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alParis, Fran
eAbstra
tThe purpose of this survey is to present, in 
omtemporary terminology,the fundamental 
ontributions of Axel Thue to the study of 
ombinatorialproperties of sequen
es of symbols, insofar as repetitions are 
on
erned.The present state of the art is also sket
hed.1 Introdu
tionIn a series of four papers whi
h appeared during the period 1906{1914, AxelThue 
onsidered several 
ombinatorial problems whi
h arise in the study ofsequen
es of symbols. Two of these papers [44, 46℄ deal with word problemsfor �nitely presented semigroups (these papers 
ontain the de�nition of what isnow 
alled a \Thue system"). He was able to solve the word problem in spe
ial
ases. It was only in 1947 that the general 
ase was shown to be unsolvableindependently by E. L. Post [28℄ and A. A. Markov [24℄.The other two papers [43, 45℄ deal with repetitions in �nite and in�nitewords. Perhaps be
ause these papers were published in a journal with restri
tedavailability (this is guessed by G. A. Hedlund [20℄), this work of Thue was widelyignored during a long time, and 
onsequently some of his results have beenredis
overed again and again. Axel Thues papers on sequen
es are now moreeasily a

essible sin
e they are in
luded in the \Sele
ted Papers" [47℄ whi
h wereedited in 1977.It is the purpose of the present paper to give an a

ount of Axel Thue's workon repetitions in sequen
es, both in more re
ent terminology and in relation withnew results and dire
tions of resear
h. It appears that there is a noti
eable di�er-en
e, both in style and in amount of results, between the 1906 paper (22 pages)and the 1912 paper (67 pages). The �rst of these papers mainly 
ontains the�Partially supported by the PRC \Math�ematique et Informatique"1




onstru
tion of an in�nite square-free word over three letters. Thue gives alsoan in�nite square-free word over four letters obtained by what is now 
alled aniterated morphism, whilst the three letter word is 
onstru
ted in a slighly more
ompli
ated way (a uniform tag-system, in the terminology of Cobham [12℄).The se
ond paper atta
ks the more general problem of what Thue 
allsirredu
ible words. He devotes spe
ial attention to the 
ase of two and three let-ters. In parti
ular, he introdu
es what is now 
alled the Thue-Morse sequen
e,and shows that all twosided in�nite overlap-free words are derived from thissequen
e. There are several aspe
ts he did not 
onsider: �rst, many 
ombinato-rial properties of the Thue-Morse sequen
e (su
h as the number of fa
tors, there
urren
e index, and so on) were only investigated by M. Morse [25℄ or later;next, the 
hara
terization of all onesided in�nite overlap-free words | whi
his mu
h more diÆ
ult than that of twosided words | was only given later byFife [15℄. However, Thue gives a 
omplete des
ription of 
ir
ular overlap-freewords. We will also mention the problem of 
ounting the number of overlap-freewords over two letters.Axel Thue's investigation of square-free words over three letters is even moredetailed. He gives, in this paper, another 
onstru
tion of an in�nite square-freeword, by iterated morphism, and then initiates, in a 30 pages development, atentative to des
ribe all square-free words over three letters. He observes thatevery in�nite square-free word is an in�nite produ
t of words 
hosen in a setof six words, and 
lassi�es those in�nite square-free words that are produ
ts offour among these six words. His 
lassi�
ation, he observes, is similar both instatement and in proof te
hnique to what is found in diophantine equations:the solutions are parametrized by some variables whi
h are easier to manage.The paper is organized as follows: after some preliminary de�nitions, weintrodu
e the so-
alled Thue-Morse sequen
e. We next des
ribe Thue's resultson this word, and give a short a

ount of other developments about overlap-free words. The next se
tion 
ontains a presentation of Thue's 
onstru
tionsof square-free words, and a 
omparison with other methods. Then, Thue's
lassi�
ation | whi
h has been ignored for large parts | is des
ribed. Weend with a short des
ription of avoidable patterns, whi
h is the main stream ofa
tual resear
h.An alphabet is a �nite set (of symbols or letters). A word over some alphabetA is a (�nite) sequen
e of elements in A. The length of a word w is denotedby jwj. The empty word of length 0 is denoted by ". An in�nite word is amapping form into A, and a twosided in�nite word is a mapping from intoA. A 
ir
ular word or ne
kla
e is the equivalen
e 
lass of a �nite word under
ir
ular permutation. It 
an also be 
onsidered as a mapping of =n into A forsome positive integer n.A fa
tor of a word w is any word u that o

