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Abstract Motivated by symbolic dynamics and algebraic geometry over finite
fields, we define cyclic languages and the zeta function of a language. The main
result is that the zeta function of a cyclic language which is recognizable by a finite
automaton is rational.

1. Introduction

Motivated by algebraic geometry over finite fields and symbolic dynamics, we call zeta

function of a formal language L the function

tn
CL)=exp (Za, -

where a,, is the number of words of length n in L. Moreover, we say that a language is cyclic if it
is conjugation - closed (uv € L <> v ue L) and if for any two words having a power in common,
if one of them is in L, then so is the other.

Our main result states that if L is a cyclic language which is recognizable by a finite
automaton (i.e regular), then its zeta function is rational (th. 1), and effectively computable, as the
proof shows.

One consequence is that the zeta function of a sofic system in symbolic dynamics is rational,
a fact which was claimed in [20] and [6]. Moreover, it is effectively computable, if the sofic
system is given by a semigroup or a graph.

There is of course a striking analogy with one of the Weil ex-conjectures, stating that the zeta
function of an algebraic variety over a finite field is rational (Dwork's theorem [71], see also [12]).
In fact, several constructions allow to associate to each such variety a cyclic language (see Sect. 3);
however, these constructions do not produce recognizable languages, so th.1 does not give a new

proof of Dwork's theorem,

We prove in fact a stracture theorem on cyclic recognizable danguages: such a language is
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(informally speaking) a linear combination of Z over traces of finite deterministic automata (th. 2).

This result is actually the difficult point; it has th.1 as a simple consequence, using a
variant (prop.2) of a theorem of Bowen, Lanford [4] which rests essentially on
Jacobi's identity det (m) = exp o tr o log{m), for any matrix m (when defined). The
proof of th.2 is rather involved. It heavily relies on the theory of the minimal ideal
of syntactic monoids, and will be published elsewhere.

A byproduct of theorem 2, which should be explored elsewhere, is that cyclic recognizable
languages constitute a new class of languages which, as biprefix codes [17], have a semisimple

syntactic algebra.

2. Definitions and main result

We assume the reader familiar with the elementary notions of finite automata theory (see
[131, [8]). Recall that when L. is a language contained in some free monoid A*, then L is regular if
and only if L is recognizable (by a finite automaton).

Let a,, be the number of words of length n in the language L. Then the usual generating

function of L is

Y oa, !

n>0 "
It is a well-known result, which goes back to Chomsky and Schiitzenberger 5], that when L is
recognizable by a finite automaton, then its generating function is a rational function.

Call zeta function of L the function

tl’l
L) =exp (X ap—)

This definition and the following ones will be motivated in the next section. This function is in
general neither rational nor has integer coefficients, even if L is recognizable: for instance, for
L={a} and L = {(ab)? | ne N}, the zeta functions are respectively exp(t) and INT2,

We say that a language is cyclic if for any words u, v, w and integern 2 1, the two
following conditions hold:
(1) wel&vuel

2) welowlel
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Recall that two words x and y are said to be conjugate if for some words u and v, one has
x =uv, y = vu. Hence, Eq. (1) means that L. is conjugation-closed. Moreover, each word x in
A” is the power y™ of a unique primitive word y, which means that y is not a nontrivial power of
another word (see e.g. [2] or [15]): v is called the primitive root of x. Then, Eq. (2) means that L
is closed for the equivalence relation described by: x and y are equivalent iff x and y have the same
primitive root iff x and y have a nontrivial power in common.

A first fact, rather classical (compare to [11] prop. 11.1.3), implies that the zeta function of a
cyclic language has integer coefficients.

Proposition 1 Let L be acyclic language. Then its zeta function has the infinite product
gxpansion

&) y=0 ———
n=1 Oy
(1-1)

where o, is the number of coniugation classes of primitive words contained in L. In particular,
{(L) has integer coefficients.

