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Abstract 

We prove that a morphism h over a two-letter alphabet {a, b} is overlap-free, i.e., maps overlap-free 

words into overlap-free words, iff the word h(abbabaab) is overlap-free. As a consequence, we obtain 

a simple proof of the fact that the only infinite overlap-free words that can be obtained by iterating 

a morphism are the Thue-Morse sequence and its opposite. 

RLsumP 

Nous prouvons qu’un morphisme h sur un alphabet a deux lettres {a, b} est sans chevauchement, 

c’est-a-dire envoie les mots sans chevauchement sur des mots sans chevauchement si et seulement si 
le mot h(abbabaab) est sans chevauchement. Comme consequence, nous obtenons une preuve simple 

du fait que les seuls mots infinis sans chevauchement qui peuvent &tre obtenus par iteration dun 

morphisme sont le mot de Thue-Morse et son oppose. 

1. Introduction 

Thue was the first to show, in 1912 [15] the existence of an infinite overlap-free 

word over two letters. He indeed proved that the infinite word 

t = abbabaabbaababbab . . . 
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that is now called the Thue-Morse sequence, is overlap-free. This was rediscovered 
later by Morse [9], Morse and Hedlund [lo], Arson Cl] and others. A fairly complete 
description of all infinite overlap-free words over two letters is given in Fife [4]. 
Recent results can be found in [2,7,11,14]. Surveys are in [8, 121. Thue’s proof 
consists in showing that a special morphism p over two letters, defined by ~(a) = ab, 
p(b) = ba, is overlap-free: for any overlap-free word x, the word p(x) is overlap-free. 
More generally, let h be an overlap-free morphism over a two-letter alphabet {a, b}, 
i.e., a morphism that maps overlap-free words into overlap-free words. Thue proved 
that h is basically a power of the morphism p. 

The aim of this note is to show that, in order to test whether a morphism h is 
overlap-free, it suffices to check that the single word h(ubbubuub) is overlap-free. 
Thue’s characterization is an immediate consequence of this result. Moreover, we 
obtain a simple proof of a stronger result, first proved by Seebold [13], namely that 
the Thue-Morse sequence z and its opposite, obtained by exchanging a and b, are the 
only infinite overlap-free words that can be generated by iterating a morphism, or 
equivalently, are the only infinite overlap-free words that are fixed points of a non- 
trivial overlap-free morphism. 

2. Definitions 

Let A = (a, b} be a two-letter alphabet. The empty word is denoted by a, the length 
of a word u is denoted by ) u I. A morphism is a mapping h from A* into itself such that 
h(w) = h(u)h(u) for all words U, u. A morphism is nonerasing if neither h(u) nor h(b) is 
the empty word. In the sequel, all morphisms will be supposed to be distinct from the 
null morphism which maps all letters into the empty word. Consider the morphism 
p from the free monoid A* into itself defined by 

P(U) = & 

Setting, for n 2 0, 

u, = P”(a), 

p(b) = bu. 

0, = /JV) 

one gets 

uo = a 

u1 = ub 

u. = b 

u1 = bu 

u2 = ubbu v2 = buub 

uj = ubbubuub v3 = buububbu 

and more generally u,+ 1 = u,v,, v,+r = v,u, and u, = E(v,), v, = E(u,), where E is 
the morphism that exchanges a and b. The word E(w) is called the opposite of w. It is 
easily seen that uZn and vZn are palindromes, and that uZn+ 1 = a,, + 1, where KJ is the 
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reversal of w. The morphism p can be extended to infinite words; it has two fixed 

points 

t = abbabaabbaababbabaab . . . = p(t), 

E(t) = baababbaabbabaababba . . . = p(E(t)). 

The Thue-Morse sequence is the word t. Since u, (respectively u,) are the prefixes of 

length 2” of t (respectively of E(t)), it is equivalent to say that t is the limit of the 

sequence (4, t 0 (for the usual topology on finite and infinite words), obtained by 

iterating the morphism p. 

There exist several other characterizations of the Thue-Morse sequence that can be 

found e.g. in Lothaire [S] and Salomaa [12]. 

More generally, we say that a word x is a morphic infinite word (with generator h) if 

there exists an integer m 2 1 and a letter a such that 

x = lim (h”“(a)). 
“+* 

Of course, this implies that x = h”(x). Observe that the integer m is always bounded 

by the size of the alphabet. 