urs in w, i. e. su
h that thereexist word x, y with w = xuy. A square is a nonempty word of the form uu. Aword is square-free if none of its fa
tors is a square. Similarly, an overlap is aword of the form xuxux, where x is nonempty. The terminology is justi�ed by2



the fa
t that xux has two o

urren
es in xuxux, one as a pre�x (initial fa
tor)one as a suÆx (�nal fa
tor) and that thes o

urren
es have a 
ommon part (the
entral x). As before, a word is overlap-free if none of its fa
tors is an overlap.The set of words over A is the free monoid generated by A. It is denoted byA�. A fun
tion h : A� ! B� is a morphism if h(uv) = h(u)h(v) for all words u,v. If there is a letter a su
h that h(a) starts with the letter a, then hn(a) startswith the letter a for all n � 0. If the set words fhn(a)) j n � 0g is in�nite, themorphism is prolongeable in a and de�nes a unique in�nite word say x by therequirement that all hn(a) are pre�xes of x. The word x is said to be obtainedby iterating h on a, and x is also denoted by h!(a). Clearly, x is a �xed pointof h. This 
onstru
tion is frequently used by Axel Thue.For Axel Thue, a word w over an alphabet of size n is irredu
ible if any twoo

urren
es of the same word as a fa
tor in w are always separated by at leastn�2 letters. This means that an irredu
ible word over two letters is overlap-freeand that an irredu
ible word over three letters is square-free.2 The Thue-Morse sequen
eIn this se
tion, we re
all some basi
 properties 
on
erning the Thue-Morse se-quen
e. Other properties and proofs 
an be found in Lothaire [22℄ and Salo-maa [34℄.Let A = fa; bg be a two letter alphabet. Consider the morphism � from thefree monoid A� into itself de�ned by�(a) = ab; �(b) = baSetting, for n � 0, un = �n(a); vn = �n(b)one gets u0 = a v0 = bu1 = ab v1 = bau2 = abba v2 = baabu3 = abbabaab v3 = baababba� � �and more generally un+1 = unvn; vn+1 = vnunand un = vn; vn = unwhere w is obtained from w by ex
hanging a and b. Words un and vn arefrequently 
alled Morse blo
s. It is easily seen that u2n and v2n are palindroms,3



and that u2n+1 = v�2n+1, where w� is the reversal of w. The morphism � 
anbe extended to in�nite words; it has two �xed pointst = abbabaabbaababbabaab � � �= �(t)t = baababbaabbabaababba � � �= �(t)and un (resp. vn) is the pre�x of length 2n of t (resp. of t). It is equivalent tosay that t is the limit of the sequen
e (un)n�0 (for the usual topology on �niteand in�nite words), obtained by iterating the morphism �.The Thue-Morse sequen
e is the word t. There are several other 
hara
teri-zations of this word. Let tn be the n-th symbol in t, starting with n = 0. Thenit is easily shown by indu
tion thattn = � a if d1(n) � 0 (mod 2)b if d1(n) � 1 (mod 2)where d1(n) is the number of bits equal to 1 in the binary expansion of n. Forinstan
e, bin(19) = 10011, 
onsequently d1(19) = 3, and indeed t19 = a.As a 
onsequen
e, there is a �nite automaton 
omputing the values tn as afun
tion of bin(n). This automaton has two states 0 and 1. It reads the stringbin(n) from left to right, starting in state 0. At the end, the state rea
hed is0 or 1 a

