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Abstract 

Berstel, J. and M. Pocchiola, Average cost of Duval’s algorithm for generating Lyndon words, 

Theoretical Computer Science 132 (1994) 415-425. 

The average cost of Duval’s algorithm for generating all Lyndon words up to a given length in 

lexicographic order is proved to be asymptotically equal to (q+ l)/(q- l), where 4 is the size of the 

underlying alphabet. In particular, the average cost is independent of the length of the words 
generated. A precise evaluation of the constants is also given. 

1. Introduction 

Several years ago, Duval [4] has presented an amazingly simple algorithm for 

generating all Lyndon words up to a given length in lexicographic order. He observed 

that the worst-case behavior of his algorithm for computing the next Lyndon word is 

linear; it still remains an open problem to determine the average-case running time. 
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We answer this question by showing that the average number of operations required 

for computing a Lyndon word of length at most n is constant, and independent of n. 

More precisely, we show that the cost is asymptotically equal to (q + l)/(q - l), where 

q is the size of the alphabet. 

Given a totally ordered alphabet, a Lyndon word is a word that is smaller than all its 

conjugates, for the lexicographic ordering. Lyndon words were introduced by Lyndon 

[9] under the name “standard lexicographic sequences” in order to give a base for the 

free Lie algebra over A (see Lothaire [8], Reutenauer [lo]). One of the basic 

properties of the set of Lyndon words is that every word is uniquely factorizable as 

a nonincreasing product of Lyndon words. There is also a close relationship between 

Lyndon words and irreducible polynomials over a finite field (Golomb [6]). 

There are several algorithms dealing with Lyndon words. Booth [l] shows how to 

compute, in linear time, the smallest among the conjugates of a given word. This is in 

fact an application of another algorithm by Duval [3] that computes, in linear time, 

the factorization of a word into Lyndon words. The algorithm for systematic genera- 

tion of Lyndon words is similar, in structure, to algorithms for systematic generation 

of trees [l 1, 141 or of other combinatorial objects [12]. For these objects, known 

algorithms have constant average running time. We show that the same holds for 

Duval’s algorithm: the average cost is given by 

q+l l+ c 2Y 1 

q-1 (q2-l)n+0 n’ c 1) (1) 

We even give an evaluation of the constant of the big-0 in order to describe the 

behaviour of the average cost for all values of n. 
The paper is organized as follows: the Section 2 reviews Duval’s algorithm and gives 

an expression for the cost. Then the asymptotic constant running time is proved. The 

Section 4 contains the effective constants. We conclude by some remark about 

possible developments. 

2. The algorithm 

Let A be a totally ordered alphabet, and let -=C denote the lexicographical ordering 

induced on the free monoid A*. Recall that the conjugacy class of a word w is the set of 

all words uu such that w = vu. A Lyndon word is a word that is smaller than all other 

elements in its conjugacy class. For example, if A= (0, 11 with O< 1, then the 14 

Lyndon words of length at most 5 in lexicographic ordering are 

0 

00001 

0001 

00011 

001 
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00101 

0011 

00111 

01 

01011 

011 

0111 

01111 

1 

Denote by a and z the minimal and the maximal letter in the alphabet A, and by v(b) 

the letter following b #z in the total ordering of A. If w is a word of the form w = ubzh, 

with b # z, then we denote by P(w) the word uv( b) 

Consider a fixed integer n. Duval’s algorithm computes, from a given Lyndon word 

w, the next Lyndon word N(w) of length at most n in two steps 

Algorithm. 

Input: An integer n, and a Lyndon word w #z of length at most n. 

Step 1: Compute the word v=D(w)= whw’, where h> 1 and w’ is the proper 

prefix of w defined by n=hlw)+lw’l. 

Step 2: Compute the word P(v). 

output: P(D(w)). 

Duval proved that N(w)=P(D(w)). The implementation of the algorithm is 

straightforward. 

For the evaluation of the cost of the algorithm, we need some notation. We denote 

by 9 the set of Lyndon words, and by _Y,, the set of Lyndon words of length at most n. 

