
Theoretical Computer Science 132 (1994) 415-425

Elsevier

415

Note

Average cost of Duval’s algorithm
for generating Lyndon words*

J. Berstel

htitut Blaise Pascal, LITP Universitt de Paris VI, 4 place Jussieu, F-75252 Paris Cedex 05. France

M. Pocchiola

CNRS U.R.A. 1327, LIENS, Ecole Normale Supkrieure, 45 Rue d’Ulm. F-75230 Paris Cedex 05.
France

Communicated by D. Perrin

Received March 1992

Revised December 1993

Abstract

Berstel, J. and M. Pocchiola, Average cost of Duval’s algorithm for generating Lyndon words,

Theoretical Computer Science 132 (1994) 415-425.

The average cost of Duval’s algorithm for generating all Lyndon words up to a given length in

lexicographic order is proved to be asymptotically equal to (q+ l)/(q- l), where 4 is the size of the

underlying alphabet. In particular, the average cost is independent of the length of the words
generated. A precise evaluation of the constants is also given.

1. Introduction

Several years ago, Duval [4] has presented an amazingly simple algorithm for

generating all Lyndon words up to a given length in lexicographic order. He observed

that the worst-case behavior of his algorithm for computing the next Lyndon word is

linear; it still remains an open problem to determine the average-case running time.

Correspondence to: J. Berstel, Institut Blaise Pascal, LITP, Universitk de Paris VI, 4 place Jussieu, F-75252

Paris Cedex 05, France. Email: berstel@,litp.ibp.fr.

* Partially supported by PRC “Mathimatiques et Informatique”.

0304-3975/‘94/$07.00 % 1994-Elsevier Science B.V. All rights reserved

SSDI 0304-3975(94)00013-9

416 J. Berstel, M. Pocchiola

We answer this question by showing that the average number of operations required

for computing a Lyndon word of length at most n is constant, and independent of n.

More precisely, we show that the cost is asymptotically equal to (q + l)/(q - l), where

q is the size of the alphabet.

Given a totally ordered alphabet, a Lyndon word is a word that is smaller than all its

conjugates, for the lexicographic ordering. Lyndon words were introduced by Lyndon

[9] under the name “standard lexicographic sequences” in order to give a base for the

free Lie algebra over A (see Lothaire [8], Reutenauer [lo]). One of the basic

properties of the set of Lyndon words is that every word is uniquely factorizable as

a nonincreasing product of Lyndon words. There is also a close relationship between

Lyndon words and irreducible polynomials over a finite field (Golomb [6]).

There are several algorithms dealing with Lyndon words. Booth [l] shows how to

compute, in linear time, the smallest among the conjugates of a given word. This is in

fact an application of another algorithm by Duval [3] that computes, in linear time,

the factorization of a word into Lyndon words. The algorithm for systematic genera-

tion of Lyndon words is similar, in structure, to algorithms for systematic generation

of trees [l 1, 141 or of other combinatorial objects [12]. For these objects, known

algorithms have constant average running time. We show that the same holds for

Duval’s algorithm: the average cost is given by

q+l l+ c 2Y 1

q-1 (q2-l)n+0 n’ c 1) (1)

We even give an evaluation of the constant of the big-0 in order to describe the

behaviour of the average cost for all values of n.
The paper is organized as follows: the Section 2 reviews Duval’s algorithm and gives

an expression for the cost. Then the asymptotic constant running time is proved. The

Section 4 contains the effective constants. We conclude by some remark about

possible developments.

2. The algorithm

Let A be a totally ordered alphabet, and let -=C denote the lexicographical ordering

induced on the free monoid A*. Recall that the conjugacy class of a word w is the set of

all words uu such that w = vu. A Lyndon word is a word that is smaller than all other

elements in its conjugacy class. For example, if A= (0, 11 with O< 1, then the 14

Lyndon words of length at most 5 in lexicographic ordering are

0

00001

0001

00011

001

Average cost of Duval’s algorithm 411

00101

0011

00111

01

01011

011

0111

01111

1

Denote by a and z the minimal and the maximal letter in the alphabet A, and by v(b)

the letter following b #z in the total ordering of A. If w is a word of the form w = ubzh,

with b # z, then we denote by P(w) the word uv(b)

Consider a fixed integer n. Duval’s algorithm computes, from a given Lyndon word

w, the next Lyndon word N(w) of length at most n in two steps

Algorithm.

Input: An integer n, and a Lyndon word w #z of length at most n.

Step 1: Compute the word v=D(w)= whw’, where h> 1 and w’ is the proper

prefix of w defined by n=hlw)+lw’l.

Step 2: Compute the word P(v).

output: P(D(w)).

