
Axel Thue's work on repetitions in words�J. BerstelL.I.T.P.Universit�e Pierre et Marie CurieInstitut Blaise PasalParis, FraneAbstratThe purpose of this survey is to present, in omtemporary terminology,the fundamental ontributions of Axel Thue to the study of ombinatorialproperties of sequenes of symbols, insofar as repetitions are onerned.The present state of the art is also skethed.1 IntrodutionIn a series of four papers whih appeared during the period 1906{1914, AxelThue onsidered several ombinatorial problems whih arise in the study ofsequenes of symbols. Two of these papers [44, 46℄ deal with word problemsfor �nitely presented semigroups (these papers ontain the de�nition of what isnow alled a \Thue system"). He was able to solve the word problem in speialases. It was only in 1947 that the general ase was shown to be unsolvableindependently by E. L. Post [28℄ and A. A. Markov [24℄.The other two papers [43, 45℄ deal with repetitions in �nite and in�nitewords. Perhaps beause these papers were published in a journal with restritedavailability (this is guessed by G. A. Hedlund [20℄), this work of Thue was widelyignored during a long time, and onsequently some of his results have beenredisovered again and again. Axel Thues papers on sequenes are now moreeasily aessible sine they are inluded in the \Seleted Papers" [47℄ whih wereedited in 1977.It is the purpose of the present paper to give an aount of Axel Thue's workon repetitions in sequenes, both in more reent terminology and in relation withnew results and diretions of researh. It appears that there is a notieable di�er-ene, both in style and in amount of results, between the 1906 paper (22 pages)and the 1912 paper (67 pages). The �rst of these papers mainly ontains the�Partially supported by the PRC \Math�ematique et Informatique"1



onstrution of an in�nite square-free word over three letters. Thue gives alsoan in�nite square-free word over four letters obtained by what is now alled aniterated morphism, whilst the three letter word is onstruted in a slighly moreompliated way (a uniform tag-system, in the terminology of Cobham [12℄).The seond paper attaks the more general problem of what Thue allsirreduible words. He devotes speial attention to the ase of two and three let-ters. In partiular, he introdues what is now alled the Thue-Morse sequene,and shows that all twosided in�nite overlap-free words are derived from thissequene. There are several aspets he did not onsider: �rst, many ombinato-rial properties of the Thue-Morse sequene (suh as the number of fators, thereurrene index, and so on) were only investigated by M. Morse [25℄ or later;next, the haraterization of all onesided in�nite overlap-free words | whihis muh more diÆult than that of twosided words | was only given later byFife [15℄. However, Thue gives a omplete desription of irular overlap-freewords. We will also mention the problem of ounting the number of overlap-freewords over two letters.Axel Thue's investigation of square-free words over three letters is even moredetailed. He gives, in this paper, another onstrution of an in�nite square-freeword, by iterated morphism, and then initiates, in a 30 pages development, atentative to desribe all square-free words over three letters. He observes thatevery in�nite square-free word is an in�nite produt of words hosen in a setof six words, and lassi�es those in�nite square-free words that are produts offour among these six words. His lassi�ation, he observes, is similar both instatement and in proof tehnique to what is found in diophantine equations:the solutions are parametrized by some variables whih are easier to manage.The paper is organized as follows: after some preliminary de�nitions, weintrodue the so-alled Thue-Morse sequene. We next desribe Thue's resultson this word, and give a short aount of other developments about overlap-free words. The next setion ontains a presentation of Thue's onstrutionsof square-free words, and a omparison with other methods. Then, Thue'slassi�ation | whih has been ignored for large parts | is desribed. Weend with a short desription of avoidable patterns, whih is the main stream ofatual researh.An alphabet is a �nite set (of symbols or letters). A word over some alphabetA is a (�nite) sequene of elements in A. The length of a word w is denotedby jwj. The empty word of length 0 is denoted by ". An in�nite word is amapping form into A, and a twosided in�nite word is a mapping from intoA. A irular word or neklae is the equivalene lass of a �nite word underirular permutation. It an also be onsidered as a mapping of =n into A forsome positive integer n.A fator of a word w is any word u that ours in w, i. e. suh that thereexist word x, y with w = xuy. A square is a nonempty word of the form uu. Aword is square-free if none of its fators is a square. Similarly, an overlap is aword of the form xuxux, where x is nonempty. The terminology is justi�ed by2