Also, let L, be the number of Lyndon words of length n, and let 

L,=L1+...+C, 

be the number of Lyndon words of length at most n. Finally, we set 

A,=&+...+& 

Proposition 2.1. The total cost C, of Duval’s algorithm for generating all Lyndon words 

of length at most n is 

C,=2A,-L,-2n+l 

and the average cost yn is 

y*=C,/L,d2A,lL,-1. 
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Proof. Let y1 be fixed. The cost of computing D(U) for a word u is II - 1 u 1. The resulting 

word v = D( u) has length n. The cost for computing U’ = P( v) is n - / u’ I+ 1. Thus the 

cost for computing the next Lyndon word u’=N(u) is 2n+l-((ul+(u’(). Conse- 

quently, the total cost of Duval’s algorithm for generating all Lyndon words of length 

at most n is 

C,=(2n+l)(L,-l)- c IWI- c IWI. 
WEYC (a; waY,- Ii; 

Since, 

the expressions follows. 0 

3. Average cost of Duval’s algorithm 

Recall that every word over the alphabet A admits a unique nonincreasing factoriz- 

ation into Lyndon words 

A*= n’u*, 
utY 

where the prime means that the product is decreasing. If A has q elements, then taking 

generation functions, one gets 

Setting 

P(z)= c e,zn, 
“2 1 

one gets 

whence, by Mobius inversion 

(2) 

Proposition 3.1. The average cost Y,, of Duval’s algorithm, for an alphabet with q letters, 

is given by 

q+l l+ 
2q 1 

YnZP 
q-1 ( (q’-I)n+O n’ ( 1) . 

(3) 

Proof. For the proof, we use the transfer technique for the asymptotics of generating 

functions to the asymptotics of their coefficients, as developed in [S]. 
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Let e(z), L(z) and A(z) be the generating functions of the integers 6,, L, and A,,. 

The generating series e(z) of Lyndon’s words given above is analytic in the complex 

plane, excepted on the half-line of the reals x 3 l/q; moreover 

1 
e(z)-log- 

1-qz’ 

is analytic in the complex plane excepted on the half-line of the reals x>, l/Jq 

We consider the hierarchy of functions 

“Mz)=(qz- I)‘log& 
With the Taylor series expansion 

r=l/q 

(k30). (5) 

of l/( 1 -z) and l/(1 -2’) in the neighborhood of 

(z-r)k+l 1-r 
m= i (z-r)‘+ l 1-Z i=o(l-r)i (l-r)k l-z ’ 

(l-r)2 k 
(1_2)2= C (i+ l)s+&Cz-r)*+l {g+&}, 

i=O 

we obtain the following asymptotic developments as z goes to l/q 

( > 1-i 2A(Z)=~ofb(Z)+2~lfi(Z)+...+(k+l)~kl^*(Z)+o(X+l(z)), 

(6) 

(7) 

(8) 

(9) 

with 

1 
ai=(q-- 

Now, for n3k+ 1, 

Thus we can apply the transfer theorem of [S] and we obtain the following expressions 

(l-j!JLn=~{~Y&~+o~~)j 7 

(l-y+;{ :rafi+o(g)} 
The proposition follows. q 
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4. Evaluation of the constant 

In this section, we evaluate the constant of the big-0 which figures in Proposition 

3.1. The transfer theorem, though effective, does not give this constant explicitely. 

Our evaluation is obtained by elementary majoration techniques. The result is the 

following 

Proposition 4.1. The average cost yn of Duval’s algorithm satisjies, for a q-letter alphabet 

and for all n 2 11, the inequality 

2q 61q 
(q2-l)(n-l)+(q2-l)(q-l)(n-l)2 

For the clarity of exposition, we decompose the proof into several lemmas. The first 

lemma allows us to replace e, by q”/n in developments of L, and A,. The two next 

lemmas give an upper bound for A, and a lower bound for L,. 

Lemma 4.2. For all n3 1, we have 

4”1- q ( 1 
n 

n (q__l)q”‘2 =+ 

Proof. See exercise 3.27, page 142 of [7]. 0 

Recall that the functions fk(z) are defined by 

1 
fk(Z)=(qZ-l)klog- 

1 -qz’ 

We introduce an operator # by setting 

@f(z)& 
l-z 

Next, we consider the developments (6) and (7), to the order 3 and 2 respectively, and 

we multiply them by &(z). This gives 

( > 1 -f @/o(z)=Mz)+~~1(~)+&~2(z)+q(q’ 1)2 @A(z)9 (10) 

( > 
1 -f 2 @3zfo(z)=f0(z)+ &r(“)+& {2@f2(z)+@2f2(z)l~ (11) 

Lemma 4.3. For all n> 11 and q>2 one has 
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Proof. The lemma is readily verified by numerical computation in the domain 

D={(q,n))2dq<5, 116n625). 

