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Given two words u and v, the binomial coefficient (}) is the number of ways v appears as a
subword (or subsequence) of u. The Thue-Morse sequence is the infinite word t=
abbabaab . . . obtained by iteration of the morphism (@) =ab and 7(b) = ba. We show that,
for every prime p, and every positive integer n, there exists an integer m = f(p, n), such that,
for every non-empty word v of length less than or equal to n, the binomial coefficient (™) is
congruent to 0 mod p. In fact f(p, n) =2"p'* %! for p #2 and f(2, n)=2*if F,_,<n<F,,
where F, denotes the kth Fibonacci number. It follows that, for each prime number p, there
exists a sequence of left factors of ¢ of increasing length, the limit of which is the empty word in
the p-adic topology of the free monoid.

1. Introduction

Tile aim oY dhis paper 1S W prove d mew COmBITUa’ property or & famous
infinite word, called after his discoverers the word of Thue—Morse. This word has
a great mumder of wee comdiinatonal propenies, most of winck can 4 found for
instance in {3, Chap. 2]. It plays a central role in the study of square-free and
cube-free words, and is also one of the “historical” examples of an infinite werd
defined by iteration of a morphism. As such, a number of papers have been
devoated to the study of its factors, out Ochsenschiager {4} was the first to consider
the subwords (or subsequences) of its left factors. One of the more useful tools in
the smdy of SUDWOISs 5 The 'Pinom) coeihtient Inrvdnced by Eierbeip §i), Tha
counts, roughly speaking, the number of ways a given word v appears as a
subword of another word 4. Our main result shows that, given a prime number p
and a positive integer n, one can find a left factor « of the word of Thue-Morse,
such that all the binomiai coefficients associated with the non-empty words v of
length less than or equal to » are simultai:eously congruent to 0 mod p.

As an application, we show that for each prime number p, there exists a
subsequence of the sequence of the left factors of the word of Thue-Morse, the
limit of which is the empty word in the p-adic topology of the free monoid.

2. Counting the subwords of the Thue-Morse sequence

Let A be a finite alphabet. We denote by A* the free monoid over A and by 1
the empty word. Let u and v be two words of A*. A word u =a,a; - - - a; is said
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to be a subword of v if v can be factorized as v =wvya,v, - - a.v;, where
Vg, V4, - . . , Ux € A*. Following Eilenberg [1], we set

v
(u)-—-Card{(vo, Ugy e v ey Uk)EA* XA*X- - XA* I V@ Uy * * ‘akvkzv}’

Thus () is the number of distinct ways to write u as a subword of v. For instance,
(*4222) =8 and (¢=) = (2). The basic properties of these binomial coefficients are
summarized by the following formulae:

(a) For every word u e A*, (})=1.

(b) For every non-empty word u € A*, (1) =0.

(©) If w=uv, then ()= Ly (2)(2)

Let A={a,b}, and let 7:A*—>A* be the monoid morphism defined by
t(a) = ab and ©(b) = ba. For every n =0, we set u, = t"(a) and v,, = 7"(b). Then
Ug, Uy, . . . is @ sequence of words of A* such that each u; is a proper left factor of
u;+,. Therefore this sequence defines an infinite word ¢ = abbabaabbaababba . . .
called the infinite word of Thue—Morse. The aim of this section is the study of the
binomial coefficients of the form (";'1) where ¢[m] denotes the left factor of length
m of 1. We first recall the resuit of Ochsenschlager.

Theorem 2.1 {4]. For every word x such that 0< |x| <n, (‘)= (%). Furthermore
there exists a word x of length n su:ch that () # (%7).

If we count modulo some prime number p, we have the following main result.

Theorem 2.2. For every prime number p, and for every positive integer n, there
exists an integer m = f(p, n) such that, for every non-empty word v of lengtn less
than or equal to n, (‘") =0 mod p.

Theorem 2.2 is ihe consequence of two more precise results, corresponding
to the cases p=2 and p #2, respectively. We first treat the case p=2. Let
(F,)n=0 be the Fibonacci sequence defined by =1, F=1and F,,,=F,,,+F,
for every n =0. Then we have

Theorem 2.3. For every n=0 and for every word x such that 0<|x|<E,,
(%)=(%)=0mod2.

Proof. We show by induction on n that

(:‘:) =0mod2 for0<|x|<E, and

u\ (v,
(x)s(x)mod2f0r0<|xl<ﬁ.+1-
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These relations clearly hold for n =0, 1. Thus let n>1 and let x be a word with
0<|x|<F,4;. Then

()= 2. GG = () + () moa2.
X xixp=x X1/ \X3 X X
Indeed if x =x,x, and x;, x,#1, then |x;| <F, or |x;| <F, and consequently,

either (3)=0med 2 or (7;) =0mod 2.
Next by the induction hypothesis, () = (*) =0 mod 2, which shows that

(4)+(2) oot

Consider now a word x with 0<|x| <F,,,. Then again

)=, 2, GG =)+ ()2 (G

( x ,,§=, X1/ \x, x x 2 x,/\x,

the sum being restricted to all pairs (;, x,) with x = x,x, and 0<|[x,|, |x;| < F, 4.
Indeed,if x; or x, has length greater than F, ., then the other word has length less

than F, and the corresponding term vanishes.
Using the induction hypothesis, we get that

Z.66)=2.66)

and consequently

(un-i-l) = (vn+1) mod 2. 0O
X X

Theorem 2.2 follows immediately from Theorem 2.3 when p =2. It suffices to
put f(2, n) =2" if F._, <n <F,. The first values of f(2, n) are given in Table 1.