Duval proved that N(w)=P(D(w)). The implementation of the algorithm is

straightforward.

For the evaluation of the cost of the algorithm, we need some notation. We denote

by 9 the set of Lyndon words, and by _Y,, the set of Lyndon words of length at most n.

Also, let L, be the number of Lyndon words of length n, and let

L,=L1+...+C,

be the number of Lyndon words of length at most n. Finally, we set

A,=&+...+&

Proposition 2.1. The total cost C, of Duval’s algorithm for generating all Lyndon words

of length at most n is

C,=2A,-L,-2n+l

and the average cost yn is

y*=C,/L,d2A,lL,-1.

418 J. Berstel. M. Pocchiola

Proof. Let y1 be fixed. The cost of computing D(U) for a word u is II - 1 u 1. The resulting

word v = D(u) has length n. The cost for computing U’ = P(v) is n - / u’ I+ 1. Thus the

cost for computing the next Lyndon word u’=N(u) is 2n+l-((ul+(u’(). Conse-

quently, the total cost of Duval’s algorithm for generating all Lyndon words of length

at most n is

C,=(2n+l)(L,-l)- c IWI- c IWI.
WEYC (a; waY,- Ii;

Since,

the expressions follows. 0

3. Average cost of Duval’s algorithm

Recall that every word over the alphabet A admits a unique nonincreasing factoriz-

ation into Lyndon words

A*= n’u*,
utY

where the prime means that the product is decreasing. If A has q elements, then taking

generation functions, one gets

Setting

P(z)= c e,zn,
“2 1

one gets

whence, by Mobius inversion

(2)

Proposition 3.1. The average cost Y,, of Duval’s algorithm, for an alphabet with q letters,

is given by

q+l l+
2q 1

YnZP
q-1 ((q’-I)n+O n’ (1) .

(3)

Proof. For the proof, we use the transfer technique for the asymptotics of generating

functions to the asymptotics of their coefficients, as developed in [S].

Average cost of Dud’s algorithm 419

Let e(z), L(z) and A(z) be the generating functions of the integers 6,, L, and A,,.

The generating series e(z) of Lyndon’s words given above is analytic in the complex

plane, excepted on the half-line of the reals x 3 l/q; moreover

1
e(z)-log-

1-qz’

is analytic in the complex plane excepted on the half-line of the reals x>, l/Jq

We consider the hierarchy of functions

“Mz)=(qz- I)‘log&
With the Taylor series expansion

r=l/q

(k30). (5)

of l/(1 -z) and l/(1 -2’) in the neighborhood of

(z-r)k+l 1-r
m= i (z-r)‘+ l 1-Z i=o(l-r)i (l-r)k l-z ’

(l-r)2 k
(1_2)2= C (i+ l)s+&Cz-r)*+l {g+&},

i=O

we obtain the following asymptotic developments as z goes to l/q

(> 1-i 2A(Z)=~ofb(Z)+2~lfi(Z)+...+(k+l)~kl^*(Z)+o(X+l(z)),

(6)

(7)

(8)

(9)

with

1
ai=(q--

Now, for n3k+ 1,

Thus we can apply the transfer theorem of [S] and we obtain the following expressions

(l-j!JLn=~{~Y&~+o~~)j 7

(l-y+;{ :rafi+o(g)}
The proposition follows. q

420 J. Berstel, M. Pocchiola

4. Evaluation of the constant

In this section, we evaluate the constant of the big-0 which figures in Proposition

3.1. The transfer theorem, though effective, does not give this constant explicitely.

Our evaluation is obtained by elementary majoration techniques. The result is the

following

Proposition 4.1. The average cost yn of Duval’s algorithm satisjies, for a q-letter alphabet

and for all n 2 11, the inequality

2q 61q
(q2-l)(n-l)+(q2-l)(q-l)(n-l)2

For the clarity of exposition, we decompose the proof into several lemmas. The first

lemma allows us to replace e, by q”/n in developments of L, and A,. The two next

lemmas give an upper bound for A, and a lower bound for L,.

Lemma 4.2. For all n3 1, we have

4”1- q (1
n

n (q__l)q”‘2 =+

Proof. See exercise 3.27, page 142 of [7]. 0

Recall that the functions fk(z) are defined by

1
fk(Z)=(qZ-l)klog-

1 -qz’

We introduce an operator # by setting

@f(z)&
l-z

Next, we consider the developments (6) and (7), to the order 3 and 2 respectively, and

we multiply them by &(z). This gives

(> 1 -f @/o(z)=Mz)+~~1(~)+&~2(z)+q(q’ 1)2 @A(z)9 (10)

(>
1 -f 2 @3zfo(z)=f0(z)+ &r(“)+& {2@f2(z)+@2f2(z)l~ (11)

Lemma 4.3. For all n> 11 and q>2 one has

Average cost of Duvars algorithm 421

Proof. The lemma is readily verified by numerical computation in the domain

D={(q,n))2dq<5, 116n625).

