
Part I

Mathematical foundations of
the theory of automata

F I N I T E A U T O M A T A A N D R A T I O N A L L A N G U A G E S
A N I N T R O D U C T I O N

Jean BersteI

LITP
Universit6 Pierre et Marie Curie

Paris, France

I n t r o d u c t i o n

This introductory text gives a short exposition of the basic results concerning finite
automata and rational languages. Its aim is to fix notation for subsequent papers, and
also to give a short account of some algorithmic aspects of Kleene's theorem.

The paper is divided into four parts. The first section gives the definition of au-
tomata and recognizable languages, and considers a series of basic constructions, such
as the "subset construction" used to obtain a deterministic automaton. In the second
section, the construction of the minimal automaton recognizing a given language iis
illustrated on two algorithms.

The third section is devoted to Kleene's theorem. The classical proof is sketche~l,
and alternatives are discussed. This section also contains the definition of the transitidn
monoid of an automaton, and a brief discussion of the definition of recognizable an~d
rational sets in arbitrary monoids.

The final section is slightly more technical. It describes two algorithms for com-
puting an automaton starting from a rational expression, using derivatives. The first
method, due to Brzozowski, gives a deterministic automaton whilst the second, due to
Berry and Sethi, computes a nondeterministic automaton of small size.

There are numerous expository texts on finite automata and rational languages
available. One of the first is by Rabin, Scott [16]. The treatise of Eilenberg [7] con-
tributed to fix modern terminology. Among recent texts, we just mention Autebert [3]
and Perrin [13].

I. A u t o m a t a

1. N o t a t i o n

An augomaton over some alphabet A is composed of a set Q of ~tate~, a set I c Q of
initial 8tares, a set T C Q of terminal state8 and a set ~r C Q x A × Q of edges. The
automaton is finite if its set of states is finite. An automaton is usually denoted by

A = (Q , I , T)

or ai = (Q, I , T, ~v) when the set of edges is emphasized. The label of an edge f = (p, a, q)
is the letter a. A path of length n in .4 is a sequence c = e l ' ' ' en of n consecutive edges
ei = (Pi, ai, qi), i.e. such that qi = pi+l for i = 1 , . . . , n - 1. The label of the path c is
Icl = al . . . an. We also write

c : pl [-~ qn

By convention, there is an empty path lq : q --) q with label 1 for each state q. A path
c : i -~ t is successful if i E I , t E T. A word is recognized if it is the label of a successful
path. The language recognized by the automaton ai is the set

L (A) = { w E A * 1 3 c : i ~ t, i E I , t E T , w = [c])

A set X C A* is recognizable if there exists a finite automaton A such that X = L(A) .
The family of all recognizable subsets of A* is denoted by Rec(A*).

The terminology introduced already sketches the usual pictorial representation of
an automaton: states are represented by the nodes of a graph related by the edges. An
initial s tate is marked by an arrow entering in it, and a final state by an arrow leaving
it.

EXAMPLE 1.- - The automaton given in Fig.1 below recognizes the (restricted) Dyck
language D* composed of those words over A = {a, b} which correspond to "correct
bracketings".

b b b b b

2<2
~ ~ a a a

Fig. 1 An automaton for the Dyck language

EXAMPLE 2 . - - The automaton in Fig. 2 recognizes the set A*aba, again with A = {a, b}.

a b a

Fig. 2 An automaton for A*aba

EXAMPLE 3 . - - For any given subset X of A*, an au tomaton recognizing X is readily
constructed as follows: the set of states is A*, the unique initial state is the empty word
1, and X is the set of terminal states; the edges are the triples (w,a, wa) for w E A*
and a E A.

2. M ore Def in i t ions

Let A = (Q, I , T) be an au tomaton over A. It is called
• unambiguous if for p, q E Q and w E A*, there exists at most one path p ~ q

with label w;
• deterministic if Card(I) = 1 and if for p E Q and w E A*, there is at most one

path start ing in p and labelled w;
• complete if for p E Q and w E A* ther exists at least one path starting in p and

labelled w.
For a deterministic au tomaton .4 = (Q, I , T)~ it is convenient to denote p . w the state
reached by the path starting in p and labelled w. If there is no such path, we write
p . w = 0. This defines a (partial) function Q x A* ~ Q called the transition function or
next state function of the automaton. With this notation, L(M) = {w E A* I i . w e T}.