ording to tn = b or tn = a. In fa
t, the automaton 
omputes d1(n)modulo 2. Another des
ription is given by Christol, Kamae, Mend�es-Fran
e,Rauzy in [11℄. There are many generalizations of the Thue-Morse sequen
e,motivated by its simpli
ity, and by its numerous properties. The �rst de�nitionof the sequen
e, by iterating a given morphism, is of 
ourse strongly relatedto Lindenmayer systems (see e.g. [32℄). In the 
ase where the morphism isuniform, that is when the lengths of the images of the letters are equal, a generaltheorem of Cobham [12℄ shows that the sequen
e x obtained by iterating themorphism 
an also be generated by a �nite automaton working on expansionsof natural integers in some base k. An equivalent way to state this is to saythat there are only �nitely many distin
t subsequen
es (xkrn+s)n�0 for r � 0and 0 � s � kr � 1. Let us 
all su
h a sequen
e automati
 (more pre
isely k-automati
). Another extension is by arithmeti
s. Consider a k letter alphabetf0; 1; : : : ; k � 1g and de�ne an in�nite word x by taking xn to be the sum,modulo k, of all the digits in the expression for n in base k. The Thue-Morsesequen
e is then just the 
ase k = 2. Sin
e there is an automaton for 
omputingxn from the k-ary expansion of n, there is also a uniform morphism generatingx. For instan
e, if k = 3, the morphism, say �3, is given by 0! 012, 1! 120,2 ! 201 (this general de�nition was in fa
t given already given by Prouhet, in1851. Several authors, su
h as Adler, Li [1℄ and Brlek [6℄, dis
uss the fa
t thatProuhet was the �rst to mention what perhaps should be 
alled the Prouhetsequen
e).Other sequen
es related to the Thue-Morse sequen
e are obtained by 
ount-ing fa
tors in the binary expansion, instead of bits. The Rudin-Shapiro [33, 38℄4



sequen
e is the in�nite word x over fa; bg de�ned byxn = � a if d11(n) � 0 (mod 2)b if d11(n) � 1 (mod 2)where d11(n) is the number of fa
tors 11 in the binary expansion of n. Similarily,in the sequen
e of Baum and Sweet [3℄, the n-th symbol is a or b a

ording towhether ther exists a fa
tor of odd length 
ontaining only the bit 0 in the binaryexpansion of n. Again, this sequen
e is automati
. Many number-theoreti
 re-sults have been given for automati
 sequen
es. Let us just mention the following,due to Loxton and van der Poorten [23℄:Theorem For any automati
 in�nite word x over the alphabet f0; : : : ; p� 1g,the real number Xxnp�nis trans
endental.As an example, the real number whose binary expansion is 0:011010011 � � �(asso
iated to the Thue-Morse sequen
e) is tran
endental (this was alreadyknown before).3 Overlap-free wordsAs already mentioned, the Thue-Morse sequen
e is overlap-free. Indeed, A.Thue proved1Theorem (Satz 6) The sequen
e t is overlap-free.What Thue a
tually show, is that a word w over the two letter alphabetA = fa; bg is overlap-free i� �(w) is overlap-free. Thue observes that the sameresult holds for 
ir
ular words. More pre
isely, he gives the following 
omplete
hara
terization of 
ir
ular overlap-free words:Theorem (Satz 13) Every 
ir
ular overlap-free word over the two letter alpha-bet A = fa; bg is of the form �n(ab), �n(aab) or �n(abb) for some n � 0.As a 
onsequen
e, a 
ir
ular overlap-free word has length 2n or 3� 2n forsome n � 0. These results are interesting be
ause they are related to overlap-free squares. It is indeed easy to show that a 
ir
ular word w is overlap-free i�the (ordinary) word ww is overlap-free. Thus, Thue 
hara
terizes overlap-freesquares, a result that was dis
overed later also by [42℄. T. Harju [19℄ gives aresult whi
h is similar, but di�erent.Theorem (Satz 9) For every twosided in�nite overlap-free word x, there existsa unique in�nite overlap-free word y su
h that x = �(y).1The mention Satz n refers to theorem n in [45℄5