the fat that xux has two ourrenes in xuxux, one as a pre�x (initial fator)one as a suÆx (�nal fator) and that thes ourrenes have a ommon part (theentral x). As before, a word is overlap-free if none of its fators is an overlap.The set of words over A is the free monoid generated by A. It is denoted byA�. A funtion h : A� ! B� is a morphism if h(uv) = h(u)h(v) for all words u,v. If there is a letter a suh that h(a) starts with the letter a, then hn(a) startswith the letter a for all n � 0. If the set words fhn(a)) j n � 0g is in�nite, themorphism is prolongeable in a and de�nes a unique in�nite word say x by therequirement that all hn(a) are pre�xes of x. The word x is said to be obtainedby iterating h on a, and x is also denoted by h!(a). Clearly, x is a �xed pointof h. This onstrution is frequently used by Axel Thue.For Axel Thue, a word w over an alphabet of size n is irreduible if any twoourrenes of the same word as a fator in w are always separated by at leastn�2 letters. This means that an irreduible word over two letters is overlap-freeand that an irreduible word over three letters is square-free.2 The Thue-Morse sequeneIn this setion, we reall some basi properties onerning the Thue-Morse se-quene. Other properties and proofs an be found in Lothaire [22℄ and Salo-maa [34℄.Let A = fa; bg be a two letter alphabet. Consider the morphism � from thefree monoid A� into itself de�ned by�(a) = ab; �(b) = baSetting, for n � 0, un = �n(a); vn = �n(b)one gets u0 = a v0 = bu1 = ab v1 = bau2 = abba v2 = baabu3 = abbabaab v3 = baababba� � �and more generally un+1 = unvn; vn+1 = vnunand un = vn; vn = unwhere w is obtained from w by exhanging a and b. Words un and vn arefrequently alled Morse blos. It is easily seen that u2n and v2n are palindroms,3



and that u2n+1 = v�2n+1, where w� is the reversal of w. The morphism � anbe extended to in�nite words; it has two �xed pointst = abbabaabbaababbabaab � � �= �(t)t = baababbaabbabaababba � � �= �(t)and un (resp. vn) is the pre�x of length 2n of t (resp. of t). It is equivalent tosay that t is the limit of the sequene (un)n�0 (for the usual topology on �niteand in�nite words), obtained by iterating the morphism �.The Thue-Morse sequene is the word t. There are several other harateri-zations of this word. Let tn be the n-th symbol in t, starting with n = 0. Thenit is easily shown by indution thattn = � a if d1(n) � 0 (mod 2)b if d1(n) � 1 (mod 2)where d1(n) is the number of bits equal to 1 in the binary expansion of n. Forinstane, bin(19) = 10011, onsequently d1(19) = 3, and indeed t19 = a.As a onsequene, there is a �nite automaton omputing the values tn as afuntion of bin(n). This automaton has two states 0 and 1. It reads the stringbin(n) from left to right, starting in state 0. At the end, the state reahed is0 or 1 aording to tn = b or tn = a. In fat, the automaton omputes d1(n)modulo 2. Another desription is given by Christol, Kamae, Mend�es-Frane,Rauzy in [11℄. There are many generalizations of the Thue-Morse sequene,motivated by its simpliity, and by its numerous properties. The �rst de�nitionof the sequene, by iterating a given morphism, is of ourse strongly relatedto Lindenmayer systems (see e.g. [32℄). In the ase where the morphism isuniform, that is when the lengths of the images of the letters are equal, a generaltheorem of Cobham [12℄ shows that the sequene x obtained by iterating themorphism an also be generated by a �nite automaton working on expansionsof natural integers in some base k. An equivalent way to state this is to saythat there are only �nitely many distint subsequenes (xkrn+s)n�0 for r � 0and 0 � s � kr � 1. Let us all suh a sequene automati (more preisely k-automati). Another extension is by arithmetis. Consider a k letter alphabetf0; 1; : : : ; k � 1g and de�ne an in�nite word x by taking xn to be the sum,modulo k, of all the digits in the expression for n in base k. The Thue-Morsesequene is then just the ase k = 2. Sine there is an automaton for omputingxn from the k-ary expansion of n, there is also a uniform morphism generatingx. For instane, if k = 3, the morphism, say �3, is given by 0! 012, 1! 120,2 ! 201 (this general de�nition was in fat given already given by Prouhet, in1851. Several authors, suh as Adler, Li [1℄ and Brlek [6℄, disuss the fat thatProuhet was the �rst to mention what perhaps should be alled the Prouhetsequene).Other sequenes related to the Thue-Morse sequene are obtained by ount-ing fators in the binary expansion, instead of bits. The Rudin-Shapiro [33, 38℄4



