 
striking example is perhaps the set of overlap-free 
words over a two-letter alphabet. Each such word 
can be computed in logarithmic length. Finally, 
we consider words having only few factors, i.e., 
having only polynomially many factors of given 
length. For these words, we show that there is a 
clear improvement on the chain length (Proposi- 
tion 5.1). As a special case, we obtain that words 
with a linear number of factors admit word chains 
of length O(G), where n is the length of the word. 

2. Definitions and notation 

Let A be a q-letter alphabet. A word chain over 
A is a sequence 

c(w,_,,.**,wo, w,,...,w,) (1) 
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of words such that A = (~r_~,. a .,wi~}, and for 
each i (1~ i < r) there exist j, k with 1 - q G j, k 
< i such that 

Wi = WjWk. (2) 

The length of the word chain c is the integer r and 
is denoted by Ic 1. The word chain c is said to 
compute a word w if w = wi for some i E { I- 9, 

. . . ,r}. The chain length of a word w is the integer 

t(w)=min( ]c]:ccomputesv+ 

It is easily seen that, in chain (l), ] Wi 1 < 2’ for 
0 < i < r. Thus, e(w) 2 log ]w I for any nonempty 
word w. We shall see below that, for alphabets 
with more than one let&, more precise bounds 
can be given. 

3. Results 

3.1. Proposition. Let A be a q-letter alphabet. For 
an arbitrary E > @ there is a constant no such that, 
for any word w E A* oi length n >, uO, there exists 
a word chain computing w of length < (1 + E)n/ 
log, n. 

Proof. Let w be a word of length n, and consider 
an integer p, with 1 < p < n. The word w factorizes 
into 

w = w*wz. ..w~n,Pp 

where IWi I = p for i = 1,2,. . . , [n/p] - 1, and 
]w,n/Pl I G p. In order to compute w, it suffices to 

compute the whole set of qp words of length p 
over A. Each such word can clearly be computed 
sequentially in p - 1 steps; thus, all Wi’S (even the 
last) can be computed in (p - 1)qP steps. Then, 
[n/p] - 1 G [n/p] steps suffice to get the word w. 
Thus, 

e(w) G (p - l)qp + [n/PI. 

Consequently, 

d(w) 6 f(n), 

where 

f(n) = ,zm& (Pv+ VP>. 

24 

Wow consider the real function 

g(x)=xqX+n/x, XE [1, n]. 

For n 2 q2 it has one extremum in [l, n] which is 
a minimum since g”(x) is positive. The argument 
satisfies the functional equation g’(x) = 0, that is, 

q”(P + x log q) - n/x2 = 0 

or, equivalently, 

xqx = 
n 

x(1 + x log q) l 

(3) 

Substituting (3) into g(x) and denoting the argu- 
ment of the minimum by x(n) we have 

dW=& 1+ ( 1 
1 + x(n) log q 1 * 

Let m = [x(n)] ; then, 

f(n) = min(g(m), g(m + 1)). 

Then it follows that 

g(x(n)) g f(n) G g(x(n) + 1). (4) 

We shall achieve the result in two steps; first, we 
show that f(n) and g(n) verify 

lim f(n)/g(x(n)) = 1, 
n-cn 

and, second, we compute 

lim g(x(nN - 
ndoo 

Rewrite (3) as 

n = x2q”(l + x log q) 

and observe that for k > q and x sufficiently large 
the following inequality holds: 

n = x2qx(l a x log q) < kX. 

Therefore, the inverse functions are related by 
x(n) > log, n. As a first consequence, since x(n) + 
00 asn300, 

lim g(x(n)) = lim x(n) + ’ 
n-00 g(x(n) + 1) n+m x(n) =‘* 

Combining this result with (4), it is easy to see 
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that 

f(n) 
’ ’ II% g(x(n)) 

< ‘lim g!x(n) + 1) 
ndao g(x(n)) = ’ 

and the first claim clearly follows. 
As a second consequence, g(x(n)) satisfies 

g(xb)) = i&(1+ i-T x(t) log q) 

n 
G- 

log,n ( 
l+ 

1 
1 + log,n log q 1 . 

Therefore, g(x(n)) is B(n/log,n). Finally, remark 
that k can be computed in the following way: 

lim g(x(n)) 
ndoo n/log n 

= km log n 
n+oo x(n) l 

Then, substituting 

n = x*q”(l + x log q) 

in this last expression, 

10g(x2qx (1 + x log q)) 

we have 

= 2 log x + x log q + log(1 + x log q) 

and this limit is 

lim 2 log x + x 1% 4 + logO + x 1% 9) = log q 

. 

x+00 X 

Thus, 

lim g(x(n))/(n/log,n) = 1, 
n+ao 

and the proof is complete. q 

3.2. Proposition. Let A be a q-letter alphabet, with 
q >, 3. 

There exist words w E A* such that t!‘(w) 2 
n/log, _ +, where n = 1 w I. 