This gives, in some sense, a 
omplete des
ription of the set of overlap-freetwosided in�nite words; indeed, it means that this set is a minimal set. Morepre
isely, re
all that a dynami
al system is a set X of in�nite words that is
losed for the shift operator, de�ned by T (x)(n) = x(n+ 1), and that is 
losedfor the usual topology on in�nite words. It is not diÆ
ult to show that xis in X i� Fa
t(x) � Fa
t(X), where Fa
t(X) is the set of �nite words thatare fa
tors of some element in X . A dynami
al system X is minimal if itdoes not 
ontain stri
tly any other dynami
al system. This means that X isequal to the dynami
al system generated by any of its elements, and also thatFa
t(x) = Fa
t(X) for any x 2 X .The property that the dynami
al system generated by the (twosided) Thue-Morse sequen
e is minimal was expli
itly proved by Gotts
halk and Hedlund[16℄. As a 
onsequen
e, every fa
tor appears with bounded gaps (is re
urrent,in the terminology of M. Morse [25℄). Axel Thue (Satz 11) only mentions thatevery fa
tor appears in�nitely many often.The stru
ture of onesided in�nite overlap-free words is more 
ompli
ated.Axel Thue was interested in the tree of in�nite overlap-free words and triedto to 
hara
terize those overlap-free words whi
h 
an be extended into in�niteoverlap-free words. His main result in this dire
tion isTheorem (Satz 15) Let w be an overlap-free word of w length n su
h that thereexist words u and v of length 8n with the property that uwv is still overlap-free.Then any overlap-free word x of length 26n 
ontains w as a fa
tor.In the proof of this result, he shows that the word x 
ontains a Morse blo
whi
h 
ontains w, and he 
on
ludes that w is inde�nitely extensible in bothdire
tions. An expli
it des
ription of the tree of in�nite overlap-free words bymeans of a �nite automaton was given by E. D. Fife and deserves a mention.Fife de�nes three operators on words, say �, �, 
, and he shows that everyoverlap-free in�nite words is the \value" of some in�nite word f in the threeoperators, provided the word f is in some rational set he gives expli
itely. Tobe more pre
ise, let Xn = fun; vng be the set of Morse blo
s of index n and letX = Sn�0Xn. Any word w 2 A�X1 admits a 
anoni
al de
omposition (z; y; �y)where y is the longest word in X su
h that w = zy�y. It is equivalent to saythat (z; y; �y) is the 
anoni
al de
omposition of w if �yy is not a suÆx of z. Asan example, the 
anoni
al de
omposition of aabaabbabaab is(aaba; abba; baab)and the de
omposition of abaabbaababbaabbabaab is(abaab; baababba; abbabaab)The three fun
tions �; �; 
 : A�X1 ! A�X1, a
ting on the right, are de�ned asfollows for a word w 2 A�X1 with 
anoni
al de
omposition (z; y; �y):w � � = zy�y � � = zy�yyy�y = wyy�y6



w � � = zy�y � � = zy�yy�y�yy = wy�y�yyw � 
 = zy�y � 
 = zy�y�yy = w�yySin
e w is a pre�x of w � �, w � �, and of w � 
, it makes sense to de�ne w � f byindu
tion for all \words" f in B�, with B = f�; �; 
g. By 
ontinuity, w � f isde�nde also for in�nite words f . Here are some examples:ab � � = abaabab � � = ababbaab � 
 = abbaab � 
! = taab � � = aabaab = a(ab � �)ab � ��
 = abaababbabaababbaabbabaabObserve that the last word 
ontains an overlap. Note also that, for w 2 A�X1and f 2 B�, one has �(w � f) = �(w) � f = w � 
f . A des
ription of an in�niteword x starting with ab or aab is an in�nite word f over B su
h that x = ab � for x = aab � f , a

ording to x starts with ab or aab.Proposition Every in�nite overlap-free word starting with the letter a admitsa unique des
ription.Let F = B! �B�IB!be the (rational) set of in�nite words over B having no fa
tor in the setI = f�; �g(
2)�f��; 
�; �
gand let G bet the set of words f su
h that �f is in F . Then:Theorem (Fife's Theorem) Let x be an in�nite word over A = fa; bg.(i) if x starts with ab, then x is overlap-free i� its des
ription is in F ;(ii) if x starts with aab, then x is overlap-free i� its des
ription is in G.A dire
t 
onsequen
e is the followingCorollary An overlap-free word w is the pre�x of an in�nite overlap-free wordi� w is a pre�x of a word ab � f with f 2 W or of a word aab � f with �f 2 W ,where W = B� �B�IB�.This implies in parti
ular a result of Restivo et Salemi [30℄, namely that it isde
idable whether an overlap-free word is extensible into an in�nite overlap-freeword. Another 
onsequen
e of Fife's des
ription is the followingCorollary The Thue-Morse word t is the greatest in�nite overlap-free word,in lexi
ographi
al order, that start with the letter a.Indeed, the 
hoi
e of the letters �, �, et 
 implies that if f � f 0, then ab � f �ab � f 0. The greatest word in F is 
!, and this shows the 
orollary. A. Carpi [8℄7