A word w is overlap-free if it has no factor of the form xuxux for some word u and 

some nonempty word x. Thue proved 

Theorem 2.1 [15, Satz S]. The infinite word t is overlap-free. 

A morphism h is called overlap-free if h(x) is overlap-free for every overlap-free 

word x. Clearly, the composition of two overlap-free morphisms is again overlap-free. 

Besides the two trivial morphisms, namely the identity and the morphism E that 

exchanges a and b, there is basically only one overlap-free morphism. Indeed, 

one has 

Theorem 2.2 [15, Satz 151. Any overlap-free morphism h is of the form h = pk or 

h = E 0 ,uk for some integer k 2 0. 

3. Results 

The main result of this note is the following. 

Theorem 3.1. Let h be a morphism such that the word h(abbabaab) is overlap-jiiee. Then 

there exists an integer k 2 0 such that h = Eo pk or h = pk. 

Thue’s characterization of overlap-free morphisms is an immediate consequence of 

this theorem. We also get the following corollary. 
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Corollary 3.2. A morphism h is overlap-free @the word h(abbabaab) is overlap-free. 

This corollary is of interest mainly when the morphism h is not explicitly known by 

its images h(a) and h(b), but when the word h(abbabaab) can be computed. The 

theorem is an immediate consequence of the following proposition. 

Proposition 3.3. Let h be a nonerasing morphism such that h(x) is overlap-free for any 
overlap-free word of length 3. Then there exists an integer k 2 0 such that h = ,uk or 
h = Eonk. 

Thus, in order to test whether a morphism h is overlap-free, it suffices either to 

consider the word h(abbabaab) or to check that h is nonerasing and to consider the six 

words h(aab), h(aba), h(abb), h(baa), h(bab) and h(bba). If these are overlap-free, then 

h is of the indicated form and therefore is an overlap-free morphism. This statement is 

similar to a result by Karhumlki [6] saying that a binary morphism is cube-free iff it 

preserves cube-free words of length at most 10, and to a result by Crochemore [3] 

according to which a morphism over a three-letter alphabet is square-free iff it 

preserves square-free words of length at most 5. 

Another consequence of the theorem that admits a short proof is the following 

result, first proved by Setbold [13]: 

Theorem 3.4. There are only two morphic infinite overlap-free words over a two-letter 
alphabet, namely the Thue-Morse sequence t and its opposite E(t). 

Another way to state this is 

Theorem 3.5. Let x be an infinite overlap-free word that is afixed point of a morphism 
h that is not the identity. Then x is the Thue-Morse sequence or its opposite. 

4. Proofs 

We shall use the following lemmas, which are well known. The first two are due to 

Thue, and only the first has a slightly involved proof (see e.g. Lothaire [S]). The last 

lemma has been established independently by many people. 

Lemma 4.1. A word x is overlap-free iff u(x) is overlap-free. 

Lemma 4.2. If x = cddyc’c’d’ is an overlap-free word, where c, d, c’, d’ are letters and 
y is a word, then dye’ E {ab, ba}*. 

Lemma 4.3. If x is an overlap-free word of length at least 5, then x contains a factor aa 
or bb. 
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Lemma 4.4. If x is an overlap-free word, then there exists an overlap-free word y and 
two words u, u E {E, a, b, aa, bb} such that x = up( y)u. 

Proof of Theorem 3.1. Assume that w = h(abbabaab) is overlap-free. If h(a) = E 
then h(bbab) = h(b)3 and w contains a cube. Thus h(a) is nonempty and similarly 
h(b) is nonempty. Consequently, h is nonerasing, and since abbabaab contains all 
overlap-free words of length 3 as factors, the morphism h fulfils the conditions of 
Proposition 3.3. 0 

Proof of Proposition 3.3. Set h(a) = u, h(b) = u. Observe that u and v do not start with 
the same letter, since otherwise h(aab) contains an overlap. Similarly, u and u do not 
end with the same letter. Moreover, u and v do not start or end with aa nor with bb. 
Assume indeed for example that u starts with aa. Since either u or u ends with the letter 
a, one of the words uu or vu contains the cube a3. Thus, if ( u ) 2 2, it starts and ends 
with ab or ba, and the same holds for U. 

