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I n t r o d u c t i o n  

This introductory text gives a short exposition of the basic results concerning finite 
automata and rational languages. Its aim is to fix notation for subsequent papers, and 
also to give a short account of some algorithmic aspects of Kleene's theorem. 

The paper is divided into four parts. The first section gives the definition of au- 
tomata and recognizable languages, and considers a series of basic constructions, such 
as the "subset construction" used to obtain a deterministic automaton. In the second 
section, the construction of the minimal automaton recognizing a given language iis 
illustrated on two algorithms. 

The third section is devoted to Kleene's theorem. The classical proof is sketche~l, 
and alternatives are discussed. This section also contains the definition of the transitidn 
monoid of an automaton, and a brief discussion of the definition of recognizable an~d 
rational sets in arbitrary monoids. 

The final section is slightly more technical. It describes two algorithms for com- 
puting an automaton starting from a rational expression, using derivatives. The first 
method, due to Brzozowski, gives a deterministic automaton whilst the second, due to 
Berry and Sethi, computes a nondeterministic automaton of small size. 

There are numerous expository texts on finite automata and rational languages 
available. One of the first is by Rabin, Scott [16]. The treatise of Eilenberg [7] con- 
tributed to fix modern terminology. Among recent texts, we just mention Autebert [3] 
and Perrin [13]. 



I. A u t o m a t a  

1. N o t a t i o n  

An augomaton over some alphabet A is composed of a set Q of ~tate~, a set I c Q of 
initial 8tares, a set T C Q of terminal state8 and a set ~r C Q x A × Q of edges. The 
automaton is finite if its set of states is finite. An automaton is usually denoted by 

A =  ( Q , I , T )  

or ai = (Q, I ,  T, ~v) when the set of edges is emphasized. The label of an edge f = (p, a, q) 
is the letter a. A path of length n in .4 is a sequence c = e l  ' ' '  en of n consecutive edges 
ei = (Pi, ai, qi), i.e. such that  qi = pi+l for i = 1 , . . . ,  n - 1. The label of the path c is 
Icl = al . . .  an. We also write 

c : pl [-~ qn 

By convention, there is an empty path lq : q --) q with label 1 for each state q. A path 
c : i -~ t is successful if i E I ,  t E T. A word is recognized if it is the label of a successful 
path. The language recognized by the automaton ai is the set 

L ( A ) = { w E A * 1 3 c : i  ~ t, i E I ,  t E T ,  w = [ c ] )  

A set X C A* is recognizable if there exists a finite automaton A such that  X = L(A) .  
The family of all recognizable subsets of A* is denoted by Rec(A*). 

The terminology introduced already sketches the usual pictorial representation of 
an automaton:  states are represented by the nodes of a graph related by the edges. An 
initial s tate is marked by an arrow entering in it, and a final state by an arrow leaving 
it. 

EXAMPLE 1.- -  The automaton given in Fig.1 below recognizes the (restricted) Dyck 
language D* composed of those words over A = {a, b} which correspond to "correct 
bracketings". 

b b b b b 

2<2 
~ ~ a a a 

Fig. 1 An automaton for the Dyck language 

EXAMPLE 2 . - -  The automaton in Fig. 2 recognizes the set A*aba, again with A = {a, b}. 



a b a 

Fig. 2 An automaton for A*aba 

EXAMPLE 3 . - -  For any given subset X of A*, an au tomaton  recognizing X is readily 
constructed as follows: the set of states is A*, the unique initial state is the empty word 
1, and X is the set of terminal states; the edges are the triples (w,a,  wa) for w E A* 
and a E A. 

2. M ore  Def in i t ions  

Let A = (Q, I ,  T) be an au tomaton  over A. It is called 
• unambiguous if for p, q E Q and w E A*, there exists at most one path  p ~ q 

with label w; 
• deterministic if Card( I )  = 1 and if for p E Q and w E A*, there is at most one 

path  start ing in p and labelled w; 
• complete if for p E Q and w E A* ther exists at least one path  starting in p and 

labelled w. 
For a deterministic au tomaton  .4 = (Q, I ,  T)~ it is convenient to denote p .  w the state 
reached by the path  starting in p and labelled w. If there is no such path, we write 
p . w  = 0. This defines a (partial) function Q x A* ~ Q called the transition function or 
next state function of the automaton.  With this notation, L(M) = {w E A* I i .  w e T}. 