has developed a des
ription for �nite overlap-free words by means of a �niteautomaton. Unfortunately, his automaton is rather big (more than 300 states).There is another property that singles out the Thue-Morse word (and whi
hwas redis
overed and generalized by P. S�e�ebold [37℄). Call a morphism overlap-free if the image of an overlap-free word is always overlap-free.Theorem (Satz 16) Let h be an overlap-free morphism. Then there is an integern su
h that h = �n or h = � Æ �n, where � is the morphism that ex
hanges thetwo letters of the alphabet.Thus, the in�nite words t and �t are the only in�nite overlap-free wordsgenerated by iterated morphisms.Sin
e overlap-free words have a strong stru
ture, it seems natural to 
ountthem. The �rst result is due to Restivo and Salemi [30℄. They prove that thenumber 
n of overlap-free words over two letters grows polynomially in n (infa
t slower than n4). Kobayashi [21℄ has used Fife's theorem to derive the lowerof the more pre
ise bounds for 
n :Theorem There are 
onstants C1 and C2 su
h thatC1n� < 
n < C2n�where � = 1:155 : : : and � = 1:5866 : : :.One might ask what is the \real" limit. In fa
t, a re
ent and surprising resultby J. Cassaigne [10℄ shows that there is no limit. More pre
isely, set�0 = supfr j 9C > 0;8n; 
n � Cnrgand �0 = supfr j 9C > 0;8n; 
n � CnrgThenTheorem One has 1:155 < �0 < 1:276 < 1:332 < �0 < 1:587.This is to be 
ompared with the situation for square-free words. Indeed,Brandenburg [5℄ proved that for the number 
(n) of square-free words of lengthn over three letters, there are 
onstants 
1 � 1:032 and 
2 � 1:38 su
h that6
n1 < 
(n) < 6
n2 . Brandenburg also proves that the number of 
ube-free wordsover two letters grows exponentially.4 Square-free words4.1 First examplesIt is easily seen that the only square-free words over two letters are a, b, ab,ba, aba, bab. However, there exist arbitrarily long square-free words over threeletters, and by a simple argument, there exist in�nite square-free words over8



three letters. Histori
ally the �rst in�nite square-free word was given by Thuein his 1906 paper. It is over four letters, and it is obtained by iterating thefollowing morphism h, starting with the letter a:a 7! adb
bb 7! abd
b
 7! ab
db
 7! ab
bdThue explain his 
onstru
tion as follows : take a square-free word over threeletters, here ab
b, and interleave it with the letter d. This gives the morphism.The proof is not very diÆ
ult.In the same paper, Thue gives another in�nite square-free word, over threeletters. The word is by iterating the following 
onstru
tion: given a square-freeword w over A = fa; b; 
g, build �(w) by repla
ing ea
h letter a by aba
, ea
h bby bab
, and ea
h 
 either by b
a
 or by a
b
, a

ording to the letter pre
eding
 in w is a or b. Starting with a, one gets an in�nite wordaba
bab
aba
b
a
bab
aba
bab
a
b
aba
bab
 � � �whi
h he shows to be square-free. Although the de�nition is not by a morphism,the 
onstru
tion is very 
lose to it. There exist several ways to formulate itdi�erently: in fa
t, one has a fourth letter hidden in the des
ription, whi
happears when we note di�erently a letter 
 pre
ede by an a and a letter 
pre
eded by a b. The four letter word thus obtained is generated by a morphism,and at the end, the two variants of the letter 
 are identi�ed.In the 1912 paper, Axel Thue gives a morphism for generating an in�nitesquare-free word over three letters. The morphism is the following (Satz 18):a 7! ab
abb 7! a
ab
b
 7! a
b
a
bThis morphism seems to be rather 
ompli
ated. Its size, i. e. the sum of thelength of the images, is 18. It has been shown by A. Carpi [7℄ that this isthe best bound : every morphism over three letters that preserves square-freewords has size at least 18. (See also the dis
ussion in [4℄.) However, there is asimpler morphis that generates a square-free word (starting with a) given e.g.by Hall [18℄, namely a 7! ab
b 7! a