sequene is the in�nite word x over fa; bg de�ned byxn = � a if d11(n) � 0 (mod 2)b if d11(n) � 1 (mod 2)where d11(n) is the number of fators 11 in the binary expansion of n. Similarily,in the sequene of Baum and Sweet [3℄, the n-th symbol is a or b aording towhether ther exists a fator of odd length ontaining only the bit 0 in the binaryexpansion of n. Again, this sequene is automati. Many number-theoreti re-sults have been given for automati sequenes. Let us just mention the following,due to Loxton and van der Poorten [23℄:Theorem For any automati in�nite word x over the alphabet f0; : : : ; p� 1g,the real number Xxnp�nis transendental.As an example, the real number whose binary expansion is 0:011010011 � � �(assoiated to the Thue-Morse sequene) is tranendental (this was alreadyknown before).3 Overlap-free wordsAs already mentioned, the Thue-Morse sequene is overlap-free. Indeed, A.Thue proved1Theorem (Satz 6) The sequene t is overlap-free.What Thue atually show, is that a word w over the two letter alphabetA = fa; bg is overlap-free i� �(w) is overlap-free. Thue observes that the sameresult holds for irular words. More preisely, he gives the following ompleteharaterization of irular overlap-free words:Theorem (Satz 13) Every irular overlap-free word over the two letter alpha-bet A = fa; bg is of the form �n(ab), �n(aab) or �n(abb) for some n � 0.As a onsequene, a irular overlap-free word has length 2n or 3� 2n forsome n � 0. These results are interesting beause they are related to overlap-free squares. It is indeed easy to show that a irular word w is overlap-free i�the (ordinary) word ww is overlap-free. Thus, Thue haraterizes overlap-freesquares, a result that was disovered later also by [42℄. T. Harju [19℄ gives aresult whih is similar, but di�erent.Theorem (Satz 9) For every twosided in�nite overlap-free word x, there existsa unique in�nite overlap-free word y suh that x = �(y).1The mention Satz n refers to theorem n in [45℄5



This gives, in some sense, a omplete desription of the set of overlap-freetwosided in�nite words; indeed, it means that this set is a minimal set. Morepreisely, reall that a dynamial system is a set X of in�nite words that islosed for the shift operator, de�ned by T (x)(n) = x(n+ 1), and that is losedfor the usual topology on in�nite words. It is not diÆult to show that xis in X i� Fat(x) � Fat(X), where Fat(X) is the set of �nite words thatare fators of some element in X . A dynamial system X is minimal if itdoes not ontain stritly any other dynamial system. This means that X isequal to the dynamial system generated by any of its elements, and also thatFat(x) = Fat(X) for any x 2 X .The property that the dynamial system generated by the (twosided) Thue-Morse sequene is minimal was expliitly proved by Gottshalk and Hedlund[16℄. As a onsequene, every fator appears with bounded gaps (is reurrent,in the terminology of M. Morse [25℄). Axel Thue (Satz 11) only mentions thatevery fator appears in�nitely many often.The struture of onesided in�nite overlap-free words is more ompliated.Axel Thue was interested in the tree of in�nite overlap-free words and triedto to haraterize those overlap-free words whih an be extended into in�niteoverlap-free words. His main result in this diretion isTheorem (Satz 15) Let w be an overlap-free word of w length n suh that thereexist words u and v of length 8n with the property that uwv is still overlap-free.Then any overlap-free word x of length 26n ontains w as a fator.In the proof of this result, he shows that the word x ontains a Morse blowhih ontains w, and he onludes that w is inde�nitely extensible in bothdiretions. An expliit desription of the tree of in�nite overlap-free words bymeans of a �nite automaton was given by E. D. Fife and deserves a mention.Fife de�nes three operators on words, say �, �, , and he shows that everyoverlap-free in�nite words is the \value" of some in�nite word f in the threeoperators, provided the word f is in some rational set he gives expliitely. Tobe more preise, let Xn = fun; vng be the set of Morse blos of index n and letX = Sn�0Xn. Any word w 2 A�X1 admits a anonial deomposition (z; y; �y)where y is the longest word in X suh that w = zy�y. It is equivalent to saythat (z; y; �y) is the anonial deomposition of w if �yy is not a suÆx of z. Asan example, the anonial deomposition of aabaabbabaab is(aaba; abba; baab)and the deomposition of abaabbaababbaabbabaab is(abaab; baababba; abbabaab)The three funtions �; �;  : A�X1 ! A�X1, ating on the right, are de�ned asfollows for a word w 2 A�X1 with anonial deomposition (z; y; �y):w � � = zy�y � � = zy�yyy�y = wyy�y6



