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Abstract

The purpose of this survey is to present, in comtemporary terminology,
the fundamental contributions of Axel Thue to the study of combinatorial
properties of sequences of symbols, insofar as repetitions are concerned.
The present state of the art is also sketched.

1 Introduction

In a series of four papers which appeared during the period 1906-1914, Axel
Thue considered several combinatorial problems which arise in the study of
sequences of symbols. Two of these papers [44, 46] deal with word problems
for finitely presented semigroups (these papers contain the definition of what is
now called a “Thue system”). He was able to solve the word problem in special
cases. It was only in 1947 that the general case was shown to be unsolvable
independently by E. L. Post [28] and A. A. Markov [24].

The other two papers [43, 45] deal with repetitions in finite and infinite
words. Perhaps because these papers were published in a journal with restricted
availability (this is guessed by G. A. Hedlund [20]), this work of Thue was widely
ignored during a long time, and consequently some of his results have been
rediscovered again and again. Axel Thues papers on sequences are now more
easily accessible since they are included in the “Selected Papers” [47] which were
edited in 1977.

It is the purpose of the present paper to give an account of Axel Thue’s work
on repetitions in sequences, both in more recent terminology and in relation with
new results and directions of research. It appears that there is a noticeable differ-
ence, both in style and in amount of results, between the 1906 paper (22 pages)
and the 1912 paper (67 pages). The first of these papers mainly contains the
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construction of an infinite square-free word over three letters. Thue gives also
an infinite square-free word over four letters obtained by what is now called an
iterated morphism, whilst the three letter word is constructed in a slighly more
complicated way (a uniform tag-system, in the terminology of Cobham [12]).

The second paper attacks the more general problem of what Thue calls
irreducible words. He devotes special attention to the case of two and three let-
ters. In particular, he introduces what is now called the Thue-Morse sequence,
and shows that all twosided infinite overlap-free words are derived from this
sequence. There are several aspects he did not consider: first, many combinato-
rial properties of the Thue-Morse sequence (such as the number of factors, the
recurrence index, and so on) were only investigated by M. Morse [25] or later;
next, the characterization of all onesided infinite overlap-free words — which
is much more difficult than that of twosided words — was only given later by
Fife [15]. However, Thue gives a complete description of circular overlap-free
words. We will also mention the problem of counting the number of overlap-free
words over two letters.

Axel Thue’s investigation of square-free words over three letters is even more
detailed. He gives, in this paper, another construction of an infinite square-free
word, by iterated morphism, and then initiates, in a 30 pages development, a
tentative to describe all square-free words over three letters. He observes that
every infinite square-free word is an infinite product of words chosen in a set
of six words, and classifies those infinite square-free words that are products of
four among these six words. His classification, he observes, is similar both in
statement and in proof technique to what is found in diophantine equations:
the solutions are parametrized by some variables which are easier to manage.

The paper is organized as follows: after some preliminary definitions, we
introduce the so-called Thue-Morse sequence. We next describe Thue’s results
on this word, and give a short account of other developments about overlap-
free words. The next section contains a presentation of Thue’s constructions
of square-free words, and a comparison with other methods. Then, Thue’s
classification — which has been ignored for large parts — is described. We
end with a short description of avoidable patterns, which is the main stream of
actual research.

An alphabet is a finite set (of symbols or letters). A word over some alphabet
A is a (finite) sequence of elements in A. The length of a word w is denoted
by |w|. The empty word of length 0 is denoted by . An infinite word is a
mapping form into A, and a twosided infinite word is a mapping from into
A. A circular word or necklace is the equivalence class of a finite word under
circular permutation. It can also be considered as a mapping of /n into A for
some positive integer n.

A factor of a word w is any word u that occurs in w, i. e. such that there
exist word z, y with w = zuy. A square is a nonempty word of the form uu. A
word is square-free if none of its factors is a square. Similarly, an overlap is a
word of the form zuxuz, where x is nonempty. The terminology is justified by



the fact that zuz has two occurrences in zuzuz, one as a prefiz (initial factor)
one as a suffiz (final factor) and that thes occurrences have a common part (the
central x). As before, a word is overlap-free if none of its factors is an overlap.