Table 1

n 1 2 3 4 5 6 7 8 9 10 1 12 13
f(2,n) 4 8 16 16 32 32 32 64 64 64 64 64 128

We now consider the case p #2. Put f(p, n) =2"p"* %" Then we can state

Theorem 2.4. For every prime number p #2, for every positive integers iand n,
and for every word x such that 6 <|x|<n, if m=f(p, n), then (‘“m) =0 mod p.

Proof. We fix p and prove the theorem by induction on n. For n=1,
f(p, 1)=2p, and we have for every i >0,

(t[2ip]) _ (t[2ip]

i b )=ip§0modp.
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Assume that the theorem holds for some n =1, and let x be a word such that
0<lx|<n+1 Put f(p,n+1)=m and let { be 2 fived positive inicgei. Then
titm] = 7(u) where u = t[}im], and since im is a multiple of f(p, n), we have by
inducticn, (5) =0mod p for every word s such that 0<|s|<n.

At this point, we need some algebraic tools to conclude the proof. Let
k=2Z/pZ and let k(A*) be the algebra of polynomials in non-commutative
variables over A with coefficients in k. The monoid morphism t:A*— A* can be
extended to an endomorphism 7:k(A*)—>k(A*). Another useful endomorph-
ism is the Magnus transformation p:k(A*)—>k(A*), defined by u(@)=1+a
and u(b)=1+b. As is well-known [3, p. 123], we have, for every word s € A*,

ko= 3 ()

Let y be the morphism defined by y(a)=a + b +ab and by y(b)=a + b + ba.
Then ut = yu. Put, for every s € A%,

Y6)= 2 (). x)~.

Then we have
3

u‘t(u)=w(u)=7(2 (u)S) g ( )Y(S)-

seA* \S
and hence

pru)=y ~ ( \(vls) x)x.

xeA‘ s¢ A
On the other hand,

wiw= 3, (")x

xX€EA* X
Therefore

() 3. (Yoo

X SEA”

Now, it follow. immediately from the definition of y that {y(s), x) =0 if |s| > |x|

and (y(s),x)=1 if |s|=|x|. Furthermore, by the induction hypothesis,
(5) =0mod p for every word s such that 0 <|s| < |x|. Thus

(%7)=,2, ()= () = () moar

Thus it remains to prove that (j7}) =0 mod p. Given an integer i, denote by v,(i)
the greatest integer such that p™® divides i. Observe that if i>j and
Yp(i) > v,(j), then v,(i —j) = v,(j). Clearly, it suffices to show that

s=( D v,,(im—k))—( 3 v,,(k))>o.

O<k<|x| O<k=|x|
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But since m=2"+p!*lee+Dl we have for 0<k<|x|<(n+1), v,(im)=
1+ |log,(n +1)] > v,(k), and hence wv,(im—k)=uv,(k). Therefore S=
vp(im) - v,(Ix]) >0 as required. O

3. The p-adic topology of the free monoid

Recall that a p-group is a finite group of order p* for some k>0. One can
show that two distinct words u and v of A* can always be separated by a p-group
in the following sense: there exists a p-group G and a monoid morphism
@ :A*— G such that @(u) # @(v). Set, for every u, v € F(A)

r(, v) = min{Card(G) | G is a p-group that separates u and v}
and
d(u, v)=e 7@

o0

with the usual conventions min # =« and e~ = 0. Then d is a distance (in fact an
ultrametric distance) which defines a topology on A*; called the p-adic topology
of the free monoid. This topology is the analogous for the free monoid of the
topology for the free group introduced by Hall [2]. It is the coarsest topology such
that every monoid morpL.sm from A* into a discrete p-group is continuous. A*,
equipped with this topology, is a topological monoid. The interested reader is
referred to (2,5, 6] for a more detailed study of this topology. An example of
converging sequence is given by the following proposition.

Propeosition 3.1. For every word w € A*, lim,_,, w?" = 1.

Proof. By the definition of the topology, it suffices to show that if ¢ :A*—> G is a

monoid morphism onto a discrete p-group G, then lim,_,... ¢(g”") = (1) = 1. But

if Card(G)=p*, then for n=k, @(gf")=1 since the order of ¢(g) divides
k

p-. 0O

Since the multiplication is continuous, we also have, for every x,y e A*,
lim,_..xg”’y =xy, but it is less obvious to find an example of a converging
sequence that is not directly related to Proposition 3.1.

Theorem 3.2. For every prime number p, there exists a strictly increasing sequence
my<m,. .. such that lim,_,.t[m,] = 1.

Proof. Fix a prime number p, and set m,, = f(p, n), where f(p, n) is the function
introduced after the proof of Theorem 2.3. Let ~, be the congruence over A*
defined by

u ~, v if and only if, for every word x such that |x| <n, (Z) = (Z) mod p.
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By Theorem 2.2, t[m,]~,1. Denote by ¢,:A*—>A*/~,=G, the natural
morphism. It is shown in [1] that G, is a p-group and that for every monoid
morphism @ from A* into a p-group G, there exists a positive integer k = k()
and a group morphism a; : G, — G such that ¢ = a,@;. Now, if n =k, t[m,] ~; 1
and hence @(t[m,))=1. It follows that @(¢[m,])=1 for every n=k and thus
lim,,_,., ¢(t{m,]) =1 in the discrete p-group G. Therefore lim,_...¢f[m,]=1. O

Note that Theorem 3.2 cannot be deduced from Proposition 3.1 since the

Thue-Morse does not contain any factor of the form u?, where u is a non-empty
word [3].
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