 7! bThis mophism does not preserve square-free words, be
ause the image of aba isab
a
ab
. 9



4.2 A Classi�
ationSin
e every twosided in�nite square-free word x over three letters a, b and 
 issome produ
t of the six words in the setX = fab; ab
; ab
b; a
; a
b; a
b
gThue studies a 
lassi�
ation a

ording to words of X that appear in x. It isquite remarkable that he a
hieves a 
lassi�
ation of those square-free in�nitewords that 
ontain exa
tly four of the six words in X . After some dis
ussion,he redu
es the 15 
ases (two words la
king among six) to the following three
ases : a
a and b
b Iaba and a
a IIaba and bab IIIare missing in the in�nite word under 
onsideration. In order to des
ribe thesethree families, he gives some \parametrization", and as we will see, redu
esthem to minimal dynami
al systems.Consider �rst square-free words of type (I), i. e. without o

urren
es of a
aor b
b. De�ne a morphism h from A = fa; b; 
g into B = f�; �g bya 7! �b 7! ���
 7! ��Then the following holdsTheorem (Satz 20,21) If x is a square-free in�nite word of type (I), then h(x)is overlap-free. Conversely, for every overlap-free word y, there exists a uniqueword x su
h that h(x) = y, and x is square-free of type (I).Thus, the square-free words of type (I) are des
ribe by the (minimal) set ofoverlap-free words over two letters. For the two other types, the situation isslightly more involved (and the proofs are more diÆ
ult). First, Thue observesthat the 
ases (II) and (III) redu
e one to ea
h other. Any word x of type (II)is uniquely de
omposable as a produ
t of words in the set f
a; 
b; 
ab; 
bag. Lets be the substitution de�ned by 
a 7! ab

b 7! a
b
ab 7! ab
b
ba 7! a
b
10



For a word x of type (II), the word y = s(x) is of type (III), and 
onversely,every word y of type (III) is of this form. Thus, it suÆ
es to des
ribe square-free words of type (II). For this, Thue introdu
es a new, �ve letter alphabetfA;B;C;D;Eg, and a morphism h : fA;B;C;D;Eg� ! fa; b; 
g� de�ned byA 7! ab
ba
b
a
bab
a
b
B 7! ab
ba
b
C 7! ab
ba
b
a
bD 7! ab
bab
a
b
E 7! ab
bab
a
bFinally, he de�nes a set of wordsW = fAB;AD;BA;BC;CA;CD;CE;DB;DE;EC;ED;BEB;EBE;DAC;DCBD;CBDCgIn order to state simply the next theorem, let us denote by Y the set of twosidedin�nite square-free words over the �ve letter alphabet fA;B;C;D;Eg that haveno fa
tors in W . Then Thue provesTheorem (Satz 26) The set of twosided in�nite square-free words of type (II)is the set of words of the form h(y) for y in Y .This theorem seems to be a little disappointing, sin
e a rather simple de-s
ription of three letter square-free words is repla
ed by a 
umbersome and
ompli
ated family Y of words over �ve letters. However, this family has animportant property: let � be the morphism from fA;B;C;D;Eg� into itselfde�ned by A 7! BDAEACB 7! BDCC 7! BDAED 7! BEACE 7! BEAETheorem (Satz 23,24) The morphism � is a bije
tion of the set Y onto itself.Thus, as before, the set Y is a minimal dynami
al system.A full des
ription of the tree of square-free words, like Fife's des
ription foroverlap-free words, is not yet available. Shelton and Soni have investigated thistree [39, 40, 41℄. They have shown in parti
ular that the set of in�nite square-free words over three letters is perfe
t. Roughly speaking, this means if x isany square-free in�nite word, then for any pre�x p of x, there are in�nitelymany in�nite square-free words that have p as pre�x. They show also that it is11