The set of words over A is the free monoid generated by A. It is denoted by
A*. A function h : A* — B* is a morphism if h(uv) = h(u)h(v) for all words w,
v. If there is a letter a such that h(a) starts with the letter a, then h"(a) starts
with the letter a for all n > 0. If the set words {h™(a)) | n > 0} is infinite, the
morphism is prolongeable in a and defines a unique infinite word say x by the
requirement that all h™(a) are prefixes of x. The word x is said to be obtained
by iterating h on a, and x is also denoted by h*(a). Clearly, x is a fixed point
of h. This construction is frequently used by Axel Thue.

For Axel Thue, a word w over an alphabet of size n is irreducible if any two
occurrences of the same word as a factor in w are always separated by at least
n—2 letters. This means that an irreducible word over two letters is overlap-free
and that an irreducible word over three letters is square-free.

2 The Thue-Morse sequence

In this section, we recall some basic properties concerning the Thue-Morse se-
quence. Other properties and proofs can be found in Lothaire [22] and Salo-
maa [34].

Let A = {a,b} be a two letter alphabet. Consider the morphism g from the
free monoid A* into itself defined by

p(a) =ab,  p(b) = ba

Setting, for n > 0,

one gets
Ug = a vo =0
u; = ab v1 = ba
us = abba vy = baab

us = abbabaab v3 = baababba

and more generally
Un+1 = UnUn, Un+1 = UnlUn

and

Up = Unp, Un = Up

where w is obtained from w by exchanging a and b. Words u, and v, are
frequently called Morse blocs. It is easily seen that ws, and vs, are palindroms,



and that wapq1 = v5,, 1, where w™ is the reversal of w. The morphism g can
be extended to infinite words; it has two fixed points

t = abbabaabbaababbabaab - - - = p(t)

t = baababbaabbabaababba - - - = pu(t)

and u,, (resp. v,) is the prefix of length 2™ of t (resp. of t). It is equivalent to
say that t is the limit of the sequence (uy)n>o (for the usual topology on finite
and infinite words), obtained by iterating the morphism pu.

The Thue-Morse sequence is the word t. There are several other characteri-
zations of this word. Let t,, be the n-th symbol in t, starting with n = 0. Then
it is easily shown by induction that

. _{a if dy(n)=0 (mod 2)
"Tb ifdi(n)=1 (mod 2)

where dj (n) is the number of bits equal to 1 in the binary expansion of n. For
instance, bin(19) = 10011, consequently d; (19) = 3, and indeed t19 = a.

As a consequence, there is a finite automaton computing the values t¢,, as a
function of bin(n). This automaton has two states 0 and 1. It reads the string
bin(n) from left to right, starting in state 0. At the end, the state reached is
0 or 1 according to t, = b or t,, = a. In fact, the automaton computes d; (n)
modulo 2. Another description is given by Christol, Kamae, Mendes-France,
Rauzy in [11]. There are many generalizations of the Thue-Morse sequence,
motivated by its simplicity, and by its numerous properties. The first definition
of the sequence, by iterating a given morphism, is of course strongly related
to Lindenmayer systems (see e.g. [32]). In the case where the morphism is
uniform, that is when the lengths of the images of the letters are equal, a general
theorem of Cobham [12] shows that the sequence x obtained by iterating the
morphism can also be generated by a finite automaton working on expansions
of natural integers in some base k. An equivalent way to state this is to say
that there are only finitely many distinct subsequences (£grpts)n>0 for r > 0
and 0 < s < k" — 1. Let us call such a sequence automatic (more precisely k-
automatic). Another extension is by arithmetics. Consider a k letter alphabet
{0,1,...,k — 1} and define an infinite word x by taking z, to be the sum,
modulo &, of all the digits in the expression for n in base k. The Thue-Morse
sequence is then just the case k = 2. Since there is an automaton for computing
x,, from the k-ary expansion of n, there is also a uniform morphism generating
x. For instance, if k¥ = 3, the morphism, say ug, is given by 0 — 012, 1 — 120,
2 — 201 (this general definition was in fact given already given by Prouhet, in
1851. Several authors, such as Adler, Li [1] and Brlek [6], discuss the fact that
Prouhet was the first to mention what perhaps should be called the Prouhet
sequence).