The completion of an incomplete au tomaton is very easy. It suffices to add a new
state s, called some times a "sink" state, and to add the edge (p, a, s) whenever there
is no edge labelled a and starting in p in the original automaton.

The determinization of an au tomaton is more involved. The following proposition
holds:

PROPOSITION . - - For any automaton A~ there exists an equivalent deterministic au-
tomaton B i.e. that recognizes the same language. I£ A is finite and has n states, then
B can be chosen with at most 2 n states.

The proof is by the socalled "subset construction" and goes at follows: start ing with
an au tomaton .A = (Q, I , T, ~'), one constructs a deterministic au tomaton B = (S, I, 7")
by sett ing S = P(Q) , 7" = {S E S I S gl T ¢ ~}, the next s ta te function being defined
by

S . a = { q E Q l S p e S : (p,a,q) e F }

Observe that if A is finite and has n states, then the au tomaton B also is finite, even if
it may have 2 n states.

EXAMPLE 2(cont inued) . - - The subset construction gives the following deterministic
au tomaton for A*aba:

Fig. 3 A deterministic au tomaton for A*aba

EXAMPLE 4. - - The language X~ = A*aA "~-1, with A = {a, b} is recognized by the
n + 1-state au tomaton given below. It is easily shown that any deterministic automaton
recognizing Ln has at least 2 ~ states.

a a,b a,b

O Q O

a,b

Fig. 4 An automaton for A*aA '~-1

3. An Implementation

There is a well known implementation of finite automata in electronic circuitry called
PLA (plane logical array). Such an array is composed of two parts, the "and" part,
and the "or" part. There is a horizontal wire for each edge of the automaton, and two
vertical wires for each state, one in the "and" part and the other one in the "or" part.
Moreover, there is a vertical input wire for each letter in the "and" part.

The connexions are defined by the edges: if e = (p, a, q) is an edge of the automaton,
then the wire e is connected to the wires a and p in the "and" part, and to the wire
q in the "or" part. Finally, each state wire in the "or" part is connected back to the
corresponding wire in the "and" part. In Fig. 5, the PLA of the au tomaton of Example
2 is drawn.

The PLA works as follows. When some letter a is input, its wire is activated (in
some electric sense). For each activated state wire p in the "and" part, one activates
those edge wires e which are connected to a and to p. These activated edges e now in
turn activate those state wires q in the "or" part which are connected to e. It is easily
seen that , start ing with a set S of activated states in the "and" part and an input letter
a the set of states activated in one step in the "or" part is S . a = {q E Q I 3p E S :
(p, a, q) E ~'}. Our presentation is from [14]. In fact, the physical realization of a PLA
is more involved. Interested readers are referred to Mead, Conway [11].

"and" part

3 2

a b l
input initial state

"or" part

1 2 3 4

) , ,

final state

Fig. 5 A PLA for A*aba

I I . M i n i m a l A u t o m a t o n

1. R e d u c t i o n

An au tomaton A = (Q, I , T) is trim if all its states are accessible and coaccessible, that
is, if for any s ta te q E Q, there exist paths i ~ q and q --* t for some i E I and t E T.
It is easy to t r im an automaton: just remove all states tha t are not accessible or not
coaccessible.

Let ,4 = (Q, i, T) be a deterministic au tomaton recognizing some language X C A*.
The Nerode equivalence is an equivalence relation over Q defined by

p ~ q *=* L , (A) = Lq(A)

where Lp(A) = {w E A* ! P" w E T}. It is straightforward that this relation is right
regular, i.e.

p, . ,q ~ p . w ~ q . w

and that terminal states are saturated :

p E T , p ~ q ~ q c T

Consequently, one may define a quotient automaton .A/~ whose states are the equiva-
lence classes of the relation, and with next s tate function induced by that of ,4. The
quotient au tomaton also recognizes X..

For a t r im au tomaton A, the quotient au tomaton ~4/,,~ depends only on the rec-
ognized language X, and thus is unique up to a renaming of the states. Moreover, it
is minimal with respect to the number of states among all au tomata recognizing the
language X, and therefore is called the minimal automaton of X.