In order to prove it for the other values of q and n, we first show that the coefficient of

z” in @f3(z) is positive. Indeed, one has

f3(z)= -qz+;y2zz+q3z3+ f
64’

._,(n-3)(n-2)(n-l)nz”
(12)

Since the coefficient u, of z” in f3(z) is positive for n 34, it suffices to observe that

=q -1+5q-~q2+fq3+~44+~45
(1

=1/6Oq(q-2)(q4+5q3+25q2-6Oq+30),

is positive, and this is straightforward.

Using Lemma 4.2 we get that

(13)

The first sum of (13) can be bounded from below, in view of (lo), by

44” 1+

i

1 2

q-l n (q-l)(n-l)+(q-l)2(n-l)(n-2) ’ 1

We show that on the complement of the domain D,

4” 2 n qk/2

n (q-1)2(n-l)(n-2)‘Tk.

For this, we bound each term in the right-hand side by qni2/n, and thus the whole

right-hand side by q”‘2. Consequently, it suffices to prove that

2 1

(q- 1)2n(n- l)(n-2)‘q”‘Z’

Since the expression

d(q n)=(q-l)2n(n-l)(n-2)_2
9 9

4 42

is decreasing in n and in q for all q > 2 and n > 11, it suffices to observe that d(6,11) and

d(2,26) are negative to conclude the proof. 0

422 J. Berstel. M. Pocchiola

In order to prove the proposition, we now introduce a function F(n, N, q) which

will allow us to parametrize the constant of the big-O. For this, note that

f2~4=4z-;q2z2+n~3(n_2:;i:i_l) zn,
n (14)

and set

u”= Cz”lf2(zL

and define

4 = Cz”l@fi(zL WrI = Cz”1 W2(z),

a(N)=
1

N+l

’ -(N-2)q

Then by definition

F(n,N,q)=G(n,N,q)+H(n,N,q),

with

n-lq-1
G(n, N,q)=2----

n-2 q
a(N)(z+a(N)),

H(n,N,q)=n(n-l)‘* qn+I i(n-N+3)v,P,+wPI}.

Observe that G and H are decreasing in n (for H, this holds for n 3 8 as one may verify

by taking the logarithmic derivative). Next, letting first go n to infinity and then q to

infinity, one sees that F(n, N, q) is bounded from below by 6. The proposition we look

for is a consequence of the following more general statement.

Proposition 4.4. The average cost ;j,, of’Duval’s algorithm, for a q-letter alphabet and for

all n 3 N > 11, satisjies the inequality

Yn G qs1 1+

(

2q 2(F(n,N,q)-l)q

q-l (q2- l)(n- l)+(q’- I)(q- I)(n- 1)’

Furthermore, F(n, N, q) decreases in n and q.

Lemma 4.5. For all n 3 N 3 6 and all q 3 2, one has

F(n,N,q)
(q-l)(n-l)+(q-l)2(n-l)2

Proof. In view of equation (11) it suffices to prove that

[z”] {2@f2(z)+@2f2(z)}< F(n,N,q)q”+’
n(n- 1)2(q- 1)’

Average cost of Duval’s algorithm 423

We show first that for n 3 N 3 6 and q 3 2,

and

Indeed, the inequality

u,+1/Un=4(n-22)/(n+ l)>,q(N-22)l(N+ ~)=u,+I/~N> 1,

implies, setting b = uN + 1/u,, that

1
u,+...+u,~u,(l+h+h2+...+h”N)~l_bU”=a(N)u,.

This proves the first inequality. The second follows by observing that

u~+~~~+U,-(II-N+l)U~_~= i (UN+...+&).
k=N

Combining these two inequalities, the lemma follows after some elementary algebraic

manipulations. 0

Proof of Proposition 4.4. Setr r = l/((q - 1) (n - 1)); by the two preceeding lemmas,

and with c = F(n, N, q), one gets

(1 1_1 il,<1+2r+cr2

4 L’ l+r

<(1+2r+cr2)(1-r+r2)

dl+r+(c-l)r2-(c-2)r3+cr4

< 1 +r+(c-l)r2.

since cr4<(c-2)r3 for ~36. The inequality follows.