Other sequences related to the Thue-Morse sequence are obtained by count-
ing factors in the binary expansion, instead of bits. The Rudin-Shapiro [33, 38]



sequence is the infinite word x over {a, b} defined by

T, = {a if dll(n)

0 (mod 2)

=1 (mod 2)

where dj;(n) is the number of factors 11 in the binary expansion of n. Similarily,
in the sequence of Baum and Sweet [3], the n-th symbol is a or b according to
whether ther exists a factor of odd length containing only the bit 0 in the binary
expansion of n. Again, this sequence is automatic. Many number-theoretic re-
sults have been given for automatic sequences. Let us just mention the following,
due to Loxton and van der Poorten [23]:

THEOREM For any automatic infinite word x over the alphabet {0,...,p—1},
the real number
> wap"

is transcendental.

As an example, the real number whose binary expansion is 0.011010011 - - -
(associated to the Thue-Morse sequence) is trancendental (this was already
known before).

3 Overlap-free words

As already mentioned, the Thue-Morse sequence is overlap-free. Indeed, A.
Thue proved?

THEOREM (Satz 6) The sequence t is overlap-free.

What Thue actually show, is that a word w over the two letter alphabet
A = {a, b} is overlap-free iff p(w) is overlap-free. Thue observes that the same
result holds for circular words. More precisely, he gives the following complete
characterization of circular overlap-free words:

THEOREM (Satz 13) Every circular overlap-free word over the two letter alpha-
bet A = {a,b} is of the form p"(ab), u"(aadb) or u"(abb) for some n > 0.

As a consequence, a circular overlap-free word has length 2™ or 3-2" for
some n > 0. These results are interesting because they are related to overlap-
free squares. It is indeed easy to show that a circular word w is overlap-free iff
the (ordinary) word ww is overlap-free. Thus, Thue characterizes overlap-free
squares, a result that was discovered later also by [42]. T. Harju [19] gives a
result which is similar, but different.

THEOREM (Satz 9) For every twosided infinite overlap-free word x, there exists
a unique infinite overlap-free word y such that x = u(y).

! The mention Satz n refers to theorem n in [45]



This gives, in some sense, a complete description of the set of overlap-free
twosided infinite words; indeed, it means that this set is a minimal set. More
precisely, recall that a dynamical system is a set X of infinite words that is
closed for the shift operator, defined by T'(x)(n) = x(n + 1), and that is closed
for the usual topology on infinite words. It is not difficult to show that x
is in X iff Fact(x) C Fact(X), where Fact(X) is the set of finite words that
are factors of some element in X. A dynamical system X is minimal if it
does not contain strictly any other dynamical system. This means that X is
equal to the dynamical system generated by any of its elements, and also that
Fact(x) = Fact(X) for any x € X.

The property that the dynamical system generated by the (twosided) Thue-
Morse sequence is minimal was explicitly proved by Gottschalk and Hedlund
[16]. As a consequence, every factor appears with bounded gaps (is recurrent,
in the terminology of M. Morse [25]). Axel Thue (Satz 11) only mentions that
every factor appears infinitely many often.

The structure of onesided infinite overlap-free words is more complicated.
Axel Thue was interested in the tree of infinite overlap-free words and tried
to to characterize those overlap-free words which can be extended into infinite
overlap-free words. His main result in this direction is

THEOREM (Satz 15) Let w be an overlap-free word of w length n such that there
exist words u and v of length 8n with the property that uwv is still overlap-free.
Then any overlap-free word x of length 26n contains w as a factor.

In the proof of this result, he shows that the word z contains a Morse bloc
which contains w, and he concludes that w is indefinitely extensible in both
directions. An explicit description of the tree of infinite overlap-free words by
means of a finite automaton was given by E. D. Fife and deserves a mention.

Fife defines three operators on words, say «, 8, v, and he shows that every
overlap-free infinite words is the “value” of some infinite word f in the three
operators, provided the word f is in some rational set he gives explicitely. To
be more precise, let X, = {u,,v,} be the set of Morse blocs of index n and let
X =U,>0 Xn- Any word w € A*X; admits a canonical decomposition (z,y,y)
where y is the longest word in X such that w = zyy. It is equivalent to say
that (z,y,7) is the canonical decomposition of w if gy is not a suffix of z. As
an example, the canonical decomposition of aabaabbabaab is

(aaba, abba, baab)
and the decomposition of abaabbaababbaabbabaab is
(abaab, baababba, abbabaab)