The  completion of an incomplete au tomaton  is very easy. It suffices to add a new 
state  s, called some times a "sink" state, and to add the edge (p, a, s) whenever there 
is no edge labelled a and starting in p in the original automaton.  

The  determinization of an au tomaton  is more involved. The following proposition 
holds: 

PROPOSITION . - -  For any automaton A~ there exists an equivalent deterministic au- 
tomaton B i.e. that recognizes the same language. I£ A is finite and has n states, then 
B can be chosen with at most 2 n states. 

The  proof is by the socalled "subset construction" and goes at follows: start ing with 
an au tomaton  .A = (Q, I ,  T, ~'), one constructs a deterministic au tomaton  B = (S, I,  7") 
by sett ing S = P(Q) ,  7" = {S E S I S gl T ¢ ~}, the next s ta te  function being defined 
by 

S . a = { q E Q l S p e S  : (p,a,q) e F }  

Observe that  if A is finite and has n states, then the au tomaton  B also is finite, even if 
it may have 2 n states. 

EXAMPLE 2(cont inued) . - -  The  subset construction gives the following deterministic 
au tomaton  for A*aba: 



Fig. 3 A deterministic au tomaton for A*aba 

EXAMPLE 4. - -  The language X~ = A*aA "~-1, with A = {a, b} is recognized by the 
n + 1-state au tomaton  given below. It is easily shown that  any deterministic automaton 
recognizing Ln has at least 2 ~ states. 

a a,b a,b 

O Q O  

a,b 

Fig. 4 An automaton for A*aA '~-1 

3. An Implementation 

There is a well known implementation of finite automata  in electronic circuitry called 
PLA (plane logical array). Such an array is composed of two parts, the "and" part, 
and the "or" part. There is a horizontal wire for each edge of the automaton,  and two 
vertical wires for each state, one in the "and" part and the other one in the "or" part. 
Moreover, there is a vertical input wire for each letter in the "and" part. 

The connexions are defined by the edges: if e = (p, a, q) is an edge of the automaton,  
then the wire e is connected to the wires a and p in the "and" part,  and to the wire 
q in the "or" part. Finally, each state wire in the "or" part is connected back to the 
corresponding wire in the "and" part. In Fig. 5, the PLA of the au tomaton  of Example 
2 is drawn. 

The PLA works as follows. When some letter a is input, its wire is activated (in 
some electric sense). For each activated state wire p in the "and" part,  one activates 
those edge wires e which are connected to a and to p. These activated edges e now in 
turn activate those state wires q in the "or" part  which are connected to e. It is easily 
seen that ,  start ing with a set S of activated states in the "and" part and an input letter 
a the set of states activated in one step in the "or" part is S .  a = {q E Q I 3p E S : 
(p, a, q) E ~'}. Our presentation is from [14]. In fact, the physical realization of a PLA 
is more involved. Interested readers are referred to Mead, Conway [11]. 
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Fig. 5 A PLA for A*aba 

I I .  M i n i m a l  A u t o m a t o n  

1. R e d u c t i o n  

An au tomaton  A = (Q, I ,  T)  is trim if all its states are accessible and coaccessible, that  
is, if for any s ta te  q E Q, there exist paths i ~ q and q --* t for some i E I and t E T. 
It is easy to t r im an automaton:  just remove all states tha t  are not accessible or not 
coaccessible. 

Let ,4 = (Q, i, T)  be a deterministic au tomaton  recognizing some language X C A*. 
The  Nerode equivalence is an equivalence relation over Q defined by 

p ~  q *=* L , ( A ) =  Lq(A) 

where Lp(A) = {w E A* ! P" w E T}. It is straightforward that  this relation is right 
regular, i.e. 

p, . ,q  ~ p . w ~ q . w  

and that  terminal states are saturated : 

p E T ,  p ~ q  ~ q c T  

Consequently, one may define a quotient automaton .A/~ whose states are the equiva- 
lence classes of the relation, and with next s tate  function induced by that  of ,4. The 
quotient au tomaton  also recognizes X.. 