In order to prove it for the other values of q and n, we first show that the coefficient of 

z” in @f3(z) is positive. Indeed, one has 

f3(z)= -qz+;y2zz+q3z3+ f 
64’ 

._,(n-3)(n-2)(n-l)nz” 
(12) 

Since the coefficient u, of z” in f3(z) is positive for n 34, it suffices to observe that 

=q -1+5q-~q2+fq3+~44+~45 
( 1 

=1/6Oq(q-2)(q4+5q3+25q2-6Oq+30), 

is positive, and this is straightforward. 

Using Lemma 4.2 we get that 

(13) 

The first sum of (13) can be bounded from below, in view of (lo), by 

44” 1+ 

i 

1 2 

q-l n (q-l)(n-l)+(q-l)2(n-l)(n-2) ’ 1 

We show that on the complement of the domain D, 

4” 2 n qk/2 

n (q-1)2(n-l)(n-2)‘Tk. 

For this, we bound each term in the right-hand side by qni2/n, and thus the whole 

right-hand side by q”‘2. Consequently, it suffices to prove that 

2 1 

(q- 1)2n(n- l)(n-2)‘q”‘Z’ 

Since the expression 

d(q n)=(q-l)2n(n-l)(n-2)_2 
9 9 

4 42 

is decreasing in n and in q for all q > 2 and n > 11, it suffices to observe that d( 6,11) and 

d(2,26) are negative to conclude the proof. 0 
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In order to prove the proposition, we now introduce a function F(n, N, q) which 

will allow us to parametrize the constant of the big-O. For this, note that 

f2~4=4z-;q2z2+n~3(n_2:;i:i_l) zn, 
n (14) 

and set 

u”= Cz”lf2(zL 

and define 

4 = Cz”l@fi(zL WrI = Cz”1 W2(z), 

a(N)= 
1 

N+l 

’ -(N-2)q 

Then by definition 

F(n,N,q)=G(n,N,q)+H(n,N,q), 

with 

n-lq-1 
G(n, N,q)=2---- 

n-2 q 
a(N)(z+a(N)), 

H(n,N,q)=n(n-l)‘* qn+I i(n-N+3)v,P,+wPI}. 

Observe that G and H are decreasing in n (for H, this holds for n 3 8 as one may verify 

by taking the logarithmic derivative). Next, letting first go n to infinity and then q to 

infinity, one sees that F( n, N, q) is bounded from below by 6. The proposition we look 

for is a consequence of the following more general statement. 

Proposition 4.4. The average cost ;j,, of’Duval’s algorithm, for a q-letter alphabet and for 

all n 3 N > 11, satisjies the inequality 

Yn G qs1 1+ 

( 

2q 2(F(n,N,q)-l)q 

q-l (q2- l)(n- l)+(q’- I)(q- I)(n- 1)’ 

Furthermore, F(n, N, q) decreases in n and q. 

Lemma 4.5. For all n 3 N 3 6 and all q 3 2, one has 

F(n,N,q) 
(q-l)(n-l)+(q-l)2(n-l)2 

Proof. In view of equation (11) it suffices to prove that 

[z”] {2@f2(z)+@2f2(z)}< F(n,N,q)q”+’ 
n(n- 1)2(q- 1)’ 
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We show first that for n 3 N 3 6 and q 3 2, 

and 

Indeed, the inequality 

u,+1/Un=4(n-22)/(n+ l)>,q(N-22)l(N+ ~)=u,+I/~N> 1, 

implies, setting b = uN + 1/u,, that 

1 
u,+...+u,~u,(l+h+h2+...+h”N)~l_bU”=a(N)u,. 

This proves the first inequality. The second follows by observing that 

u~+~~~+U,-(II-N+l)U~_~= i (UN+...+&). 
k=N 

Combining these two inequalities, the lemma follows after some elementary algebraic 

manipulations. 0 

Proof of Proposition 4.4. Setr r = l/(( q - 1) (n - 1)); by the two preceeding lemmas, 

and with c = F( n, N, q), one gets 

( 1 1_1 il,<1+2r+cr2 

4 L’ l+r 

<(1+2r+cr2)(1-r+r2) 

dl+r+(c-l)r2-(c-2)r3+cr4 

< 1 +r+(c-l)r2. 

since cr4<(c-2)r3 for ~36. The inequality follows. 