The three functions «, 3,7 : A*X; — A* Xy, acting on the right, are defined as
follows for a word w € A*X; with canonical decomposition (z,y,¥):

wea = 2yy - o= Zyyyyy = wyyy



w- B =zyy - = zyyyyyy = wyyyy
w-y  =2yy -y = 2Yyyy = wyy
Since w is a prefix of w - a, w - B, and of w - 7y, it makes sense to define w - f by

induction for all “words” f in B*, with B = {a, #,7}. By continuity, w - f is
definde also for infinite words f. Here are some examples:

ab - a = abaab

ab - B = ababba
ab - v = abba
ab-vY =t

aab - o = aabaab = a(ab - @)
ab - affy = abaababbabaababbaabbabaab

Observe that the last word contains an overlap. Note also that, for w € A*X;
and f € B*, one has p(w - f) = p(w) - f = w-~vf. A description of an infinite
word x starting with ab or aab is an infinite word f over B such that x =ab-f
or x = aab - f, according to x starts with ab or aab.

PROPOSITION Every infinite overlap-free word starting with the letter a admits
a unique description.
Let

F=BY-B*IB”

be the (rational) set of infinite words over B having no factor in the set

I={a,BY(v*) {Ba, B, e}
and let G bet the set of words f such that Sf is in F'. Then:

THEOREM (Fife’s Theorem) Let x be an infinite word over A = {a,b}.
(1) if x starts with ab, then x is overlap-free iff its description is in F;
(13) if x starts with aab, then x is overlap-free iff its description is in G.

A direct consequence is the following

COROLLARY An overlap-free word w is the prefix of an infinite overlap-free word
iff w is a prefix of a word ab - f with f € W or of a word aab - f with ff € W,
where W = B* — B*IB*.

This implies in particular a result of Restivo et Salemi [30], namely that it is
decidable whether an overlap-free word is extensible into an infinite overlap-free
word. Another consequence of Fife’s description is the following

COROLLARY The Thue-Morse word t is the greatest infinite overlap-free word,
in lexicographical order, that start with the letter a.

Indeed, the choice of the letters a, (3, et v implies that if £ < £’ then ab - f <
ab - f'. The greatest word in F' is 4*, and this shows the corollary. A. Carpi [§]



has developed a description for finite overlap-free words by means of a finite
automaton. Unfortunately, his automaton is rather big (more than 300 states).

There is another property that singles out the Thue-Morse word (and which
was rediscovered and generalized by P. Séébold [37]). Call a morphism overlap-
free if the image of an overlap-free word is always overlap-free.

THEOREM (Satz 16) Let h be an overlap-free morphism. Then there is an integer
n such that h = p™ or h = wo u™, where 7 is the morphism that exchanges the
two letters of the alphabet.

Thus, the infinite words t and t are the only infinite overlap-free words
generated by iterated morphisms.

Since overlap-free words have a strong structure, it seems natural to count
them. The first result is due to Restivo and Salemi [30]. They prove that the
number 7, of overlap-free words over two letters grows polynomially in n (in
fact slower than n'). Kobayashi [21] has used Fife’s theorem to derive the lower
of the more precise bounds for -, :

THEOREM There are constants C; and Co such that
Cln"‘ < Yn < 0277/8

where o = 1.155... and 8 = 1.5866. . ..

One might ask what is the “real” limit. In fact, a recent and surprising result
by J. Cassaigne [10] shows that there is no limit. More precisely, set

o' =sup{r |3C > 0,Vn,v, > Cn"}
and

B =sup{r|3C > 0,Vn,v, < Cn"}
Then
THEOREM One has 1.155 < o' < 1.276 < 1.332 < ' < 1.587.

This is to be compared with the situation for square-free words. Indeed,
Brandenburg [5] proved that for the number ¢(n) of square-free words of length
n over three letters, there are constants ¢; > 1.032 and c¢; < 1.38 such that
6] < ¢(n) < 6¢%. Brandenburg also proves that the number of cube-free words
over two letters grows exponentially.

4 Square-free words

4.1 First examples

It is easily seen that the only square-free words over two letters are a, b, ab,
ba, aba, bab. However, there exist arbitrarily long square-free words over three
letters, and by a simple argument, there exist infinite square-free words over



three letters. Historically the first infinite square-free word was given by Thue
in his 1906 paper. It is over four letters, and it is obtained by iterating the
following morphism h, starting with the letter a:

a +— adbch
b +— abdcb
c +— abeddb
¢ +— abebd

Thue explain his construction as follows : take a square-free word over three
letters, here abchb, and interleave it with the letter d. This gives the morphism.
The proof is not very difficult.

