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Abs t rac t  Motivated by symbolic dynamics and algebraic geometry over finite 

fields, we define cyclic languages and the zeta function of a language. The main 

result is that the zeta function of a cyclic language which is recognizable by a finite 

automaton is rational. 

I.  In t roduct ion 

Motivated by algebraic geometry over finite fields and symbolic dynamics, we call zeta 

function of a formal language L the function 

t n 
(L) = exp (Y. a n ) 

n 

where a n is the number of words of length n in L. Moreover, we say that a language is cyclic if it 

is conjugation - closed (u v ~ L ca v u a L) and if for any two words having a power in common, 

if one of them is in L, then so is the other. 

Our main result states that if L is a cyclic language which is recognizable by a finite 

automaton (i.e regular), then its zeta function is rational (th. 1), and effectively computable, as the 

proof shows. 

One consequence is that the zeta function of a sofic system in symbolic dynamics is rational, 

a fact which was claimed in [20] and [6]. Moreover, it is effectively computable, if the sofic 

system is given by a semigroup or a graph. 

There is of  course a striking analogy with one of the WeiI ex-conjecmres, stating that the zeta 

function of an algebraic variety over a finite field is rational (Dwork's theorem [7], see also [12]). 

In fact, several constructions allow to associate to each such variety a cyclic language (see Sect. 3); 

however, these constructions do not produce recognizable languages, so th. 1 does not give a new 

proof of Dwork's theorem. 

We prove in fact a structure theorem on cyclic recognizableqanguages: such a language is 
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(informally speaking) a linear combination of ~ over traces of finite deterministic automata (th. 2). 

This result is actually the difficult point; it has th.1 as a simple consequence, using a 

variant (prop.2) of a theorem of Bowen, Lanford [4] which rests essentially on 

Jacobi's identity det (m) = exp o tro log(m), for any matrix m (when defined). The 

proof of th.2 is rather involved. It heavily relies on the theory of the minimal ideal 

of syntactic monoids, and will be published elsewhere. 

A byproduct of theorem 2, which should be explored elsewhere, is that cyclic recognizable 

languages constitute a new class of languages which, as biprefix codes [17], have a semisimple 

syntactic algebra. 

2. Definitions and main result 

We assume the reader familiar with the elementary notions of finite automata theory (see 

[13], [8]). Recall that when L is a language contained in some free monoid A*, then L is regular if 

and only if L is recognizable (by a finite automaton). 

Let a n be the number of words of length n in the language L. Then the usual generating 

function of L is 

Y, a n t n 
n>O 

It is a well-known result, which goes back to Chomsky and Sch/Jtzenberger [5], that when L is 

recognizable by a finite automaton, then its generating function is a rational function. 

Call zeta function of L the function 

t n 

UL) = exp ( I; a n T ) 

This definition and the following ones will be motivated in the next section. This function is in 

general neither rational nor has integer coefficients, even if L is recognizable: for instance, for 

L = {a} and L = {(ab) n I nc  IN }, the zeta functions are respectively exp(t) and 1/ff2t 2. 

We say that a language is CyCliC if for any words u, v, w and integer n -> 1, the two 

following conditions hold: 

(1) u v e  L e ~ v u e  L 

(2) w e  L e o w n ~  L 
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Recall that two words x and y are said to be c0niugate if for some words u and v, one has 

x = uv, y = vu. Hence, Eq. (1) means that L is conjugation-closed. Moreover, each word x in 

A* is the power yn of a unique primitive, word y, which means that y is not a nontrivial power of 

another word (see e.g. [2] or [15]): y is called the primitive root of x. Then, Eq. (2) means that L 

is closed for the equivalence relation described by: x and y are equivalent iffx and y have the same 

primitive root iff x ancl y have a nontrivial power in common. 

A first fact, rather classical (compare to [ 11] prop. 11.1.3), implies that the zeta function of a 

cyclic language has integer coefficients. 

Proposition I Le_._Lt L be a cyclic langua_.g.e. Then its zeta function has the infinite product 

~xpansion 

1 
(3) ~!~L) = I I  

n> l  0~ n 
(1-t n ) 

wh , r ,  ~n  is the number of cgn}ug~tion classes of nrimitive word~ contgined in L. In particu!~, 

~(L) has integer coefficients. 

Equivalently, ct n may be defined as the number of Lvndon words of length n in L (see e.g. 