We have already proved that F is a decreasing function of n. To prove that F is 

decreasing in q, we show that this holds separately for the functions G and H. It is 

straightforward to see that G is decreasing in q. For H, one may proceed by proving 

that both UN_i/qn-’ and w,_,/q”-’ are decreasing functions of q. The first expression 

can be written as 

uN-l 1 UlO ull+“‘+uN-, 

n-1 -Ei+ 
4 4-“q 4 

n-1 

In this expression, the second term is decreasing with q because each Ui is, up to 

a positive multiplicative constant, an ith power of q. The first term is decreasing 

because ulo/qlo is decreasing for integral values of q as may be verified (for instance by 
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Table I 

4 F(ll,ll,q) F(20,1Lq) F(=, ll,q) F(QW, 4) 

2 31.17 16.32 15 8 

3 16.92 9.63 9.12 7 

4 12.94 8.31 7.87 6.66 

10 8.61 6.91 6.55 6.22 

a, 6.66 6.33 6 6 

Table 2 

2 3.47 4.61 3.26 3.36 3.0417 3.0449 

3 2.18 2.27 2.09 2.10 

4 1.77 1.79 1.716 1.719 

10 1.248 1.249 1.2354 1.2356 

some symbolic manipulation system). One proceeds in a similar manner to prove that 

WN-llqn-l decreases, using the fact that vk/qk is decreasing for k3 11. 0 

Table 1, obtained with Maple [a], gives several values of the function F(n, N,q) 

which allow to adjust the constant of our proposition as a function of q and n. 

In particular, the value of F( 1 1, 11,12) gives Proposition 4.1. We conclude by 

comparing the real value of the cost yn to the bound, denoted r,,N, as given in 

Proposition 4.4, for some values of n and q (see Table 2). This shows that our bound is 

rather good. 

5. Conclusion 

We have shown that the computation of the next Lyndon word is the set of Lyndon 

words up to some fixed length requires constant time. In the same paper [4], Duval 

has presented another algorithm that generates all Lyndon words of fixed length in 

lexicographic order. It is an easy consequence of our result that the average cost of this 

second algorithm is asymptotically bounded by (q + 1)/q. However, we were unable to 

give a sharp asymptotic estimation.’ 

Another open problem is to prove a stronger claim, namely that Duval’s algorithm 

has amortized constant worst-case running time, in the sense of Tarjan [13]. This 

’ This fact was given in 1151. That paper mentions another algorithm for generating Lyndon words 

(called necklaces). 
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would mean that the computation of an interval of Lyndon word costs a constant 

times the length of the interval plus the difference of some potential. Such a potential 

seems to be difficult to find, perhaps because the computational cost increases for the 

“last” words in a sequence. 

References 

[l] KS. Booth, Lexicographically least circular substrings, Inform. Process. Lett. 10 (1980) 240-242. 

[2] B.W. Char, K.O. Gettes, G.H. Gonnet, M.B. Monagan and SM. Watt, Maple V Language Reference 

Manual (Springer, Berlin, 1991). 

[3] J.-P. Duval, Factorizing words over an ordered alphabet, J. Algorithms, 4 (1983) 363-381. 
[4] J.-P. Duval, Generation dune section des classes de conjugaison et arbre des mots de Lyndon de 

longueur born&e, Theoret. Comput. Sci. 60 (1988) 255-283. 

[S] P. Flajolet and A. Odlyzko, Singularity analysis of generating functions, SIAM J. Discrete Math. 3(2) 

(1990) 216-240. 

[6] SW. Golomb, Irreducible polynomials, synchronizing codes, primitive necklaces and the cyclotomic 

algebra, in: Proc. Conf: Combinatorial Math. and Its Appl. (Univ. of North Carolina Press, Chapel Hill, 

NC, 1969) 358-370. 

[7] R. Lid1 and H. Niederreiter, Finite Fields. (Cambridge University Press, Cambridge, 1984). 

[S] M. Lothaire, Combinatorics on Words (Addison-Wesley, Reading, MA, 1983). 

[9] R.C. Lyndon, On Burnside problem I, Trans. Amer. Math. Sot. 77 (1954) 202-215. 
[lo] C. Reutenauer, Free Lie Algebras (Clarendon Press, Oxford, 1993). 

[ll] F. Ruskey and T.C. Hu, Generating binary trees lexicographically, SIAM J. Comput. 6 (1977) 

745-75s. 

[12] D. Stanton and D. White, Constructioe Combinatorics (Springer, Berlin 1986). 

[13] R.E. Tarjan, Amortized computational complexity, SIAM J. Algebraic Discrete Methods 6 (1985) 
306-318. 

1141 R.A. Wright, B. Richmond, A. Odlyzko and B.D. McKay, Constant time generation of free trees, 

SIAM J. Comput. 15 (1986) 540-548. 

[15] F. Ruskey, C. Savage and T. Min Yih Wang, Generating necklaces, J. Algorithms 13 (1992) 414-430. 