For a t r im au tomaton  A, the quotient au tomaton  ~4/,,~ depends only on the rec- 
ognized language X,  and thus is unique up to a renaming of the states. Moreover, it 
is minimal with respect to the number of states among all au tomata  recognizing the 
language X,  and therefore is called the minimal automaton of X.  
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The computation of the minimal automaton of a language X can be carried out in 
several ways. One algorithm, called the reduction algorithm and due to Moore [12], starts 
with some automaton -4 for the language L and computes successive approximations of 
the Nerode equivalence. For two states p and q of .4, and any integer k >_ 0, define 

p ' ~ k q  ¢=* L (k) = L~ k) 

where L (k) = {w e Lp I Iw[ -< k}. The following facts are easily proved by induction: 
(i) p,~k+l q "~ ,- P '  ~ k q a n d  ( V a e A ,  p . a , , ~ k q . a )  

(ii) if,-~k and "~k+l are identical, then all "~k+n, for n _> 0 are equal, and are the Nerode 
equivalence. 

As a consequence, for an automaton with N states, it suffices to compute ~ g - 2  in order 
to get the Nerode equivalence and thus the minimal automaton. A careful implemen- 
tation of this algorithm has been proposed by Hopcroft (see [1]) who proves that it can 
be carried out in time O(N log N) for an N-state automaton. 

2. A C h a r a c t e r i z a t i o n  

We consider now another way to define the minimal automaton of a language. It works 
directly on the language, and thus is by definition unique. For words u and v, the left 
quotient is defined by 

{ ~  i f v = u w  
u- iv  = otherwise 

This notation is extended to a subset X C A* by 

Clearly 

An automaton 

is constructed by setting 

u- x = x }  

( u v ) - l x  -~- v-l(u-lX), 1-1X -= X 

A(x)  = (Q, i, T) 

Q = {u-~X [u e A*, ?/-1X ~ 0} 

i = X  

T = {u- iX  i 1 ~ u- iX}  

The next state function is defined by 

Y .  a = a - l Y  ( Y E Q ,  a E A )  

PROPOSITION . - -  The automaton ¢4(X) is the minimal automaton of X.  

In the case X is recognizable, this gives the following characterization: 

PROPOSITION . - -  The language X is recognizable if  and only if the set { u - i X  [ u E A*) 
is finite. 



EXAMPLE.-- Let X = b*aA*, with A = {a,b}. Then 

a - i X  = A*, b - i X  = X ,  

a - l A  * = b - l A  * = A* 

thus the minimal automaton of X has just two states, namely X and A*. 

III. Kleene's  Theorem 

1. Rat ional  Languages 

Let A be an alphabet.  The rational operations over the subsets of A* are the following: 

union X U Y 
product X Y  = {xy  l x E X ,  y E Y }  
star X*  = the submonoid generated by X 

A family of subsets of A* is rationally closed if it is closed for the three rational oper- 
ations. The rational languages of A* are the elements in the smallest rationally closed 
family of A* containing the singletons and the empty language. This family is denoted 
by Rat(A*). 

2. K l e e n e ' s  Theorem 

The following result is due to Kleene [9]: 

THEOREM.-- Rational  and recognizable languages over a finite alphabet A coincide: 
Rec(A*) = Rat(A*). 

The proof is in two parts. The first part consists in showing that every rational lan- 
guange is recognizable, i. e. that  Rat(A*) C Rec(A*). There are several constructions 
to do that.  We sketch the wellknown method of constructing an appropriate automaton 
for each rational language. For this, we call an automaton .A, normalized if the two 
following conditions hold : 

(i) There is a unique initial s tate i, and no edge enters i; 
(ii) There is a unique final s tate t ~ i, and no edge leaves t. 

It is easy to construct,  for any recognizable language, a normalized automaton recog- 
nizing this language up to the empty word. 