. We consider a special symbol $ in A, and 
set B = A - {$}. Fix an integer N > 1 and con- 
sider the word 

w = $U,$u*!§...!§U(q-l)N& 

where u~,...,u~~_~) N is some enumeration of the 
set of words of length N over B. Let 

c= a ( b 9 9**-9 36 wp...,w,) 

be a word chain of minimal length computing w. 
A $-step in c is an index i such that in this ith step 
Wi = WjWk, and both wi and wk have at least one 
occurrence of the letter $. We show that c has at 
least (q - l)N $-steps. 

For this, we associate to each word us (1 < s < 
(q - l)N) its rank pS defined as follows. The rank 
of u, is the smallest index i such that $u,$ is a 
factor of Wi. This definition makes sense because 
each u, is a factor of wt = w. Observe that p3 is a 
$-step. 

It suffices to show that distinct words u, have 
distinct ranks. Assume the contrary. Then ps = pt 
for some s, t with s z t. Set i = ps = pt. Then 

wi = WjWk 

for some j, k < i; the words $I.@ and $u,$ both 
appear in Wi, but none of them is a factor of wj 
and wk. Because $ plays the role of a marker, it 
follows that us = u t, whence s = t. 

This proves that there are at least (q - l)N 
$-steps in the chain c. Consequently, 

e(w) 2 (q - QN. 

Setting 

n = Iw 1 = (q - l)“(N -!- 1) + 1, 

it follows that 

e(w) > n/Iog,_,n, 

since, for sufficiently large n, 

n 
log,_+ ’ 

(q-QN(N+l)+l 
N+2 

<(q- 1)“. cl 

Putting both results together, we obtain, for 

25 
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E > 0 and infinitely many integers n, the bounds 

3.3. Remark. A convenient representation of a 
word chain is the sequence of pairs of indices: the 
it/z step 

Wi = WjWk 

is represented by (j, k). Thus, the binary notation 
of a word chain of length r requires roughly r log r 
space. The bounds given above just mean that 
there is no data compression by word chains. 

4. Examples 

In this section, we give some examples of fa.mi- 
lies of words which are ‘easy’ to compute in the 
sense of word chains. 

4.1. Example (DOL systems). Consider an alphabet 
A, and a morphism 

h:A”+A*. 

6iven a word u E A* and an integer n, the nttr 
iterate h”(u) can be computed by a word chain of 
length less than 

n. Ilhll + lu I, 
where 

IIU = z IMa) I- 
aGA 

We indeed proceed by computing (rhe set of 
words 

(h”(a) : a E A) 

inductively as follows. The set 

(h(a) : a E A) 

is computed in less than ]I h ]I steps. Next, since 

h”(a) = h(;h”-l(a)), 

each h”(a) can be computed from the set 
(h”-‘(a) : a E A) in at most I h(a) I steps. Thus, 

(h”(a):aEA) 

26 

is computed from the alphabet in I] h ]I on steps, as 
claimed. 

Observe that the length of h”(u) usually grows 
exponentially with n (see [6] for a systematic dis- 
cussion). Thus, we have a logarithmic bound. 

4.2. Example. Each word w, of the form 

wn = baba2ba3b.. . ba”b 

has chain length 0(n). It is easily seen that there is 
a word chain of length 2n - 1. Conversely, an 
adaptation of the proof of Proposition 3.2 shows 
that at least n steps are requlired. Thus, 

‘twn) = e( /i&T)* 

4.3. Example (ouerlup-jive ~~~otdr). Consider the 
rlpkdxt A = (0, I}. A word is overlap-free if it 
has no factor of the form xuxux, with x, u words, 
and x nonempty (for more details, see [3]). Over- 
lap-free words over a two-letter alphabet have 
completely been characterized by Restive and 
Salemi [S] as follows. 

Define sequences of words by 

a0 =o bo = 1 

a n+l = anbnbnan, bn+l =bnananbn, 

and sequences of sets by 

Hn = (1, a,, anan ananbn, ananbnans anbn, 

anbnan9 anbnanbn 1) 

G,=H,u??,, 

Dn=Gn, 

where H,, is obtained from H, by exchanging a’s 
and b’s, and Gn is the set of reversals of G,. Then, 
eve,ry overlap-free word w may (uniquely) be writ- 
ten as 

w = g,g, . .0 g,-tud,-Id,-,...d,, 

where gi E Gi, d i E Dip and u is the product of at 
least 2 and at most 11 words in {ak, bk}. 

In order to construct a word chain for w, we 
observe that each pair (a,, r, bn+ r) can be com- 
puted in four steps from (a,,, b,), and that, given 
a,, b,, a word in G,, E),, is computed in at most 
two steps Thus, w can be computed by a word 
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chain of length at most 2k + 2k + 4k + 2k -I- 10 = 
lO(k + 1). Next, for n >, 0, 

Ia,1 =4”, lb,,1 =4”, 

1~ IS,1 <4”+’ (gnEGn)p 

which easily implies that 

2k+2x4k< IwI ~14x4~. 

This shows that the chain length of w is O(log I w I). 