[15]). For instance, when L is simply the whole free monoid A*, then the ~n'S are the Witt 

numbers, which count the Lyndon words, the homogeneous dimensions of free Lie algebras, the 

ranks of the quotients of the lower central series of a flee group, the primitive necklaces and the 

irreducible polynomials over a finite field (see e.g. [15], [19]). 

Proof We have to show that 

exp (nE>_i an ) = I'][ - -  
k21 

(l_tk) (zk 

Take the logarithmic derivative of both members and multiply by x, obtaining 

k t k 
a n t n =  ]~ ct k 

n>l  k2.1 1-t k 

This is equivalent to 

= X X akk t kp 
k2t  p>l 
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a n = kiln kC~k 

But this expresses the fact that each word x of length n is the power of a unique primitive word of 

length k dividing n and has k conjugates. [] 

Our main result is 

Theorem I If  L is a cyclic language which is r_eco~nizab[ebv a finite automaton, then its zeta 

function is rational 

Example 1 Let L be the set of words on the alphabet {a, b, c} of  the form 

a . . .  abc a . . .  a b c a  . . . . . . . .  abc  a . . . .  a 

with at least one occurence of bc, or of  the form 

c a . . ,  a b e a . ,  .abc a . . . . . . . . . .  abc  a . . .  ab 

Then L is cyclic and recognizable, The number a n of words of length n in L is F n - I + Fn. 2, 

where F n is the n-th Fibonacci number. Hence, a n = O n + O n - 1 where 

e=--~,-~= 1-4Y2 

Thus 

n 

~(L) = exp( Z (O n + gn_ I) __t ) 
n>-I n 

--exp( Y~ O n t n  ) exp (Y~ g n t n  ) exp( Y. "tn) 
n n n 

1-t 1-t 

(1-80 (1-0-}) 1-t-t 2 

Hence ~(L) is rational. 

t n 
It is known in general (see e.g. [ 11] prop, 11.1.1) that a series exp ( Y, a n -~-) is rational if 

n . c~ k X~for some intege~rs cc i and some complex numbers and only i f  one has a n = o~ 1%1 +" • + 

k i. This arithmetic approach is however impossible in our case. 

As the proof of  theorem 1 will show, the zeta function may be effectively computed. It 

should be noted that it is decidable if  a given recognizable language L is cyclic: indeed, condition 
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(1) and (2) may be tested in the syntactic monoid of L, and this monoid is finite (see [13], [8]). 

Moreover, it is a well-known fact that the conjugation-closure of a recognizable language L (that is, 

the smallest conjugation-closed language containing L) is still recognizable; however, it is not true 

that the cyclic closure of a recognizable !anguage is always recognizable: take for instance the 

language a* b* = {a i bJ I i, j >_ 0} and use the pumping lemma for recognizable languages (see e.g. 

[8] prop. 2.5.1). 

In order to prove theorem 1, we will prove a more general result, which gives some insight 

in the structure of cyclic recognizable languages. 

Denote by N<<A>> the set of noncommutative formal power series over 72.. on the alphabet 

A. Each language L defines a series, its characteristic series defined by 

L = 2 w  
we L 

Now, let A be a finite automaton over A0 and define a formal power series, called the trace of A 

and denoted by tr(A), by 

t r ( A ) = 2  %vW 
we A* 

where the coefficient a w of the word w is equal to the number of couples (q, c) where q is a state 

in A and c a path q ~  q in A labelled w. 

Example 2 The trace of the automaton 

is the series having as coefficient of w 

2 if w is a power of a 

1 

0 

b 
o 

c 

1 if w is a shuffle of a's and a word of the form (bc)" or (cb) i, i_>1. 

otherwise. 

The trace of the automaton 

is ~ 2a 2n. 
n_>0 

(2 

Ct 
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In what follows, a deterministic automaton will always be a non necessarily complete 

deterministic automaton. 

Theorem 2 The characteristic series of each cyclic regular language is a linear combination 

over 72 of traces of finite deterministic automata. 

Example 3 For L = the language of example 1, one has 

a b a 

g 

Now, let L be the set of words on the alphabet {a, b} such that between any two b's, the number 

of a's is a multiple of 3, even cyclically. Then 

b 

Theorem 2 will be proved in section 4. In the sequel of this section, we show how one may 

deduce theorem 1 from theorem 2. In fact, we shall prove a little bit more. 