In the same paper, Thue gives another infinite square-free word, over three
letters. The word is by iterating the following construction: given a square-free
word w over A = {a, b, c}, build a(w) by replacing each letter a by abac, each b
by babc, and each c¢ either by bcac or by acbe, according to the letter preceding
cin w is a or b. Starting with a, one gets an infinite word

abacbabcabacbeacbabeabacbabeacbeabacbabe - - -

which he shows to be square-free. Although the definition is not by a morphism,
the construction is very close to it. There exist several ways to formulate it
differently: in fact, one has a fourth letter hidden in the description, which
appears when we note differently a letter ¢ precede by an a and a letter ¢
preceded by a b. The four letter word thus obtained is generated by a morphism,
and at the end, the two variants of the letter ¢ are identified.

In the 1912 paper, Axel Thue gives a morphism for generating an infinite
square-free word over three letters. The morphism is the following (Satz 18):

a — abcab
b — acabcb

¢ +— acbcach

This morphism seems to be rather complicated. Its size, i. e. the sum of the
length of the images, is 18. It has been shown by A. Carpi [7] that this is
the best bound : every morphism over three letters that preserves square-free
words has size at least 18. (See also the discussion in [4].) However, there is a
simpler morphis that generates a square-free word (starting with a) given e.g.
by Hall [18], namely

a — abc
b — ac
c —= b

This mophism does not preserve square-free words, because the image of aba is
abcacabc.



4.2 A Classification

Since every twosided infinite square-free word x over three letters a, b and c is
some product of the six words in the set

X = {ab, abc, abeb, ac, ach, acbe}

Thue studies a classification according to words of X that appear in x. It is
quite remarkable that he achieves a classification of those square-free infinite
words that contain exactly four of the six words in X. After some discussion,
he reduces the 15 cases (two words lacking among six) to the following three
cases :

aca and beb I
aba and aca II
aba and bab III

are missing in the infinite word under consideration. In order to describe these
three families, he gives some “parametrization”, and as we will see, reduces
them to minimal dynamical systems.

Consider first square-free words of type (I), i. e. without occurrences of aca
or beb. Define a morphism h from A = {a,b,c} into B = {a, 3} by

a — «
b — afp
c = af

Then the following holds

THEOREM (Satz 20,21) Ifx is a square-free infinite word of type (I), then h(x)
is overlap-free. Conversely, for every overlap-free word y, there exists a unique
word x such that h(x) =y, and x is square-free of type (I).

Thus, the square-free words of type (I) are describe by the (minimal) set of
overlap-free words over two letters. For the two other types, the situation is
slightly more involved (and the proofs are more difficult). First, Thue observes
that the cases (II) and (III) reduce one to each other. Any word x of type (II)
is uniquely decomposable as a product of words in the set {ca, cb, cab, cba}. Let
s be the substitution defined by

ca +— abc

cb — acd
cab +— abcd
cba +— acbc



For a word x of type (II), the word y = s(x) is of type (III), and conversely,
every word y of type (III) is of this form. Thus, it suffices to describe square-
free words of type (II). For this, Thue introduces a new, five letter alphabet
{A,B,C,D, E}, and a morphism h : {A,B,C,D,E}* — {a,b,c}* defined by

A —  abcbacbcacbabeache

B — abcbacbe
C +— abebacbcach
D — abcbabcacbe
E +— abcbabeacd
Finally, he defines a set of words
W = {AB,AD,BA,BC,CA,CD,CE,DB,DE,EC,ED,

BEB,EBE,DAC,DCBD,CBDC)}

In order to state simply the next theorem, let us denote by ) the set of twosided
infinite square-free words over the five letter alphabet {A, B,C, D, E} that have
no factors in W. Then Thue proves

THEOREM (Satz 26) The set of twosided infinite square-free words of type (II)
is the set of words of the form h(y) fory in Y.