§. Words with few factors 

As already mentioned, word chains take into 
account the structure of the Actors of the word 
they compute. ‘Es will now be demonstrated by 
the observation that words with few factors have 
short chains. 

To be more precise, we need some notation. 
Given a word w, we &no&e by SW(h) the set of 
factors of length h of w, md we denote by ‘I, 
the size of .9$(h): 

<p,(h) = Card &(h) (h > 1). 

We omit the subscript when no confusion can 
arise. 

5.1. Proposition. Let w be a word of length n, and 
assume thd there are constants C >, 1, p E WI, p 2 1 
sue93 that 

cP,(h) \< ChP (1 < h < [nr/(p+l)j). 

Then, 

d(w) < BCnP/(P+‘). 

For p = 1 we get the following special case. 

5.2. Corollary. Let w be a word of length n, and 
assume that cp,(h) = 0(h), for h = 1, 2,. . . , n, i.e, 

there is a linear number of factors of each length. 
Then, 

d(w) = o(J;;). 

There is still a gap between the upper bound 
given by Proposition 5.1 and some of the lower 

bounds derived before. Thus, the word 

% = baba2 ba3b.. . ba”b 

of length 0(n2) has a word chain of length 

0(/M). S’ Moe cp,“(h) = 0(h2), our proposition 
just gives the length 0( 1 wn 1 2j3). 

Proof of Proposition 5.1. The proof is a refinement 
of the construction in Proposition 3.1, and uses an 
improvement of the length of computation due to 
the size of cp(h). 

First, we introduce a straightforward extension 
of the notion of word chain. We say that a word 
chain computes a (finite) set S of words if each 
element of S appears in the chain. 

Now let w be a word of length n, and consider 
a fixed integer m with ; < m < n whose value will 
be determined later. Next, consider any addition 
chain for m, 

t= (to, t*,*..rtJ, 

with t,= 1 and t, = m. This chains is used to 
“program’ the construction of a word chain for 
g(m) ( = SW(m)) as follows. For each t i, we con- 
sider the set s(t i ). 

Pf ti = tj + t, (i, k K i), then clearly 

p(ti) CF(tj)F(tk) 

(where am = {UV 1~ EY(tj) and v E 

g(tk)J). Consequently, the set g(ti) can be com- 
puted from the sets *(tj) and 9(tk) in q(ti) 
chain steps, just by picking the convenient ele- 
ments in the previously constructed word chain. 
Since s(t,,) is the alphabet, it follows that there is 
a word chain computing 9(m) of length 

9(t) = cp(t*) + l l l +dtA 

where t = (to, t,, . . . , t,) is any addition chain for 
m. 

En order to get a good estimation of this num- 
ber, we use the following special addition chains. 
If m = 2”, then the special addition chain for m is 
simply 

(1,2, 22 ,..., 2s). 

If, on the contrary, m = 2’ -I- m’ with 1 < mp < 2”, 
then let u be such that 2” < m’ < 2”+‘. Of course, 

27 
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u < s. Then the special chain for m is 

t= (to, t, ,..., tyr, 2”+‘,..., 2”, m), (9 

where t’ = (to, t,, . . . , trl) is the special chain for 
m’. (As an example, the sequence (1, 2,4, 8,9, 16, 
32, 41, 64, 105) is the special chain for 105.) 

Now we use the hypothesis, namely 

cp(h) < ChP, 

and assuming that m = [ni’(P+l)l we claim that 

q(t) = q(t, j + -a l +cp(t,) < 3Cmp - 1, 

provided t is the special chain for m. 
Indeed, consider first the case where 

t= (1,2, 22 ,..., 2”); 

then, m = 2” and 

cp(t)gC(2p+22P+ l ** +2q 

< 2c(2sp - 1). 

Next, we assume that the special chain for m is 
given by (5). By induction, 

9(t1) + l l l 
+c&) < 3C(m’p - 1). 

Thus, setting q = 27 

1 s+l 
&t)<3m’P-1+q -q 

u+l 

q-l 
-tmP. 

Since m’ < 2”+*, we have m’p < q”+l, whence 

1 -2 C(P(t)~2m’P-1+qu+‘L 
q-l 

+ 2q” - qs- q-2 +mP 
q-l l 

Thus, since u + 1 < s, we get 

Fcp(t) 1 < 2m’p + 2q” + mp -- 1 

= 2(mp + (2”)‘) + mp - 1 < 3mP - 1, 

because m’ + 2” = m. Thus, 

q(t) < 3C(mP - 1) c 3CmP - 1. 

We are now able to describe the word chain for 
w. It is first composed of a word chain computing 
the set SW(m) with m = [r#‘@+‘)]. Next, the word 
w being factorized into 

w = w,w, . ..Wl+. 

with each Wi (except perhaps the last) of length m, 
[n/ml - 1 steps suffice to compute w. The length 
of this chain is therefore bounded by 

3CmP -l+[n/ml+m-1 

6 3CmP + [n/ml + m - 1 

< 3C( [rVp+ “1)” + nP/(P+‘) + $/(P+l) 

< 6CnP/(P+‘). 0 
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