de
idable whether a square-free word p of length n is a pre�x of some in�nitesquare-free word, and their pro
edure is \uniform": There is a 
onstant K su
hthat if there exists a word q of length n + Kn3=2 su
h that pq is square-free,then p is the pre�x of some in�nite square-free word.4.3 RepetitionsAs already mentioned, Thue 
alls a word on n letters irredu
ible if every fa
-tor xyx veri�es jyj � n � 2. A more general 
on
ept, �rst 
onsidered by F.Dejean [14℄, is to require that the length of the word y separating the o

ur-ren
es of x is bounded from below by the length of x (times some fa
tor). Morepre
isely, we 
all repetition a word xyx with x non empty, and index of thisrepetition the quotient jyj=jxj. We are looking for words where all repetitionshave high index. F. Dejean has proved that there exists an in�nite word over3 letters that has only repetitions of index greater or equal to 1=3, and shealso shows that this bound is the best possible. Call repetition threshold thesmallest number �k su
h that there exists an in�nite word over k letters thathas only repetitions of index greater or equal to �k. Thus, Dejean's result maybe stated as : �3 = 1=3. She 
onje
tured that �4 = 3=2, a result proved byPansiot [27℄, and that �k = k � 2 for k � 5. The 
onje
ture was proved up to 9by Moulin-Ollagnier [26℄5 Avoidable patternsThe overlap-freeness of the Thue-Morse sequen
e, and the square-freeness ofthe other words we have presented 
an be expressed in the more general frame-work of avoidable and unavoidable patterns in strings. This 
on
ept has beenintrodu
ed in the 
ontext of equations de�ning algebras. Certain unavoidablewords have been used e.g. in [35℄ to 
hara
terize those �nite semigroups S thatare inherently non�nitely based, in the sense that S is not a member of anylo
ally �nite semigroup variety de�nable by �nitely many equations. It maybe noti
ed that Axel Thue repla
es his resear
h on repetitions in strings in aneven slightly more general 
ontext, sin
e he 
onsiders avoiding patterns with
onstants. However, he has not stated results in this spe
i�
 framework.Consider an alphabet E of \pattern symbols". A word e over E is a pattern.A pattern e is said to o

ur in some word w 2 A� if ther is a nonerasingmorphism h : E� ! A� su
h that h(e) is a fa
tor of w. A pattern e is avoidableover k letters, or is k-avoidable, if there is an in�nite word x over k letters su
hthat e does not o

ur in x. The Thue-Morse sequen
e shows that the patternsaaa and ababa are 2-avoidable, and square-free in�nite words show that aa is3-avoidable (but not 2-avoidable). Avoidable and unavoidable patterns havebeen studied by several people (Zimin [48℄, S
hmidt [36℄, Bean, Ehrenfeu
ht,M
Nulty [4℄, Roth [31℄, Cassaigne [9℄, Goral
ik, Vani
ek [17℄, Baker, M
Nulty,12



Taylor [2℄, Cro
hemore, Goral
ik [13℄).Problems whi
h have been stated, and partially solved, in
lude the follow-ing: given a pattern e, is it avoidable or not ? There is a ni
e algorithm in [4℄,and basi
ally the same in [48℄, to de
ide whether a pattern is avoidable. The
omplexity of their algorithm is at least exponential. P. Roth (personal 
om-muni
ation) re
ently has proved that the general problem is NP -
omplete.For a pattern e, denote by �(e) the number of distin
t letters o

urring ine. Every pattern e su
h that jej � 2�(e) is in fa
t avoidable, and this is the bestpossible bound be
ause there exists un unavoidable pattern of length 2n � 1over an n letter pattern alphabet. The next problem is to determine, for someunavoidable pattern e, the size �(e) of the smallest k su
h that e is k-avoidable.The �rst word that is 4-avoidable but not 3-avoidable has been given by [2℄.Upper bounds of �, as a fun
tion of � are also given there. Re
ently, Roth [31℄,Cassaigne [9℄, Goral
ik, Vani
ek [17℄ have solved the problem of determining allthe 2-avoidable binary patterns.Referen
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