The result holds if ju( = (~1 = 1. Thus we assume that (uJ > 1 or (uJ > 1. We show 
first that then ) u) > 1 and ) u 1 > 1 and that both u and v are of even length. Assume 
indeed that ( u ( > 1. Then ( v ( > 1 since otherwise v is a single letter, say u = a, and then 
u starts with ba and ends with ab. Thus h(aba) contains the factor ababa. 

We now show that ( u 1 is even. If ( u 1 = 3, then by the preceding discussion, one has 
u = aba or u = bab. In the first case (the second is handled similarly), the word u starts 
and ends with the letter b. But then again h(bab) contains the overlap babab. Next, 
assume (u( 2 5. Then u has the form u = pbaabs or u = pabbas for some words p, s. 
Indeed, by Lemma 4.3, the word u contains a factor aa or bb, and we have seen that 
this factor is neither a prefix nor a suffix of u. In the first case (the second case is 
similar), the factor baabspbaab of the word uu = pbaabspbaabs fulfils the conditions of 
Lemma 4.2, showing that sp has even length, and that 1 u ( is even. 

We now prove that u and u are in {ab, ba}*. If ju] = 2, then u = ab or u = ba. If 
JuI = 4, then u starts and ends with ab or ba, and u is in {ab, ba}*. If ( UI 2 6, then 
u contains a factor dd (with d E {a, b >) which is neither a prefix nor a suffix. Further, we 
may assume that u starts with the letter a. We consider two cases, according to u ends 
with the letter a or b. 

(i) If u = awa, then u admits a factorization u = axddya for some letter d and some 
words x, y. Thus 

uu = axddyaaxddya. 

By Lemma 4.2, the words dya and axd are in {ab, ba)*. Thus, UE {ab, ba}*. 
(ii) If u = awb, then v starts and ends with ba (because ) u 1 is even, hence ) v) 2 2). 

Thus the word vuu contains the factor 

baawbba. 

By Lemma 4.2, the word u is in {ab, baj*. The proof that UE {ab, ba)* is similar. 
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It follows that u = ,u(u’), v = I for some nonempty words u’, u’. In view of 
Lemma 4.1, the words u’ and u’ are overlap-free. Define a morphism h’ by 
h’(a) = u’, h’(b) = v’. Then h = poh’ and h’ is nonerasing. Again by Lemma 4.1, the 
word w’ = h’(w) is overlap-free for every overlap-free word w of length 3 because 
I = h(w) is overlap-free. The result follows by induction on ( u ( + ( v I. q 

Proof of Theorem 3.4. This will be shown to be a consequence of Theorem 3.5. Indeed, 
if x is a morphic infinite word with generator h, then h is nontrivial and x is a fixed 
point of h”, with m = 1 or m = 2. Thus h” = pk or h” = E 0 pk for some k 2 1. If m = ‘1, 
the result is proved. Thus assume h2 = ,uk or h2 = E 0 ,uk. Set 

a = Ih(a) B = I h@hx ~1’ = IWI,, B’ = Ih(b) 

Since the numbers I h2(a)I,, ( h2(a)lb, ( h2(b)l,, 1 h’(b)l, are all equal to 2k-1, it follows that 

ff2 + ff’B = fl(ff + j?‘) = CY’fi + 8’2 = a’@ + 8’) = 2”- 1 

which shows that the a and j? all are equal, and that 

a2 = aI2 = /3” = 8’2 = 2k-2. 

Thus k is even. Set k = 21. Then 1 h(u) ( = (h(b) ( = 2’. Thus h(u) and h(b) are the prefixes 
of length 2’ of ~~(a) and of ,uk(b) or vice versa, and consequently 

h(a) = P’(U)> h(b) = P@) 

or vice versa. 0 

Proof of Theorem 3.5. Let x = h(x) be an overlap-free word. By iterated application of 
Lemma 4.4, it is easily seen that x contains the factor ubbabaub. Thus h(ubbubuab) is 
a factor of x and therefore is overlap-free. Thus, by Theorem 3.1, h is an overlap-free 
morphism, and h = ,d or h = Eopk for some integer k 2 0. The second case is ruled 
out by the fact that this morphism has no fixed point. Thus h = pk, and since k > 0, 
one has _X = t or x = E(t). 0 
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