Given two normalized automata  A and .A t over distinct sets of states recognizing 
the languages X and X t respectively, an automaton recognizing X U X '  is obtained in 
pasting together the initial states i and i ~, and the final states t and t' of the automata.  
An automaton  recognizing X X  t is obtained by setting i' = t, and by taking i and t t 
as the initial and the final state of the resulting automaton.  Finally, an automaton 
recognizing X* is derived from ,4 by identifying i and t (the resulting automaton is 
no longer normalized). These constructions show that Rec(A*) is rationally closed. Of 
course, singletons and the empty set are recognizable, and therefore Rat(A*) C Rec(A*). 

Among the variations of this construction, let us mention the following: instead of 
pasting together states, special edges labelled by the empty  word are used to connect 



states. Thus, in order to recognize X U X ~, two additional states are introduced; a 
new initial state j connected to i and to i' by edges labelled by 1, and similarly a new 
final state. The feature of this construction is that almost two edges are leaving any 
state, making thus the implementation particularly easy (this is knowm as Thomson's 
construction, see Aho, Hopcroft, Ullman [1] for a more detailed discussion). 

One way to prove the converse inclusion, namely Rec(A*) C Rat(A*) is to use the 
following procedure, known as the algorithm of McNaughton and Yamada [10]. Consider 
a finite automaton A = (Q, I, T) recognizing a language X, and number the states such 
that Q = {1 , . . . , n} .  For i, j in Q, let Xi,j = {w I i ~ j},  and for k = 0 , . . . , n ,  let 

X}, k) be the set of labels of nontrivial paths of the form 

i ~ Pl --+ . . .  ~ P8 ~ J, s_>O, P l , . - . , P s - < k  

The following formula give the proof: 

c A 

X (t+a) = X! a.) U v(a) (v(k)  ~* v(k) i,j *,3 "~i,k+l \ ' ~ k + l , k + l ]  "¢"k+l,j 

since 

{X !n ) if i ¢ j 
Xi,j = z,j 

1 U X  !~-/ i f i = j  %3 

X = U Xi,t 

tET 

Since the alphabet is finite, the sets X}? ) are rational, the other X} k) are in their rational 
closure, and therefore are rational. This achieves the proof. 

A similar method is useful in hand calculations. Set Xq = U~eT Xq,t. Then X = 
Uiex x i ,  and the sets Xq satisfy the system of linear equations 

xq = U A, , ,x ,  u A,,, (q e Q) 
pEQ 

where Aq,p = X !°). and Aq,p = 0 if q :~ p, and = {1} otherwise. This system of equations z13 

can be solved by Gaussian elimination. 

3. T rans i t ion  M o n o i d  

Let ,4 = (Q, I, T) be an automaton over A recognizing a language X. Each word w E A* 
defines a relation ¢(w) C Q x Q by (p, q) C ¢(w) iff there exists a path c : p ~ q. Since 
¢(uv) = ¢(u)¢(v), the function ¢ is a morphism from A* into the monoid p (Q  x Q) 
of relations over Q. Moreover ¢ saturates the language X, that is, if u E X and 
¢(u) = ¢(v), then v E X. In other words, X = ¢-1¢(X).  The monoid M(A) = ¢(A*) 
is called the transition monoid of the automaton ,4. Clearly, the automaton A is 

unambiguous iff M(.A) is a monoid of unambiguous relations, 
deterministic iff M(A) is a monoid of partial functions, 
complete iff M(.A) is a monoid of total relations. 
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Of course, M(A) is finite if X is recognizable. Conversely, a language X C A* is 
recognizable if there exists a finite monoid M and a morphism ¢ : A* --~ M such that 
x = ¢ - 1 ¢ ( x ) .  

In the case A = .A(X) is the minimal automaton of X, the monoid M(A(X))  
depends only on X. It is called the syntactic monoid of X, and can be defined without 
any reference to an automaton as the quotient monoid of A* by the syntactic congruence 
of X defined by 

u =-x v Cx(u )  = C x ( v )  

where the set Cx(u) of contexts of u is defined as Cx(u) = { (w,w ' ) lwuw'  e Z}.  