This theorem seems to be a little disappointing, since a rather simple de-
scription of three letter square-free words is replaced by a cumbersome and
complicated family ) of words over five letters. However, this family has an
important property: let a be the morphism from {4, B,C,D, E}* into itself
defined by

A - BDAFEAC
B — BDC

C — BDAE

D —~ BEAC

E — BEAE

THEOREM (Satz 23,24) The morphism « is a bijection of the set ) onto itself.

Thus, as before, the set ) is a minimal dynamical system.

A full description of the tree of square-free words, like Fife’s description for
overlap-free words, is not yet available. Shelton and Soni have investigated this
tree [39, 40, 41]. They have shown in particular that the set of infinite square-
free words over three letters is perfect. Roughly speaking, this means if x is
any square-free infinite word, then for any prefix p of x, there are infinitely
many infinite square-free words that have p as prefix. They show also that it is

11



decidable whether a square-free word p of length n is a prefix of some infinite
square-free word, and their procedure is “uniform”: There is a constant K such
that if there exists a word ¢ of length n + Kn?/? such that pq is square-free,
then p is the prefix of some infinite square-free word.

4.3 Repetitions

As already mentioned, Thue calls a word on n letters irreducible if every fac-
tor zyzx verifies |y| > n — 2. A more general concept, first considered by F.
Dejean [14], is to require that the length of the word y separating the occur-
rences of « is bounded from below by the length of = (times some factor). More
precisely, we call repetition a word xyx with z non empty, and indez of this
repetition the quotient |y|/|z|. We are looking for words where all repetitions
have high index. F. Dejean has proved that there exists an infinite word over
3 letters that has only repetitions of index greater or equal to 1/3, and she
also shows that this bound is the best possible. Call repetition threshold the
smallest number p;, such that there exists an infinite word over £ letters that
has only repetitions of index greater or equal to pj. Thus, Dejean’s result may
be stated as : p3 = 1/3. She conjectured that py = 3/2, a result proved by
Pansiot [27], and that p;, = k — 2 for k£ > 5. The conjecture was proved up to 9
by Moulin-Ollagnier [26]

5 Avoidable patterns

The overlap-freeness of the Thue-Morse sequence, and the square-freeness of
the other words we have presented can be expressed in the more general frame-
work of avoidable and unavoidable patterns in strings. This concept has been
introduced in the context of equations defining algebras. Certain unavoidable
words have been used e.g. in [35] to characterize those finite semigroups S that
are inherently nonfinitely based, in the sense that S is not a member of any
locally finite semigroup variety definable by finitely many equations. It may
be noticed that Axel Thue replaces his research on repetitions in strings in an
even slightly more general context, since he considers avoiding patterns with
constants. However, he has not stated results in this specific framework.
Consider an alphabet E of “pattern symbols”. A word e over E is a pattern.
A pattern e is said to occur in some word w € A* if ther is a nonerasing
morphism h : E* — A* such that h(e) is a factor of w. A pattern e is avoidable
over k letters, or is k-avoidable, if there is an infinite word x over k letters such
that e does not occur in x. The Thue-Morse sequence shows that the patterns
aaa and ababa are 2-avoidable, and square-free infinite words show that aa is
3-avoidable (but not 2-avoidable). Avoidable and unavoidable patterns have
been studied by several people (Zimin [48], Schmidt [36], Bean, Ehrenfeucht,
McNulty [4], Roth [31], Cassaigne [9], Goralcik, Vanicek [17], Baker, McNulty,
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Taylor [2], Crochemore, Goralcik [13]).

Problems which have been stated, and partially solved, include the follow-
ing: given a pattern e, is it avoidable or not ? There is a nice algorithm in [4],
and basically the same in [48], to decide whether a pattern is avoidable. The
complexity of their algorithm is at least exponential. P. Roth (personal com-
munication) recently has proved that the general problem is N P-complete.

For a pattern e, denote by a(e) the number of distinct letters occurring in
e. Every pattern e such that |e| > 22(¢) is in fact avoidable, and this is the best
possible bound because there exists un unavoidable pattern of length 2" — 1
over an n letter pattern alphabet. The next problem is to determine, for some
unavoidable pattern e, the size u(e) of the smallest &k such that e is k-avoidable.
The first word that is 4-avoidable but not 3-avoidable has been given by [2].
Upper bounds of p, as a function of « are also given there. Recently, Roth [31],
Cassaigne [9], Goralcik, Vanicek [17] have solved the problem of determining all
the 2-avoidable binary patterns.
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