Let =: 7P..<<A>> -> 72[[A]] be the natural homomorphism, where ~ [JAIl is the usual 

commutative algebra of formal power series in the variables a s A. Let S ~ g <<A>> be a 

noncommutative series. Then one has 

S = X S  n 
n>0 

where each S n is the homogeneous part of S of degree n. Call generali_zed zeta function of S the 

comrnutalive series 

g(S n) 
Z(S)=exp(Z ) s ~[[A]] 

112.1 n 

Note that if L is a language, then 

~(L) = e (Z(_L_)) 
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where 0: 7~[[A]] ~ 7~[[t]] is the homomorphism e(a) = t, for any letter a in A. 

Hence it suffices to show that Z(_L.) is rational, under the hypothesis of theorem 1. 

Call rnatri:; of an automaton A the m a r x  E in ~[A] Q x Q (where Q is the set of states of A) 

defined by 

Ep,q= ~ a 
a 

p---) q 

a 
where p----) q means that there is an edge labelled a from p to q. Call determinant (cf. [20], [2] 

VIII.2) of A the polynomial in :~[[A]] 

det ( A ) = det (I - E) 

where I is the Q x Q identity matrix. 

Proposition 2 The generalized, z.era function of the trace of a finite automaton is equal to the 

inverse of the determinant of this automaton. 

ProQf. Let A be a finite automaton. Then it is an easy consequence of a well-known fact in 

automata theory (see e.g. [8] prop. VI. 6.1) that 

~(tr (A)) = tr ( ~', E n) = tr ((I - E) -1) 
n>_0 

Actually, this equality justifies the terminology "trace of an automaton". More precisely, let 

tr(A) = Z S n 
n>_O 

be the decomposition into homogeneous parts. Then 

zC(Sn) = tr (En). 

Hence the generalized zeta function of tr (A) is 
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Z = e x p ( 3 2  ~.! Sn)) 
n_>l n 

= exp ( Y~ t tr (En)) 
n>l  n 

tzn 
= exp (tr 32 -~-) 

n>l  " 

= exp (tr (log (I - E) 'I))  

Now, the Jacobi's identity tells us that det(M) = exp (tr (log (M))) for any matrix M where it is 

defined (instead of the Jacobi's identity, one may use e.g. [10] appendix, ( lemma 4.1). Hence 

Z = det (I - E)- 1 

which was to be shown. D 

In order to deduce theorem 1, note that if S = Y~ ~ S i for some series S, S i and integers cq, 

then Z(S) = x~ Z(Si ~i . Thus theorem 1 may be deduced from theorem 2 and proposition 2. Note 

that the condition ct i e ;~ is crucial to rationality. 

Example 4 For L = the first language of example 3, we have 

l - a ,  - b 

ZL(.L.) = -c, 1 

-1 

• t l - a t  

] - a  

l - a -  bc 

Its ordinary zeta function is 
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1 - t  
~(L) = 

1 -t-t 2 

For the second one, we have 

,'1"'°11 t'a J 1 Z(_L_)= [ 0 1,-a O, 1, - I I - a  
-a; O, 1 -a, O, 

3 1 - a  l + a + a  2 

( l - b -  a 3) (1 - a) l - b -  a 3 

Its ordinary zeta function is 

2 
l + t + t  

~(L) = 
I - t -  t 3 

Another consequence of theorem 2 is that the syntactic algebra_ of each cyclic recognizable 

language is semi-simple (and finite dimensional): indeed, it suffices to apply prop. II.2.1(i) of 

[16]. Thus, cyclicity of a language is a combinatorial property which, as biprefixity, implies the 

semisimplicity of the syntactic algebra [17]. 

3. Mot iva t ions  and aot~li¢~tiQns 

a. Let IFq be the finite field wifla q elements, 1Fq~ its algebraic closure and f e lFq [x 1 .... 

Xk]. Let V be the set of solutions in lFq~ of the algebraic equation 

(4) f(x 1 .. . . .  Xk) = 0 

and let a n be the number of those solutions which lie in the field 1F 
qn 

is the series 

t n  
~ ( f ) = e x p (  Y a n 2--) 

n>l n 

Then the zeta function of f 
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It was one of the Weil conjectures, proved by Dwork [7], that this function is rational (more 

generally, the same holds for any algebraic variety V defined over tYq). 

Now, let A be the alphabet A = (]Fq) k. Then there exist a mapping cp: A* ~ IFqoo with the 

following properties: 

(i) For any n, cp I A n is a bijection from A n onto ]Fqn. 