w � � = zy�y � � = zy�yy�y�yy = wy�y�yyw �  = zy�y �  = zy�y�yy = w�yySine w is a pre�x of w � �, w � �, and of w � , it makes sense to de�ne w � f byindution for all \words" f in B�, with B = f�; �; g. By ontinuity, w � f isde�nde also for in�nite words f . Here are some examples:ab � � = abaabab � � = ababbaab �  = abbaab � ! = taab � � = aabaab = a(ab � �)ab � �� = abaababbabaababbaabbabaabObserve that the last word ontains an overlap. Note also that, for w 2 A�X1and f 2 B�, one has �(w � f) = �(w) � f = w � f . A desription of an in�niteword x starting with ab or aab is an in�nite word f over B suh that x = ab � for x = aab � f , aording to x starts with ab or aab.Proposition Every in�nite overlap-free word starting with the letter a admitsa unique desription.Let F = B! �B�IB!be the (rational) set of in�nite words over B having no fator in the setI = f�; �g(2)�f��; �; �gand let G bet the set of words f suh that �f is in F . Then:Theorem (Fife's Theorem) Let x be an in�nite word over A = fa; bg.(i) if x starts with ab, then x is overlap-free i� its desription is in F ;(ii) if x starts with aab, then x is overlap-free i� its desription is in G.A diret onsequene is the followingCorollary An overlap-free word w is the pre�x of an in�nite overlap-free wordi� w is a pre�x of a word ab � f with f 2 W or of a word aab � f with �f 2 W ,where W = B� �B�IB�.This implies in partiular a result of Restivo et Salemi [30℄, namely that it isdeidable whether an overlap-free word is extensible into an in�nite overlap-freeword. Another onsequene of Fife's desription is the followingCorollary The Thue-Morse word t is the greatest in�nite overlap-free word,in lexiographial order, that start with the letter a.Indeed, the hoie of the letters �, �, et  implies that if f � f 0, then ab � f �ab � f 0. The greatest word in F is !, and this shows the orollary. A. Carpi [8℄7



has developed a desription for �nite overlap-free words by means of a �niteautomaton. Unfortunately, his automaton is rather big (more than 300 states).There is another property that singles out the Thue-Morse word (and whihwas redisovered and generalized by P. S�e�ebold [37℄). Call a morphism overlap-free if the image of an overlap-free word is always overlap-free.Theorem (Satz 16) Let h be an overlap-free morphism. Then there is an integern suh that h = �n or h = � Æ �n, where � is the morphism that exhanges thetwo letters of the alphabet.Thus, the in�nite words t and �t are the only in�nite overlap-free wordsgenerated by iterated morphisms.Sine overlap-free words have a strong struture, it seems natural to ountthem. The �rst result is due to Restivo and Salemi [30℄. They prove that thenumber n of overlap-free words over two letters grows polynomially in n (infat slower than n4). Kobayashi [21℄ has used Fife's theorem to derive the lowerof the more preise bounds for n :Theorem There are onstants C1 and C2 suh thatC1n� < n < C2n�where � = 1:155 : : : and � = 1:5866 : : :.One might ask what is the \real" limit. In fat, a reent and surprising resultby J. Cassaigne [10℄ shows that there is no limit. More preisely, set�0 = supfr j 9C > 0;8n; n � Cnrgand �0 = supfr j 9C > 0;8n; n � CnrgThenTheorem One has 1:155 < �0 < 1:276 < 1:332 < �0 < 1:587.This is to be ompared with the situation for square-free words. Indeed,Brandenburg [5℄ proved that for the number (n) of square-free words of lengthn over three letters, there are onstants 1 � 1:032 and 2 � 1:38 suh that6n1 < (n) < 6n2 . Brandenburg also proves that the number of ube-free wordsover two letters grows exponentially.4 Square-free words4.1 First examplesIt is easily seen that the only square-free words over two letters are a, b, ab,ba, aba, bab. However, there exist arbitrarily long square-free words over threeletters, and by a simple argument, there exist in�nite square-free words over8



