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This paper introduces a new algorithm for the evaluation of monomials in two 
variables X”JJ~ based upon the continued fraction expansion of a/b. A method for 
fast explicit generation of addition chains of small length for a positive integer n is 
deduced from this Algorithm. As an illustration of the properties of the method, a 
Schoh-Brauer-like inequality p(N) s nb + k + p( n + l), is shown to be true 
whenever N is an integer of the form 2k(l + 2’ + . . * + 2nb). Computer experimen- 
tation has shown that the length of the chains constructed are of optimal length for 
all integers up to 1000, with 29 exceptions for which the length is equal to the 
optimal length plus one. Q 1989 Academic press. I~C. 

1. IN~~DUCTION 

Let n be a positive integer. The problem of how to evaluate most 
efficiently a monomial x” (considered as early as 1894) has been considered 
many times. For an history of this problem and further results, see Knuth 
[IS]. The main contribution of this paper is an efficient algorithm for the 
generation of short addition chains for ordered pairs (a, b) as a tool for the 
efficient evaluation of monomials x “y b in two variables. As a corollary, one 
obtains an easy method for the generation of addition chains for integers 
(see Olivos [O]). Surprisingly enough, this algorithm produces shorter 
chains than the binary (or n-ary) algorithm, without involving too many 
computation steps. 

Both concepts of addition chains are special cases of the concept of word 
chains (see [BB]) in a semi-group, introduced for the study of the efficient 
evaluation of monomials in non-commutative variables. 
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Let n be a positive integer. Following Krmth an addition chain c for n is 
a sequence c = (n,, n,, n2,. . . , n,) of nonnegative integers such that: 

(i) n, = 1 and n, = n, 

(ii) for each i, 1 _< i < r, ni = nj + nk, for some k I j < i. 

Similarly, define an addition chain for an ordered pair of positive integers 
(a, 6) to be sequence c = ((a-,, b-&(aO, b&(a,, b,), . . . ,(a,, b,)) of or- 
dered pairs such that: 

(9 (a-,, b-J = @,lh (a,, &,I = (1,O) and (a,, 4) = (a, b), 
(ii) for each i, 1 < i I r, there exist j and k, - 1 -< j, k < i, such that 

(ai, bi) = (aj + a,‘, bj + bk). 

The integer r appearing in both these definitions, is called the length 1 c 1, 
of addition chain c. The chain length l(n) (resp. &a, b)) of an integer n 
(resp. an ordered pair (a, b)) is the minimal length of all possible chains for 
n (resp. (a, b)). It is welI known that I(n) > [log, (n)], where 1x1 is 
the lower integer part of x, and that equality holds when n is a power 
of 2. The addition chain for a obtained from an addition chain c = 
((a-,, b-&(ao, b&(a,, b,), . . . ,(a,., b,)) for (a, b), by deletion of zeros 
and repetitions (if any) in the first projection (1, a,, a,, a2,. . . , a,) of c will 
be simply called the projection of c in the remainder of this paper. 

There is no simple way to compute an explicit chain of minimal length, 
or even the chain length of an integer, but there are simple algorithms that 
produce addition chains of near minimal length, Recall that the most 
commonly known algorithm uses the binary decomposition bin(n) of n; if 
for instance bin(n) = 101011 (n = 43) this algorithm produces the addition 
chain (1,2,4,5,10,20,21,42,43) of length 8. Which is not a minimal chain 
for 43 since (11 2,4,8,9,17,34,43) is a (minimal) chain of length 7. The 
chains produced by this usual algorithm have length (A(n) + v(n) - I), 
where X(n) = [log, (n)], and v(n) is the number of 1 in the binary 
decomposition bin(n) of n. It follows immediately that I(n) I 2 A(n). 
More generally, Brauer has shown (see [B]) that: 

We consider now the computation of addition chains for pairs (a, b). A 
simple way of producing an addition chain for (a, b) is by concatena~g a 
chain for a with a chain for b. Thus for (43,5), one obtains the following 
addition chain of length 12: 
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from the two addition chains (1,2,4,8,16,32,40,42,43) and (1,2,4,5). 
Since 43 and 5 have been computed independently, this method may not be 
the best one. It is clear that the smallest length of an addition chain 
obtained this way is I(a) + I(b) + 1. 