4. Arbitrary Monoids  

Rational and recognizable sets can be defined in any monoid. Let M be a monoid. A 
subset X of M is recognizable if there exists a morphism ¢ : M --* N, where N is a 
finite monoid, such that X = ¢-1 ¢(X). The set of recognizable subsets of M is denoted 
by Rec(M). As in the case of a free monoid, the set Rat(M) of rational subsets of M 
is the smallest family of subsets of M containing the empty set and the singletons, and 
closed for the rational operations in ~O(M), i. e. closed under union, product of two 
subsets, and the star, which produces the submonoid generated by a given subset. 

EXAMPLE .- -  Consider M = Z. All finite monoids that are homomorphic images of Z 
are of the form Z/nZ. Thus, the recognizable subsets of Z are finite unions of infinite 
arithmetic progressions. This shows that Rec(F) is strictly included in Rat( l ) .  

It is not difficult to show that for any finitely generated monoid M, the inclusion 
Rec(M) C Rat(M) holds. For commutative monoids, a rather complete description 
of rational sets has been given by Eilenberg, Schfitzenberger [8]. 

An interesting open problem is to characterize Kleene monoids, that is those 
monoids M for which Kleene's there holds, i. e. Rec(M) = Rat(M).  Several ex- 
amples of Kleene monoids have been given. The first is due to Amar and Putzelu [2]; 
a more general theory has been constructed in Sakarovitch [17] Pelletier, Sakarovitch 
[15]. 

IV. Rational  Expressions 

1. Definit ion 

The rational expressions over some alphabet A are the elements of some quotient algebra 
E of the term algebra over the set A (J (0, 1} with function symbols +, . ,  *. For instance, 
a(a tAa. b)*b is a rational expression. 

There is a mapping L from this term algebra onto the algebra of rational subsets 
of A* defined inductively as follows 

L(O) = O, L(1) = {1}, L(a) = {a}, 

L(e + e') = L(e) U L(e'), L(e. e') = L(e)L(e'), 
L(e*) = L(e)* 
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Consider the quotient algebra $ obtained by agreeing that + is idempotent, associative 
and commutative, that • is associative, and that 

O + e = e = e + O  

1 . e = e = e . 1  

O . e = O = e . O  

The function L is still defined on the quotient algebra £. There is a remarkable result of 
Conway [6] stating that the algebra of rational sets cannot be obtained from the algebra 
of rational expressions C by a finite set of relations. 

2. Derivatives 

The computation of a finite automaton recognizing the language L(e) for some given 
rational expression e has been sketched in the previous section (in the proof of Kleene's 
theorem). We give here an alternative method, which is inspired by the characteriza- 
tion of the minimal automaton. This also gives an alternative proof to the fact that 
rational languages are recognizable. Set X = L(e). Then the states of the minimal 
automaton .A(X) are the sets u - i X ,  for u E A*. The sets can be computed via some 
rules described below, depending on the rational structure of the set. On the other side, 
similar operations, called the derivation rules, can be defined on the rational expression, 
in such a way that the equality 

u- lL(e)  = L(u- le )  

holds for any regular expression e, and any word u. These rules are the following: 

Languages (properties) Expressions ( det~mt ion) 
a - l~  = 0 a-lO = 0 
a - l l  = 0 a - l l  = 0 
a - l a  = {1} a- la  = 1 

a-lb=O (b#a) a-lb=0 (b#a) 
a - l ( X  U Y)  = a - i X  U a - l y  a- l (e  + f )  = a - l e  + a - i f  

a - I ( X Y )  = a - l X Y  O (X  • 1 ) a - l Y  a - l ( e f )  = a - l e  • f + 6 (e )a - l f  
a - i X  * = ( a - I X ) X  * a - l e  * = a - l e  • e* 

Here 8(e) is equal to 0 or 1 according to 1 • L(e) or 1 e L(e). Observe that this can 
also be defined just on the structm:e of the expressions e. In order to compute the 
minimal automaton from the sets u-XX,  one must decide whether two sets u - i X  and 
v - I X  are equal. This cannot be done easily. On the other hand, it is easy to decide 
whether two ezpressions u - l e  and v - l e  are equal in the algebra £. The fact which 
turns the computation of derivatives of expressions into an algorithm for computing an 
automaton is the following theorem: 