three letters. Historially the �rst in�nite square-free word was given by Thuein his 1906 paper. It is over four letters, and it is obtained by iterating thefollowing morphism h, starting with the letter a:a 7! adbbb 7! abdb 7! abdb 7! abbdThue explain his onstrution as follows : take a square-free word over threeletters, here abb, and interleave it with the letter d. This gives the morphism.The proof is not very diÆult.In the same paper, Thue gives another in�nite square-free word, over threeletters. The word is by iterating the following onstrution: given a square-freeword w over A = fa; b; g, build �(w) by replaing eah letter a by aba, eah bby bab, and eah  either by ba or by ab, aording to the letter preeding in w is a or b. Starting with a, one gets an in�nite wordabababababababababababababab � � �whih he shows to be square-free. Although the de�nition is not by a morphism,the onstrution is very lose to it. There exist several ways to formulate itdi�erently: in fat, one has a fourth letter hidden in the desription, whihappears when we note di�erently a letter  preede by an a and a letter preeded by a b. The four letter word thus obtained is generated by a morphism,and at the end, the two variants of the letter  are identi�ed.In the 1912 paper, Axel Thue gives a morphism for generating an in�nitesquare-free word over three letters. The morphism is the following (Satz 18):a 7! ababb 7! aabb 7! ababThis morphism seems to be rather ompliated. Its size, i. e. the sum of thelength of the images, is 18. It has been shown by A. Carpi [7℄ that this isthe best bound : every morphism over three letters that preserves square-freewords has size at least 18. (See also the disussion in [4℄.) However, there is asimpler morphis that generates a square-free word (starting with a) given e.g.by Hall [18℄, namely a 7! abb 7! a 7! bThis mophism does not preserve square-free words, beause the image of aba isabaab. 9



4.2 A Classi�ationSine every twosided in�nite square-free word x over three letters a, b and  issome produt of the six words in the setX = fab; ab; abb; a; ab; abgThue studies a lassi�ation aording to words of X that appear in x. It isquite remarkable that he ahieves a lassi�ation of those square-free in�nitewords that ontain exatly four of the six words in X . After some disussion,he redues the 15 ases (two words laking among six) to the following threeases : aa and bb Iaba and aa IIaba and bab IIIare missing in the in�nite word under onsideration. In order to desribe thesethree families, he gives some \parametrization", and as we will see, reduesthem to minimal dynamial systems.Consider �rst square-free words of type (I), i. e. without ourrenes of aaor bb. De�ne a morphism h from A = fa; b; g into B = f�; �g bya 7! �b 7! ��� 7! ��Then the following holdsTheorem (Satz 20,21) If x is a square-free in�nite word of type (I), then h(x)is overlap-free. Conversely, for every overlap-free word y, there exists a uniqueword x suh that h(x) = y, and x is square-free of type (I).Thus, the square-free words of type (I) are desribe by the (minimal) set ofoverlap-free words over two letters. For the two other types, the situation isslightly more involved (and the proofs are more diÆult). First, Thue observesthat the ases (II) and (III) redue one to eah other. Any word x of type (II)is uniquely deomposable as a produt of words in the set fa; b; ab; bag. Lets be the substitution de�ned by a 7! abb 7! abab 7! abbba 7! ab10