7

The computation of the minimal automaton of a language X can be carried out in
several ways. One algorithm, called the reduction algorithm and due to Moore [12], starts
with some automaton -4 for the language L and computes successive approximations of
the Nerode equivalence. For two states p and q of .4, and any integer k >_ 0, define

p ' ~ k q ¢=* L (k) = L~ k)

where L (k) = {w e Lp I Iw[-< k}. The following facts are easily proved by induction:
(i) p,~k+l q "~ ,- P ' ~ k q a n d (V a e A , p . a , , ~ k q . a)

(ii) if,-~k and "~k+l are identical, then all "~k+n, for n _> 0 are equal, and are the Nerode
equivalence.

As a consequence, for an automaton with N states, it suffices to compute ~ g - 2 in order
to get the Nerode equivalence and thus the minimal automaton. A careful implemen-
tation of this algorithm has been proposed by Hopcroft (see [1]) who proves that it can
be carried out in time O(N log N) for an N-state automaton.

2. A C h a r a c t e r i z a t i o n

We consider now another way to define the minimal automaton of a language. It works
directly on the language, and thus is by definition unique. For words u and v, the left
quotient is defined by

{ ~ i f v = u w
u- iv = otherwise

This notation is extended to a subset X C A* by

Clearly

An automaton

is constructed by setting

u- x = x }

(u v) - l x -~- v-l(u-lX), 1-1X -= X

A(x) = (Q, i, T)

Q = {u-~X [u e A*, ?/-1X ~ 0}

i = X

T = {u- iX i 1 ~ u- iX}

The next state function is defined by

Y . a = a - l Y (Y E Q , a E A)

PROPOSITION . - - The automaton ¢4(X) is the minimal automaton of X.

In the case X is recognizable, this gives the following characterization:

PROPOSITION . - - The language X is recognizable if and only if the set { u - i X [u E A*)
is finite.

EXAMPLE.-- Let X = b*aA*, with A = {a,b}. Then

a - i X = A*, b - i X = X ,

a - l A * = b - l A * = A*

thus the minimal automaton of X has just two states, namely X and A*.

III. Kleene's Theorem

1. Rat ional Languages

Let A be an alphabet. The rational operations over the subsets of A* are the following:

union X U Y
product X Y = {xy l x E X , y E Y }
star X* = the submonoid generated by X

A family of subsets of A* is rationally closed if it is closed for the three rational oper-
ations. The rational languages of A* are the elements in the smallest rationally closed
family of A* containing the singletons and the empty language. This family is denoted
by Rat(A*).

2. K l e e n e ' s Theorem

The following result is due to Kleene [9]:

THEOREM.-- Rational and recognizable languages over a finite alphabet A coincide:
Rec(A*) = Rat(A*).

The proof is in two parts. The first part consists in showing that every rational lan-
guange is recognizable, i. e. that Rat(A*) C Rec(A*). There are several constructions
to do that. We sketch the wellknown method of constructing an appropriate automaton
for each rational language. For this, we call an automaton .A, normalized if the two
following conditions hold :

(i) There is a unique initial s tate i, and no edge enters i;
(ii) There is a unique final s tate t ~ i, and no edge leaves t.

It is easy to construct, for any recognizable language, a normalized automaton recog-
nizing this language up to the empty word.

Given two normalized automata A and .A t over distinct sets of states recognizing
the languages X and X t respectively, an automaton recognizing X U X ' is obtained in
pasting together the initial states i and i ~, and the final states t and t' of the automata.
An automaton recognizing X X t is obtained by setting i' = t, and by taking i and t t
as the initial and the final state of the resulting automaton. Finally, an automaton
recognizing X* is derived from ,4 by identifying i and t (the resulting automaton is
no longer normalized). These constructions show that Rec(A*) is rationally closed. Of
course, singletons and the empty set are recognizable, and therefore Rat(A*) C Rec(A*).

Among the variations of this construction, let us mention the following: instead of
pasting together states, special edges labelled by the empty word are used to connect

states. Thus, in order to recognize X U X ~, two additional states are introduced; a
new initial state j connected to i and to i' by edges labelled by 1, and similarly a new
final state. The feature of this construction is that almost two edges are leaving any
state, making thus the implementation particularly easy (this is knowm as Thomson's
construction, see Aho, Hopcroft, Ullman [1] for a more detailed discussion).