Another method uses the euclidean division of a by b: a = nb + s, with 
0 < s < b. First, one constructs an addition chain for n, thus producing an 
addition chain for (n, 1) in f(n) + 1 steps. Any chain for b can then be 
used to extend this chain to a chain for (nb, b), in I(b) more steps. One 
completes this chain for (nb, b) to a chain for (a, b) using a chain for (s, 0) 
easily obtained from a chain for s. In this last portion of the construction, 
one has already constructed (2,0), hence only l(s) steps are needed in order 
to complete the global chain. Thus the minimal length of the addition chain 
constructed by this method is l(n) + l(b) + l(s) + 1. Let us work out one 
example in the case: 43 = 8* 5 + 3. Using the chain (1,2,4,8) for 8, and 
the chain (1,2,4,5) for 5, one obtains the chain 

for (5*8,5). Then with the chain (1,2,3) for 3, one finally produces the 
chain: 

of global length 9 for (43,5). 
But better yet, one can iterate this approach, naturally introducing 

continued fractions. From now on, the continued fraction expansion of 
ab-‘: 

a 1 
-=I++ 
b 1 

u2 + 

1 
+ 1 

u,-1 + - 
u, 

will be denoted by [ui, u2, uj, . . . , u,]. For our running example, this 
expansion is 

; = [8,1,1,2]. 
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As will be shown in the rest of this paper, one can produce a nice addition 
chain for (43,5) from this continued fraction expansion, namely: 

((0,1),(13), (2,013 (4,0), (8,0), (8,1),(9,1>, (17,2>, (34,4), (43,s)) 

which is of length 8. The first projection of this addition chain gives a 
minimal length addition chain for 43: (1,2,4,8,9,17,34,43). The length of 
this last chain for 43 is clearly the length of the chain for (43,5) minus 1, 
because of the single repetition of the 8. 

2. THE ALGORITHMS 

In this section, we will show how to obtain an explicit addition chain for 
(a, b), with almost shortest length. From this method we will deduce an 
effective algorithm for the generation of addition chains for integers. The 
properties of these algorithms, and related results will be studied in the next 
section. 

The first algorithm computes an addition chain ((a-,, b-J, 

(a,, bo), (a,, 0.. . , (a,, b,)) for (a, b), where a 2 b and the previous 
conventions that (a-,, b-,) = (0, l), and (a,, b,) = (1,O) still hold. It is a 
parametrized algorithm depending on the choice of another algorithm, A, 
for the generation of addition chains for “small” integers. 

ALGORITHM P(A). 

l Let d be the greatest common divisor of a and b, 

l let [u,, u2, uj, , u,] be the continued fruction expansion of ab-‘, 

l set q := 1 andj := 0, 

9 for i going from 1 to r do: 

l produce (by Algorithm A) an addition chain (1, q, v2,. ) vKci,) for IA,, 

l for s goingfrom 1 to K(i): set (a,+,b,+,) := (v,a,, u,b,), 

l set (aj+r(i)+l, b,+,(i,+l) := (a,+,(,) + aqt $+.+,J + b,), 

l set q := j andj := j + K(i) + 1; 

l produce (by A) an addition chain (1, a,, S,, ,I$) for d, 

l for s going from 1 to p: set (alis, b,+,) := (&a,, ssbj). 

Whatever Algorithm A might be, the chain for 2k should always be 
(1,2,4, * . *, 2k), of length k. Thus in the case of a = 43 and b = 5, the 
chain produced by Algorithm P(A) is exactly the last chain considered in 
Section 1. 
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Let I,(n) denote the length of the chains constructed by Algorithm A. 
Then the length of the chain for (a, b) produced by Algorithm P(A) is 

LP(A)(a7 b, = l,4Cd) + C(l + ‘,4(‘i>); 

hence for this example L&43,5) = 8. 
It has been observed earlier that for a given integer a, one can obtain 

addition chains for a by projection of addition chains for (a, b). The choice 
of b will certainly influence the length of the resulting chain. Thus one is 
lead to consider the following algorithm for the generation of addition 
chains for a. 

ALGORITHM B. 

l If a = 2k then (1,2,4 ,..., 2k), 

else l choose b between 2 and a - 1 minimizing L,,,,(a, b), 
l compute the chain for (a, b) by Algorithm P(B), 

l the result is the first projection of this chain. 