For a word x of type (II), the word y = s(x) is of type (III), and onversely,every word y of type (III) is of this form. Thus, it suÆes to desribe square-free words of type (II). For this, Thue introdues a new, �ve letter alphabetfA;B;C;D;Eg, and a morphism h : fA;B;C;D;Eg� ! fa; b; g� de�ned byA 7! abbababababB 7! abbabC 7! abbababD 7! abbababE 7! abbababFinally, he de�nes a set of wordsW = fAB;AD;BA;BC;CA;CD;CE;DB;DE;EC;ED;BEB;EBE;DAC;DCBD;CBDCgIn order to state simply the next theorem, let us denote by Y the set of twosidedin�nite square-free words over the �ve letter alphabet fA;B;C;D;Eg that haveno fators in W . Then Thue provesTheorem (Satz 26) The set of twosided in�nite square-free words of type (II)is the set of words of the form h(y) for y in Y .This theorem seems to be a little disappointing, sine a rather simple de-sription of three letter square-free words is replaed by a umbersome andompliated family Y of words over �ve letters. However, this family has animportant property: let � be the morphism from fA;B;C;D;Eg� into itselfde�ned by A 7! BDAEACB 7! BDCC 7! BDAED 7! BEACE 7! BEAETheorem (Satz 23,24) The morphism � is a bijetion of the set Y onto itself.Thus, as before, the set Y is a minimal dynamial system.A full desription of the tree of square-free words, like Fife's desription foroverlap-free words, is not yet available. Shelton and Soni have investigated thistree [39, 40, 41℄. They have shown in partiular that the set of in�nite square-free words over three letters is perfet. Roughly speaking, this means if x isany square-free in�nite word, then for any pre�x p of x, there are in�nitelymany in�nite square-free words that have p as pre�x. They show also that it is11



deidable whether a square-free word p of length n is a pre�x of some in�nitesquare-free word, and their proedure is \uniform": There is a onstant K suhthat if there exists a word q of length n + Kn3=2 suh that pq is square-free,then p is the pre�x of some in�nite square-free word.4.3 RepetitionsAs already mentioned, Thue alls a word on n letters irreduible if every fa-tor xyx veri�es jyj � n � 2. A more general onept, �rst onsidered by F.Dejean [14℄, is to require that the length of the word y separating the our-renes of x is bounded from below by the length of x (times some fator). Morepreisely, we all repetition a word xyx with x non empty, and index of thisrepetition the quotient jyj=jxj. We are looking for words where all repetitionshave high index. F. Dejean has proved that there exists an in�nite word over3 letters that has only repetitions of index greater or equal to 1=3, and shealso shows that this bound is the best possible. Call repetition threshold thesmallest number �k suh that there exists an in�nite word over k letters thathas only repetitions of index greater or equal to �k. Thus, Dejean's result maybe stated as : �3 = 1=3. She onjetured that �4 = 3=2, a result proved byPansiot [27℄, and that �k = k � 2 for k � 5. The onjeture was proved up to 9by Moulin-Ollagnier [26℄5 Avoidable patternsThe overlap-freeness of the Thue-Morse sequene, and the square-freeness ofthe other words we have presented an be expressed in the more general frame-work of avoidable and unavoidable patterns in strings. This onept has beenintrodued in the ontext of equations de�ning algebras. Certain unavoidablewords have been used e.g. in [35℄ to haraterize those �nite semigroups S thatare inherently non�nitely based, in the sense that S is not a member of anyloally �nite semigroup variety de�nable by �nitely many equations. It maybe notied that Axel Thue replaes his researh on repetitions in strings in aneven slightly more general ontext, sine he onsiders avoiding patterns withonstants. However, he has not stated results in this spei� framework.Consider an alphabet E of \pattern symbols". A word e over E is a pattern.A pattern e is said to our in some word w 2 A� if ther is a nonerasingmorphism h : E� ! A� suh that h(e) is a fator of w. A pattern e is avoidableover k letters, or is k-avoidable, if there is an in�nite word x over k letters suhthat e does not our in x. The Thue-Morse sequene shows that the patternsaaa and ababa are 2-avoidable, and square-free in�nite words show that aa is3-avoidable (but not 2-avoidable). Avoidable and unavoidable patterns havebeen studied by several people (Zimin [48℄, Shmidt [36℄, Bean, Ehrenfeuht,MNulty [4℄, Roth [31℄, Cassaigne [9℄, Goralik, Vaniek [17℄, Baker, MNulty,12
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