One way to prove the converse inclusion, namely Rec(A*) C Rat(A*) is to use the
following procedure, known as the algorithm of McNaughton and Yamada [10]. Consider
a finite automaton A = (Q, I, T) recognizing a language X, and number the states such
that Q = {1 , . . . , n} . For i, j in Q, let Xi,j = {w I i ~ j}, and for k = 0 , . . . , n , let

X}, k) be the set of labels of nontrivial paths of the form

i ~ Pl --+ . . . ~ P8 ~ J, s_>O, P l , . - . , P s - < k

The following formula give the proof:

c A

X (t+a) = X! a.) U v(a) (v(k) ~* v(k) i,j *,3 "~i,k+l \ ' ~ k + l , k + l] "¢"k+l,j

since

{X !n) if i ¢ j
Xi,j = z,j

1 U X !~-/ i f i = j %3

X = U Xi,t

tET

Since the alphabet is finite, the sets X}?) are rational, the other X} k) are in their rational
closure, and therefore are rational. This achieves the proof.

A similar method is useful in hand calculations. Set Xq = U~eT Xq,t. Then X =
Uiex x i , and the sets Xq satisfy the system of linear equations

xq = U A, , ,x , u A,,, (q e Q)
pEQ

where Aq,p = X !°). and Aq,p = 0 if q :~ p, and = {1} otherwise. This system of equations z13

can be solved by Gaussian elimination.

3. T rans i t ion M o n o i d

Let ,4 = (Q, I, T) be an automaton over A recognizing a language X. Each word w E A*
defines a relation ¢(w) C Q x Q by (p, q) C ¢(w) iff there exists a path c : p ~ q. Since
¢(uv) = ¢(u)¢(v), the function ¢ is a morphism from A* into the monoid p (Q x Q)
of relations over Q. Moreover ¢ saturates the language X, that is, if u E X and
¢(u) = ¢(v), then v E X. In other words, X = ¢-1¢(X). The monoid M(A) = ¢(A*)
is called the transition monoid of the automaton ,4. Clearly, the automaton A is

unambiguous iff M(.A) is a monoid of unambiguous relations,
deterministic iff M(A) is a monoid of partial functions,
complete iff M(.A) is a monoid of total relations.

10

Of course, M(A) is finite if X is recognizable. Conversely, a language X C A* is
recognizable if there exists a finite monoid M and a morphism ¢ : A* --~ M such that
x = ¢ - 1 ¢ (x) .

In the case A = .A(X) is the minimal automaton of X, the monoid M(A(X))
depends only on X. It is called the syntactic monoid of X, and can be defined without
any reference to an automaton as the quotient monoid of A* by the syntactic congruence
of X defined by

u =-x v Cx(u) = C x (v)

where the set Cx(u) of contexts of u is defined as Cx(u) = { (w,w ') lwuw' e Z}.

4. Arbitrary Monoids

Rational and recognizable sets can be defined in any monoid. Let M be a monoid. A
subset X of M is recognizable if there exists a morphism ¢ : M --* N, where N is a
finite monoid, such that X = ¢-1 ¢(X). The set of recognizable subsets of M is denoted
by Rec(M). As in the case of a free monoid, the set Rat(M) of rational subsets of M
is the smallest family of subsets of M containing the empty set and the singletons, and
closed for the rational operations in ~O(M), i. e. closed under union, product of two
subsets, and the star, which produces the submonoid generated by a given subset.

EXAMPLE .- - Consider M = Z. All finite monoids that are homomorphic images of Z
are of the form Z/nZ. Thus, the recognizable subsets of Z are finite unions of infinite
arithmetic progressions. This shows that Rec(F) is strictly included in Rat(l) .

It is not difficult to show that for any finitely generated monoid M, the inclusion
Rec(M) C Rat(M) holds. For commutative monoids, a rather complete description
of rational sets has been given by Eilenberg, Schfitzenberger [8].

An interesting open problem is to characterize Kleene monoids, that is those
monoids M for which Kleene's there holds, i. e. Rec(M) = Rat(M). Several ex-
amples of Kleene monoids have been given. The first is due to Amar and Putzelu [2];
a more general theory has been constructed in Sakarovitch [17] Pelletier, Sakarovitch
[15].