THEOREM (Brzozowski[5]).-- For any rational expression e, tile set :D(e) = {u- l e  t u E 
A* } of derivatives of e is finite. 
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Pro@-- For w E A*, one has 

 -l(ef) = + 
W ~ U ~  
v#l 

and for w E A +, 
* 

~ t J ~ t l  

where 5(u, w) is 0 or 1. These formula show that  the set of rational expressions e for 
which the set :D(e) is finite is closed under product and star. Since it is closed under 
sum and contains the basic expressions, the result follows, i 

The set :D(e) is turned into an automaton A(e) recognizing L(e) by taking e as an 
initial state, those u - l e  with 5(u- le)  = 1 as final states, and by defining the next state 
fuction as f - a  = a- i f .  This automaton is deterministic, but is not necessarily minimal. 

3. L i n e a r  E x p r e s s i o n s  

There is a variation of the preceding algorithm, due to Berry and Sethi [4] that  constructs 
a nondeterministic automaton which is "small". 

A rational expression e is linear if all letters occurring in it are distinct. For 
instance, (ab + c)*dg is linear. Any expression can be linearized just by renaming all 
its letters by distinct symbols. The language denoted by the original expression is a 
morphic image of the new expression, tf an automaton for the new language is found, 
a (usually nondeterministic) automaton for the old language is obtained by identifying 
the corresponding letters. 

Given a letter a and any expression e, a continuation of a in e is any expression 
(wa)-le 7 ~ O. Assume (wa)-le is a continuation. Then (wa)-le = a - l ( w - l e )  = 

(w-le) .a,  and consequently there is an edge w-le & (wa)-le in the automaton A(e). 

PROPOSITION (Berry, Sethi[4]).-- Ire is a linear expression, then any two continuations 
(wa)-le and (w'a)-le are equal. 

This proposition has an easy interpretation. It means that,  in the associated automaton 
A(e), all edges labelled by the letter a have the same final vertex. Thus there is a 
bijection between the states of A(e) (excepted the initial state) and the aIphabet of 
letters occurring in e. In particular, A(e) has exactly 1 + n letters, where n is the 
number of letters occurring in e. 

There is a systematic way to compute the set of edges if A(e). For this we observe 
first the following 

LEMMA . - -  Let X C A*. The following conditions are equivaIent: 
(i) X is a locM rational language; 

(ii) For ai1 a e A, the set ( (ua)-l X I u e A*, (ua)-l X 7 ~ 0} is a singleton or is empty. 
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In particular, this shows that  for a linear expression e, the language L(e) is local. It 
therefore suffices to compute the foIlowing three sets: 

first(e) = {a E A I aA* A L(e) # 0} 
last(e) = {a C A ! A* a gl L(e) # 0} 

follow(e) = {(a, b) E A x A I A*abg* n L(e) # 0} 

The automaton then has final states last(e), and the edges 

1 -~ a for a e first(e) 
b a b for (a, b) e follow(e) 

The computation of first(e) and las~(e) is easy. For the set follow(e), we introduce and 
auxiliary function ($ is the algebra of expressions) 

¢ : g x g ~ "P(A x A) 

by 

¢(0, f)  = ~ (1 , f )  = 0 

• (a, f )  = {a} x first(f) 
¢(e + e ' , f )  = ¢ ( e , f )  U tb(e', f )  

¢ (e .  d , f )  = ¢ (e , e ' .  f )  U ¢ ( d , f )  

¢(e*, f) = ¢(e, e + f) 

It is easily shown that  

¢(e, f )  = follow(e) U last(e) x first(f) 

and consequently follow(e) = ¢(e, 0). The interest of this computation rule is that it can 
be realized directly on the tree representing the rational expression by a tree traversal: 
The attribute of the root of the tree being ¢(e, 0), its evaluation requires the evaluation 
of the attributes of its children; these are synthesized with an inherited value of the 
second argument. 
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