Equivalently, o, may be defined as the number of Lyndon words of length n in L (see e.g.
[15]). For instance, when L is simply the whole free monoid A*, then the o's are the Witt

numbers, which count the Lyndon words, the homogeneous dimensions of free Lie algebras, the

ranks of the quotients of the lower central series of a free group, the primitive necklaces and the
irreducible polynomials over a finite field (see e.g. [15], [19]).

Proof We have to show that

t? 1
exp(2 aj—)=J] ———
n=1 n k1 (lk
-y

Take the logarithmic derivative of both members and multiply by x, obtaining

Sa =3 o E-i

1t 1 C Lk
= g, Zakktkp
k21 p21

This is equivalent to
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a, = 2 ko
" kin k

But this expresses the fact that each word x of length n is the power of a unique primitive word of
length k dividing n and has k conjugates. O

Our main result is

Theorem 1 If L is a cvelic language which is recognizable by a finite automaton, then its zeta
function is rational.

Example 1 Let L be the set of words on the alphabet {a, b, ¢} of the form

a...abca...abca........ abca....a
with at least one occurence of be, or of the form
ca...abca...abca.......... abca...ab

Then L is cyclic and recognizable, The number a,, of words of lengthnin L is F - 1 + Fp o,
where F,, is the n-th Fibonacci number. Hence, a, =8, + gn - 1 where

IWF 145

6=, 7= =

Thus

n
L) =exp(S (@1 +BN- 1))
nz21 n

) M 0 i
=exp( X Gn—n)cxp(ze —n)cxp(z—n)

1-t _ 1-t
(1-6t) (1-81) 1-t-t2

Hence {(L) is rational.

oo
It is known in general (see e.g. [11] prop. 11.1.1) thata series exp ( 2 ap ?) is rational if

and only if one has a; = 04 ?\.I; o Oy 7«.3? for some integers oy and some complex numbers

A This arithmetic approach is however impossible in our case.

As the proof of theorem 1 will show, the zeta function may be effectively computed. Tt

should be noted that it is decidable if a given recognizable language L is cyclic: indeed, condition
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(1) and (2) may be tested in the syntactic monoid of L, and this monoid is finite (see [13], [8]).
Moreover, it is a well-known fact that the conjugation-closure of a recognizable language L (that is,
the smallest conjugation-closed language containing L) is still recognizable; however, it is not true
that the cyclic closure of a recognizable language is always recognizable: take for instance the
language 2" b = {ai bili, j 2 0} and use the pumping lemma for recognizable languages (see ¢.g.
[8] prop. 2.5.1).

In order to prove theorem 1, we will prove a more general result, which gives some insight
in the structure of cyclic recognizable languages.

Denote by Z<<A>> the set of noncommutative formal power series over Z on the alphabet

A. Each language L defines a series, its characteristic series defined by

=

=3 W

wel

Now, let A be a finite automaton over A, and define a formal power series, called the wrace of A

and denoted by tr(A), by

W I
where the coefficient o, of the word w is equal to the number of couples (q, ¢) where ¢ is a state
in A and capathg- q in A labelled w.
Example 2 The trace of the automaton b
oG 2a
is the series having as coefficient of w ©
2 if wisapowerofa
1 if w is a shuffle of a's and a word of the form (bc)i or (cb)i, i>1.

0 otherwise.

The trace of the automaton

is Y 2a2n,
n=0
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In what follows, a deterministic automaton will always be a non necessarily complete

deterministic automaton.,

Theorem2 The characteristic series of each cyclic regular language is a linear combination

over 2 of traces of finite deterministic automata.

Example 3 For L = the language of example 1, one has

a b a
L=:r(g/“\*,_o )-u(Q’)
C

Now, let L be the set of words on the alphabet {a, b} such that between any two b's, the number

of a's is a multiple of 3, even cyclically. Then

a O a
L=t (a \O )-tr(:l{v la)+“(@)
bed O

Theorem 2 will be proved in section 4. In the sequel of this section, we show how one may
deduce theorem 1 from theorem 2. In fact, we shall prove a little bit more.