IV. Rational Expressions

1. Definit ion

The rational expressions over some alphabet A are the elements of some quotient algebra
E of the term algebra over the set A (J (0, 1} with function symbols +, . , *. For instance,
a(a tAa. b)*b is a rational expression.

There is a mapping L from this term algebra onto the algebra of rational subsets
of A* defined inductively as follows

L(O) = O, L(1) = {1}, L(a) = {a},

L(e + e') = L(e) U L(e'), L(e. e') = L(e)L(e'),
L(e*) = L(e)*

11

Consider the quotient algebra $ obtained by agreeing that + is idempotent, associative
and commutative, that • is associative, and that

O + e = e = e + O

1 . e = e = e . 1

O . e = O = e . O

The function L is still defined on the quotient algebra £. There is a remarkable result of
Conway [6] stating that the algebra of rational sets cannot be obtained from the algebra
of rational expressions C by a finite set of relations.

2. Derivatives

The computation of a finite automaton recognizing the language L(e) for some given
rational expression e has been sketched in the previous section (in the proof of Kleene's
theorem). We give here an alternative method, which is inspired by the characteriza-
tion of the minimal automaton. This also gives an alternative proof to the fact that
rational languages are recognizable. Set X = L(e). Then the states of the minimal
automaton .A(X) are the sets u - i X , for u E A*. The sets can be computed via some
rules described below, depending on the rational structure of the set. On the other side,
similar operations, called the derivation rules, can be defined on the rational expression,
in such a way that the equality

u- lL(e) = L(u- le)

holds for any regular expression e, and any word u. These rules are the following:

Languages (properties) Expressions (det~mt ion)
a - l~ = 0 a-lO = 0
a - l l = 0 a - l l = 0
a - l a = {1} a- la = 1

a-lb=O (b#a) a-lb=0 (b#a)
a - l (X U Y) = a - i X U a - l y a- l (e + f) = a - l e + a - i f

a - I (X Y) = a - l X Y O (X • 1) a - l Y a - l (e f) = a - l e • f + 6 (e)a - l f
a - i X * = (a - I X) X * a - l e * = a - l e • e*

Here 8(e) is equal to 0 or 1 according to 1 • L(e) or 1 e L(e). Observe that this can
also be defined just on the structm:e of the expressions e. In order to compute the
minimal automaton from the sets u-XX, one must decide whether two sets u - i X and
v - I X are equal. This cannot be done easily. On the other hand, it is easy to decide
whether two ezpressions u - l e and v - l e are equal in the algebra £. The fact which
turns the computation of derivatives of expressions into an algorithm for computing an
automaton is the following theorem:

THEOREM (Brzozowski[5]).-- For any rational expression e, tile set :D(e) = {u- l e t u E
A* } of derivatives of e is finite.

12

Pro@-- For w E A*, one has

 -l(ef) = +
W ~ U ~
v#l

and for w E A +,
*

~ t J ~ t l

where 5(u, w) is 0 or 1. These formula show that the set of rational expressions e for
which the set :D(e) is finite is closed under product and star. Since it is closed under
sum and contains the basic expressions, the result follows, i

The set :D(e) is turned into an automaton A(e) recognizing L(e) by taking e as an
initial state, those u - l e with 5(u- le) = 1 as final states, and by defining the next state
fuction as f - a = a- i f . This automaton is deterministic, but is not necessarily minimal.

3. L i n e a r E x p r e s s i o n s

There is a variation of the preceding algorithm, due to Berry and Sethi [4] that constructs
a nondeterministic automaton which is "small".

A rational expression e is linear if all letters occurring in it are distinct. For
instance, (ab + c)*dg is linear. Any expression can be linearized just by renaming all
its letters by distinct symbols. The language denoted by the original expression is a
morphic image of the new expression, tf an automaton for the new language is found,
a (usually nondeterministic) automaton for the old language is obtained by identifying
the corresponding letters.

Given a letter a and any expression e, a continuation of a in e is any expression
(wa)-le 7 ~ O. Assume (wa)-le is a continuation. Then (wa)-le = a - l (w - l e) =

(w-le) .a, and consequently there is an edge w-le & (wa)-le in the automaton A(e).

PROPOSITION (Berry, Sethi[4]).-- Ire is a linear expression, then any two continuations
(wa)-le and (w'a)-le are equal.