Let q(u) denote the length of the chain for the integer a generated by 
Algorithm B, then: 

where 

4(4 = mqvyB,( u,b)ll<b<u} -1, 

Lp(~)(u, b) = q(d) + CC1 + q(‘i)), 

with d = gcd(u, b) and ub-’ = [z+, u2,. . . , u,]. 
In the definition of q(u), the - 1 is clearly needed because of the single 

repetition that always occurs in the first projection of a chain for (a, b). 
Computer calculations (using an implicit table for 1 given by Knuth in [K]) 
have shown that q(u) = I(u) for all u’s between 1 and 1000, with the 
exception of the 13 following integers: 367, 371, 381, 571, 623, 659, 667, 
691, 734,739, 742, 749, and 762, in which cases q(u) = 1 + l(u). 

One problem with Algorithm B in its present form, is its running time. 
By choosing a small family of b’s susceptible of minimizing the length of a 
chain for (a, b), one can greatly improve the efficiency of this algorithm at 
the possible risk of losing a little on the shortness of the chains produced. 

ALGORITHM B’. 

l If a = 2k then (1,2,4 ,..., 2k), 

else l choose b of the form \a2-k], 2 < k < h(a), minimizing L,(,,(a, b), 
l compute the chain for (a, b) by Algorithm P( B’), 
0 the result is the first projection of this chnin. 
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The reason for this choice of b’s (of the form 1 a2 - k 1) is that one would 
like to obtain continued fractions [aI, a*, us,. . . , z+], with v(z+) small. Note 
that Knuth [K] has characterized minimal chains for all integers u with 
V(U) I 4. We shah denote by p(a) the length of the chain constructed by 
Algorithm B’. Thus one has 

p(u) = min( LPcB,)(a, [a2-k])]l < k < x(a)) - 1, 

and 

where d = gcd(a, b) and ub-’ = [ut, ul,. . , , u,]. 
Computer calculations have shown that p(a) = I(u) for all u’s between 

1 and 1000, with the exception of 29 integers (evidently including the 
previous 13) for which cases p(u) = 1 + I( a). For instance, the only values 
for b that produce an optimal chain for 631 are 13 and 97. The correspond- 
ing continued fraction expansion are % = [48,&l, 61 and $$ = [6,1,1,48], 
but neither 13 nor 97 are of the specified form. 

3. h’fAIN RESULTS 

Probably the best known open problem about addition chains, is 
Scholz-Brauer’s conjecture stating that for all n: 

l(2” - 1) I n - 1 + r(n). 

The object of this section is to prove a generalization of the analogous 
inequality for p. 

LEMMA. For all integers n and k, p(2”k) I n + p(k). 

Proof. Let b = k and u = 2”k, then b = u/2”, gcd(a, b) = k and 
a/b = [2”]. Therefore by definition of p, p(u) I p(k) + ~(2”). The result 
follows from the obvious equality ~(2”) = n. 0 

THEOREM. For ail integers u and b: 

<a-b+p 

Proof. The proof is by induction. Suppose that for all N 
< (2” - 1)(26 - l)-‘1 of the form in question, the inequality is true. I 
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Observe that 

when a = nb + t and 0 s r < b. Thus the largest integer contained in 
(2” - 1)(2b - 1)-l is clearly 

and one immediately concludes by Lemma that 

P([q) .,tP(gJ 

If r Z 0, then by the induction hypothesis, 

2” - 1 

p 2b-l (I I) - rr+nb-b+p(n), 

which is clearly the identity mentioned above, since a = nb + r and n 
= la/b]. 

Now when a is of the form nb, the argument is a little more complicated. 
First of all, by definition of p, there exist a c of the form [r1/2~], for which 

p(n) = P(d) + C(1 + P(‘i))y 
i 

where d = gcd(n, c) and n/c = [ui, u2, . . . , u,]. But the continued fraction 
expansion of 

where the uk and r, are obtained by Euclid’s algorithm: 

n = ulc + rl, with 0 < r, < c, 

c = u*rl + ‘2, with 0 -c r, < r1, 

r, = u3rz + r3, with0 < r, < rz, 

r s-2 = u,r,-1 + rs, with r, = 0. 
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Recall that rS- 1 is the greatest common divisor d of n and c. The 
verification of 