Let T: Z<<A>>-> Z[[A]] be the natural homomorphism, where Z [[A]] is the usual
commutative algebra of formal power series in the variables a € A. LetSe Z <<A>>bea
noncommutative series. Then one has

S=3 S
nZOn

where each S, is the homogeneous part of S of degree n. Call generalized zeta functon of S the

commutative series

wSp)
)y e Z[Al

ZS)=exp( %
=1 ¢

Note that if L is a language, then

L) =6 (ZW)
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where 8: Z[[A]]—> Z[[t]] is the homomorphism 6(a) = t, for any letter a in A,

Hence it suffices to show that Z(L) is rational, under the hypothesis of theorem 1.

Call matrix of an automaton A the matrix E in Z[A] QxQ (where Q is the set of states of A)
defined by

a

Epq=

>
a
p—

q

a
where p—> q means that there is an edge labelled a from p to q. Call determinant (cf. [20], [2]

VIL2) of A the polynomial in Z[{A]]

det(A)=det(I-E)
where [ is the Q x Q identity matrix.

Proposition 2 The generalized zet function of the trace of a finite automaton is equal to the

inverse of the determinant of this automaton,

Proof. Let A be a finite automaton. Then it is an easy consequence of a well-known fact in

automata theory (see e.g. [8] prop. VI. 6.1) that

i (A) =u (3 EN = (@-Eh
n=0

Acually, this equality justifies the terminology "trace of an automaton”. More precisely, let

T(A)y= % S
n=0 .

be the decomposition into homogeneous parts. Then

A(Sy) = tr (ED).

Hence the generalized zeta function of tr (A) is
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(S
Z=exp(X Gn)
nz1 o

—exp( T @Y
=1t

n
cep T 2)
n=1 B
=exp (ir (log (- B)"L))

Now, the Jacobi's identity tells us that det(M) = exp (tr (og (M))) for any matrix M where it is

defined (instead of the Jacobi's identity, one may use e.g. [10] appendix, ( lemma 4.1). Hence
Z=det(-Eyl
which was to be shown.

In order to deduce theorem 1, note that if § = ¥ oy §; for some series S, S; and integers o,

then Z(S) = III Z(S;))L1 . Thus theorem 1 may be deduced from theorem 2 and proposition 2. Note

that the condition oy € Z is crucial to rationality.

Example 4 For L = the first language of example 3, we have

1-a,-b |1
Z(L) = Cl1-al

Its ordinary zeta function is
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1-t
L) =
« 1-t-2

For the second one, we have

1-b,-a, 0] -1 1, -a, 0 )
L = 0, 1,-a 0, 1, -a {1-al
-a, 0,1 -;a, 0, 1
_ 1'a3 _ 1+a+a2
(1-b-23)(1-2) 1-b-a’
Tts ordinary zeta function is
1+L+[2
L= 3
1-t-t

Another consequence of theorem 2 is that the syntactic algebra of each cyclic recognizable
language is semi-simple (and finite dimensional): indeed, it suffices to apply prop. I1.2.1(i) of
{16]. Thus, cyclicity of a language is a combinatorial property which, as biprefixity, implies the

semisimplicity of the syntactic algebra [17].
3. Motivations and applications

a. LetF q be the finite field with g elements, F g its algebraic closure and f e 1Fq X150

xil- Let V be the set of solutions in F qeo of the algebraic equation

4 HESTONS CHESY

and let a; be the number of those solutions which lie in the field F_ . Then the zeta function of f
qt
is the series
t

C(f) = CXp (n§2:1 an Hl—l-)
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It was one of the Weil conjectures, proved by Dwork [7], that this function is rational (more
generally, the same holds for any algebraic variety V defined over IF q).

Now, let A be the alphabet A = (}Fq)k. Then there exist a mapping ¢: A*—> F qeo with the
following properties:
(i) Foranyn, ¢ 1Amis a bijection from A™ onto F qn-
(i) For any words u and v, @(u v) and @(vu) are conjugate points over IF g
@iii) For any word w and integern 2 1, ¢(w) = o(w").