(ii) For any words u and v, (p(u v) and q3(vu) are conjugate points over ]Fq. 

(iii) For any word w and integer n > 1, (p(w) = cp(wn). 

Such a mapping may be constructed using a family of primitive elements, one for each IFqn, 

following Golomb [9] ; or using a family of normal bases [14] of IFqn (see e.g. [19]). 

Note that an algebraic variety V defined over ]Fq (such as the set of solutions of Eq. (4)) is 

IFq-conjugation - closed. Hence L = q~-I (V) will be a cyclic language, which encodes V, and the 

zeta function of L is equal to the zeta function of the algebraic variety V. 

Unfortunately, no known mapping q3 as above allows to obtain a recognizable language L: 

this would give a new proof of the rationality of the zeta function of V, which was one of the 

motivation of this paper. The construction of a mapping cp such that algebraic varieties correspond 

to recognizable languages is an open problem, certainly difficult, related to the construction of a 

natural bijection between irreducible polynomials over lFq of degree n and primitive necklaces over 

lFq of length n (see e.g. [19]). 

b. Let A be a finite alphabet and o: A N ---) A N be the shift mapping, that is 

or: (an)nE N --o. (an+l)n~ N 

If S c A m is closed under c~, then its zeta function is 
t n 

exp( ~; u n n ) 
n>__l 

where u n is the number of points x in S such that on(x) = x (in other words, x is periodic and has n 

as a period). Call pattern of a periodic word x = (an)n~ N a word w c A* such that p = length (w) 

is a period of x and that for some u ~ N, one has w = an+ 1 . . .  an+ p • In other words 

X - -  . . . . .  W W W  . . . . .  W . . . .  
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with the origin 0 somewhere. Then associate to each (y-closed subset S of A ~ the language L of its 

patterns. Evidently, L is a cyclic language, whose zeta function is equal to that of S. 

Now, let S be a sofic system [21]. Then its set of patterns is a recognizable language, which 

is a consequence of 

Proposition 3 Le.__.5 L be a recognizable language such that for any word w and i r!teger n > 1, 

one has: w ~ L = w n ~ L. Then the cyclic closure of L is reco~izable. The set of patterns of 

the periodic words of a sofic system is recognizable 

All the constructions are effective, of course. 

Proof. (i) Let L = g-1 (p), where g: A* ---> M is the natural monoid homomorphism from 

A* onto the (finite) syntactic monoid of M (see [13], [8]). 

L e t P ' =  { m ~  M l 3 p ,  q ~  M, 3 n >  1, m =pq, (qp)n e P} 

Then L' = qF 1 (P') is a recognizable language, which is the cyclic closure L of L: indeed, if 

w is in L, then for some u, v and n, one has w = uv and (vu) n E [2; this implies that q~(w) = q~(u) 

tp(v), (qo(v) q)(u)) n e P, hence ~p(w) e P' and w e L'; conversely, if w ~ L', then a power of w is 

conjugate to some word in L, thus w is in L .  

(ii) Let S be a sofic system. Then S is equal to the set of bi-infmite paths of a finite automaton 

A. Let L be the language consisting of all words w such that for some state q in A, there is a path 

W 
q--> q. Then L is recognizable and satisfies to the condition of the proposition. Hence, its cyclic 

closure L is recognizable. But L is equal to the set of patterns of S. [] 

This proposition, together with theorem I, shows that the zeta fnnction of  a sofic systemjs. 

rational, a result which was claimed by Weiss [21] and Coven, Paul [6]. Moreover, it is 

computable as shows the proofs of theorem 1 and 2. The authors were told that M.-P. B6al had 

also obtained this result, in the particular case of an aperiodic semigroup defining the sofic system 

[I]. 

Actually, we show a little bit more: the generalized zeta function of a sofic system is rational; 

the latter function is a series in several variables which gives some information on the commutative 

composition of the patterns of the periodic words. Note also that when S is an irreducible sofic 

system, then the cyclic language L associated to it as above allows to recover S: indeed, the set of 

periodic points is then dense in S. Observe that proposition 2 is a variant of Bowen, Lanford's 

result [4], and that in the case of an irreducible subshfft of finite type (i.e the set of bi-infinite paths 
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of a transitive graph), the inverse of the generalized zeta function is an irreducible polynomial, as 

shown in [18] (th. 3). 
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