yb _ 1 2cb - 1 
___ ~ 
2b-l’2b-1 

2gWn.c)b _ 1 

2b - 1 

and 

2 cb - 1 A 2”b - 1 
-= 

I I 
- 

2b- 1 2” ’ 
where A = 2b and x = (n - c)b 

is easy. The conclusion comes once more from an application of the 
definition of p, since 

where r, = c. By the induction hypothesis and the above lemma, the 
right-hand term of th@ inequality is less than or equal to 

a% - b + p(d) + i (1 + r,b + u,r,-,b - rk-lb + P(Q)) - 1, 
k-l 

which can also be rearranged in the form 

nb-b+p(n)+db+ ukrkel + rk) - rk-2)b 

But all the terms of the summation in parentheses are zero and rsT1 = d. 
Thus we have obtained the inequality of the theorem. 0 

In fact, a careful reading of the proof of the theorem shows that 

, 

thus equality in the theorem holds whenever p([ a/b 1) = q(la/bj). But 
p(n) = q(n) for all n between 1 and 1000 with the exception of the 16 
integers: 135, 270, 319,437, 540, 559, 629, 631, 638, 697, 699, 731, 747, 809, 
869, and 874 for which Algorithm B’ produces a chain longer than the 
chain produced by Algorithm B. 
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n Running time (s) 

9 0.12 
99 1.13 
999 6.02 
9999 14.45 

99999 29.70 
999999 73.43 
9999999 221.61 

4. CONCLUSION 

As an indication of the rumring time for a straightforward implementa- 
tion of algorithms P(W) and B’, Table 1 gives the time needed for the 
construction of an explicit addition chain for some integers n. This imple- 
mentation was written in MAPLE on a SUN 3/50 workstation. 

Many interesting observations can be made on the addition chains 
produced by either algorithms B or B’. For instance, it is easy to observe 
(see [Tl]) that good candidates for integers N such that p(N) = p(2N), 
are those of the form n2k + j with n, j odd, k large enough (2 6 or 7) and 
L(n, j) = L(n,2j) + 1, where L(n, j) denotes the minimal length of an 
addition chain for n containing j. Eight such pairs (n, j) have been 
proposed by Thurber (in [Tl]) with one pair (69,7) which does not satisfy 
L(n, j) = L(n,Zj) + 1. The following list has been easily generated by 
computer: (23,7), (35, ll), (37,7), (43,13), (47,15), (57, ll), (59,19), (63,19), 
(67,21), (69, 20, (69,13), (71,23), (79,11), (7977) (79,23), (79,15), @X25), 
(87,23), (91,23), (9X29), (9X25), (93,7), (95,13), (101, 19, (Wl9), 
(103,31), (105,33), (107,35), (109,21), (111,21), (115,35), (115,37), (121,7), 
(121,13), (123,37), (127,37), (127,39), (127,33), (131,41), (133,25), 
(139,43), (139,19), (139,15), (139,45), (141,45), (141,25), (143,43), and 
(151,21), where the pairs in bold are those proposed by Thurber. 

It has been mentioned that an addition chain for n characterizes a 
specific method for the evaluation of x”. But the memory requirement for 
this evaluation varies with the choice of this addition chain. For instance, 
while evaluating x l3 by means of the addition chain (1,2,4,8,12,13), one 
needs to remember at some point, the three values x, x4, and x12. But the 
chain (1,2,3,6,12,13) gives a means of doing the same evaluation with a 
maximum of two values remembered at the same time. The algorithms of 
Section 2 and the theorem of Section 3 can easily be adapted to include a 
measure of this register requirement need. One defines the width o(c) of a 
chain c to be the number of registers needed in order to compute x” with 
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the chain c. And in Algorithm B, choose b that minimizes first LPCBj( a, b), 
and then w(a). Once more, computer calculations, with these modified 
algorithms, have shown that the number of registers needed in order to 
evaluate X” with the chains produced by Algorithm B is less than or equal 
to two for all integers between 1 and 512, with the exception of 107, 173, 
179,203,211,214,241,271,307,317, 346,347, 355,373, 395,403, and 406. 
The first integer for which at least four registers are needed is 1187. 

Another interesting variation on the method presented in this paper, is to 
modify the algorithm generating continued fractions, so that the approxi- 
mation used for a given rational number q is the closest integer, instead of 
the floor of q. This produces continued fractions with both positive and 
negative uis. The chains then obtained are addition-substraction chains. 
This last variation has been suggested to us by J. Vuillemin. 
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