Such a mapping may be constructed using a family of primitive elements, one for each qun,
following Golomb [9] ; or using a family of normal bases [14] of IF @ (see e.g. [19]).

Note that an algebraic variety V defined over F q (such as the set of solutions of Eq. (4)) is

F ,-conjugation - closed. Hence L = (p‘l (V) will be a cyclic language, which encodes V, and the

q
zeta function of L is equal to the zeta function of the algebraic variety V.

Unfortunately, no known mapping ¢ as above allows to obtain a recognizable language L:
this would give a new proof of the rationality of the zeta function of V, which was one of the
motivation of this paper. The construction of a mapping ¢ such that algebraic varieties correspond
to recognizable languages is an open problem, certainly difficult, related to the construction of 2

natural bijection between irreducible polynomials over I q of degree n and primitive necklaces over

]Fq of length n (see e.g. [19]).

b. Let A be a finite alphabet and o: AZ —5 AZ be the shift mapping, that is

O (@pheZz = @n+pez

IfS ¢ AZ is closed under o, then its zeta function is
n

t
exp( 2 uy —)
pnzln n

where uy; is the number of points x in S such that 6™(x) = x (in other words, x is periodic and hasn

as a period). Call pattern of a periodic word X = (a2 2 word w € A* such that p = length (W)

is a period of x and that for somen € Z,onehasw=2ap,q ...25.p- In other words
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with the origin 0 somewhere. Then associate to each o-closed subset S of AZ the language L of its
patterns. Evidently, L is a cyclic language, whose zeta function is equal to that of S.

Now, let S be a sofic svstem [21]. Then its set of patterns is a recognizable language, which
is a consequence of

Proposition 3 Let L be a recognizable language such that for any word w and integern 2 1,

one has: we L =>wle L. Then the cyclic closure of L is recognizable. The set of patterns of

the periodic words of a sofic system is recognizable.

All the constructions are effective, of course.

Proof. (i) LetL= p.‘l (P), where yt: A* —> M is the natural monoid homomorphism from
A* onto the (finite) syntactic monoid of M (see {131, [8]).

LetP={meMldp,qgeM, Inz1,m=pq, (gp)"e P}

ThenL'= (p‘l (P") is a recognizable language, which is the cyclic closure L of L: indeed, if
w is in L, then for some u, v and n, one has w = uv and (vu)" e L; this implies that ¢(w) = ¢{u)
@), (P(v) 9(u)) € P, hence p(w) e Pand we L} conversely, if w € L', then a power of w is
conjugate to some word in L, thus wis inL .
() LetS be a sofic system. Then $ is equal to the set of bi-infinite paths of a finite automaton
A. Let L be the language consisting of all words w such that for some state q in A, there is a path

q—> q. Then L is recognizable and satisfies to the condition of the proposition. Hence, its cyclic

closure L is recognizable. But L is equal to the set of patterns of S. O

This proposition, together with theorem 1, shows that the zeta function of a sofic system is

rational, a result which was claimed by Weiss [21] and Coven, Paul [6]. Moreover, it is

computable as shows the proofs of theorem 1 and 2. The authors were told that M.-P. Béal had
also obtained this result, in the particular case of an aperiodic semigroup defining the sofic system
1}

Actually, we show a little bit more: the generalized zeta function of a sofic system is rational;
the latter function is a series in several variables which gives some information on the commutative
composition of the patterns of the periodic words. Note also that when § is an irreducible sofic
system, then the cyclic language L associated to it as above allows to recover S: indeed, the set of
periodic points is then dense in 8. Observe that proposition 2 is a variant of Bowen, Lanford's

result {4}, and that in the case of an irreducible subshift of finite type (i.e the set of bi-infinite paths
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of a transitive graph), the inverse of the generalized zeta function is an irreducible polynomial, as

shown in [18] (th. 3).
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