This proposition has an easy interpretation. It means that, in the associated automaton
A(e), all edges labelled by the letter a have the same final vertex. Thus there is a
bijection between the states of A(e) (excepted the initial state) and the aIphabet of
letters occurring in e. In particular, A(e) has exactly 1 + n letters, where n is the
number of letters occurring in e.

There is a systematic way to compute the set of edges if A(e). For this we observe
first the following

LEMMA . - - Let X C A*. The following conditions are equivaIent:
(i) X is a locM rational language;

(ii) For ai1 a e A, the set ((ua)-l X I u e A*, (ua)-l X 7 ~ 0} is a singleton or is empty.

13

In particular, this shows that for a linear expression e, the language L(e) is local. It
therefore suffices to compute the foIlowing three sets:

first(e) = {a E A I aA* A L(e) # 0}
last(e) = {a C A ! A* a gl L(e) # 0}

follow(e) = {(a, b) E A x A I A*abg* n L(e) # 0}

The automaton then has final states last(e), and the edges

1 -~ a for a e first(e)
b a b for (a, b) e follow(e)

The computation of first(e) and las~(e) is easy. For the set follow(e), we introduce and
auxiliary function ($ is the algebra of expressions)

¢ : g x g ~ "P(A x A)

by

¢(0, f) = ~ (1 , f) = 0

• (a, f) = {a} x first(f)
¢(e + e ' , f) = ¢ (e , f) U tb(e', f)

¢ (e . d , f) = ¢ (e , e ' . f) U ¢ (d , f)

¢(e*, f) = ¢(e, e + f)

It is easily shown that

¢(e, f) = follow(e) U last(e) x first(f)

and consequently follow(e) = ¢(e, 0). The interest of this computation rule is that it can
be realized directly on the tree representing the rational expression by a tree traversal:
The attribute of the root of the tree being ¢(e, 0), its evaluation requires the evaluation
of the attributes of its children; these are synthesized with an inherited value of the
second argument.

References

[1] A. AHO, J. HOPCROFT, j . ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, 1974.

[2] V. AMAR, G. PUTZOLU, Generalizations of regular events, Inform. Contr. 8
(1965), 56-63.

[3] J. M. AUTEBERT, Langages alg~briques, Masson, 1987.
[4] G. BERRY, R. SETHI, From regular expressions to deterministic automata,

Theoret. Comput. Sci. 48 (1986), 117-126.
[5] J. BRZOZOWSKI, Derivatives of regular expressions, J. Assoc. Comput. Mach.

11 (1964), 481-494.
[6] J. CONWAY, Regular Algebra and Finite Machines, Chapman and Hall, 1971.

14

[7] S. EILENBERG, Automata, Languages and Machines, Vol. A, Academic Press,
1974.

[8] S. EILENBERG, M. P. SCtIUTZENBERGER, Rational sets in commutative mono-
ids, J. Algebra 13 (1969), 173-191.

[9] S. C. KLEENE, Representation of events in nerve nets and finite automata,
in: C. Shannon, J. McCarthy (eds), Automata Studies, Princeton University
Press, 1956, 3-41.

[10] R. MCNAUGTHON, H. YAMADA, Regular expressions and state graphs for
automata, IRE Trans. on EIectronic Computers EC-9:I, 1960, 39-47.

[11] C. MEAD, L. CONWAY, Introduction to VLSI Systems, Addison-Wesley, 1980.
[12] E. F. MOORE, Gedanken experiments on sequential machines, in: C. Shannon,

J. McCarthy (eds), Automata Studies, Princeton Univ. Press, 1956, 129-153.
[13] D. PERItlN, Finite automata, Handbook of Theoretical Computer Science,

North-Holland, (in press).
[14] D. PERRIN, J. SAKAROVITCH,' Automates finis, Journ6es scientifiques et prix

UAP, Edition scientifiques de I'UAP, vol. 1, Paris, 1988.
[15] IVY. PELLETIER, J. SAKAROVITCH, Easy multiplications II. Extensions of r~-

tional semigroups, Techn. Report 88-63, LITP, Paris.
[16] M. O. RABIN, D. SCOTT, Finite automata and their decision problem, IBM

J. Res. Devel. 3, 1959, 114-125.
[17] J. SAKAROVITCH, Easy multiplications I. The realm of Kleene's theorem, In[.

Comput. 74, 1987, 173-197.