We have already proved that F is a decreasing function of n. To prove that F is

decreasing in q, we show that this holds separately for the functions G and H. It is

straightforward to see that G is decreasing in q. For H, one may proceed by proving

that both UN_i/qn-’ and w,_,/q”-’ are decreasing functions of q. The first expression

can be written as

uN-l 1 UlO ull+“‘+uN-,

n-1 -Ei+
4 4-“q 4

n-1

In this expression, the second term is decreasing with q because each Ui is, up to

a positive multiplicative constant, an ith power of q. The first term is decreasing

because ulo/qlo is decreasing for integral values of q as may be verified (for instance by

424 J. Berstel, M. Pocchiola

Table I

4 F(ll,ll,q) F(20,1Lq) F(=, ll,q) F(QW, 4)

2 31.17 16.32 15 8

3 16.92 9.63 9.12 7

4 12.94 8.31 7.87 6.66

10 8.61 6.91 6.55 6.22

a, 6.66 6.33 6 6

Table 2

2 3.47 4.61 3.26 3.36 3.0417 3.0449

3 2.18 2.27 2.09 2.10

4 1.77 1.79 1.716 1.719

10 1.248 1.249 1.2354 1.2356

some symbolic manipulation system). One proceeds in a similar manner to prove that

WN-llqn-l decreases, using the fact that vk/qk is decreasing for k3 11. 0

Table 1, obtained with Maple [a], gives several values of the function F(n, N,q)

which allow to adjust the constant of our proposition as a function of q and n.

In particular, the value of F(1 1, 11,12) gives Proposition 4.1. We conclude by

comparing the real value of the cost yn to the bound, denoted r,,N, as given in

Proposition 4.4, for some values of n and q (see Table 2). This shows that our bound is

rather good.

5. Conclusion

We have shown that the computation of the next Lyndon word is the set of Lyndon

words up to some fixed length requires constant time. In the same paper [4], Duval

has presented another algorithm that generates all Lyndon words of fixed length in

lexicographic order. It is an easy consequence of our result that the average cost of this

second algorithm is asymptotically bounded by (q + 1)/q. However, we were unable to

give a sharp asymptotic estimation.’

Another open problem is to prove a stronger claim, namely that Duval’s algorithm

has amortized constant worst-case running time, in the sense of Tarjan [13]. This

’ This fact was given in 1151. That paper mentions another algorithm for generating Lyndon words

(called necklaces).

Average cost of Duval’s algorithm 425

would mean that the computation of an interval of Lyndon word costs a constant

times the length of the interval plus the difference of some potential. Such a potential

seems to be difficult to find, perhaps because the computational cost increases for the

“last” words in a sequence.

References

[l] KS. Booth, Lexicographically least circular substrings, Inform. Process. Lett. 10 (1980) 240-242.

[2] B.W. Char, K.O. Gettes, G.H. Gonnet, M.B. Monagan and SM. Watt, Maple V Language Reference

Manual (Springer, Berlin, 1991).

[3] J.-P. Duval, Factorizing words over an ordered alphabet, J. Algorithms, 4 (1983) 363-381.
[4] J.-P. Duval, Generation dune section des classes de conjugaison et arbre des mots de Lyndon de

longueur born&e, Theoret. Comput. Sci. 60 (1988) 255-283.

[S] P. Flajolet and A. Odlyzko, Singularity analysis of generating functions, SIAM J. Discrete Math. 3(2)

(1990) 216-240.

[6] SW. Golomb, Irreducible polynomials, synchronizing codes, primitive necklaces and the cyclotomic

algebra, in: Proc. Conf: Combinatorial Math. and Its Appl. (Univ. of North Carolina Press, Chapel Hill,

NC, 1969) 358-370.

[7] R. Lid1 and H. Niederreiter, Finite Fields. (Cambridge University Press, Cambridge, 1984).

[S] M. Lothaire, Combinatorics on Words (Addison-Wesley, Reading, MA, 1983).

[9] R.C. Lyndon, On Burnside problem I, Trans. Amer. Math. Sot. 77 (1954) 202-215.
[lo] C. Reutenauer, Free Lie Algebras (Clarendon Press, Oxford, 1993).

[ll] F. Ruskey and T.C. Hu, Generating binary trees lexicographically, SIAM J. Comput. 6 (1977)

745-75s.

[12] D. Stanton and D. White, Constructioe Combinatorics (Springer, Berlin 1986).

[13] R.E. Tarjan, Amortized computational complexity, SIAM J. Algebraic Discrete Methods 6 (1985)
306-318.

1141 R.A. Wright, B. Richmond, A. Odlyzko and B.D. McKay, Constant time generation of free trees,

SIAM J. Comput. 15 (1986) 540-548.

[15] F. Ruskey, C. Savage and T. Min Yih Wang, Generating necklaces, J. Algorithms 13 (1992) 414-430.

