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Abstract

The purpose of this expository paper is to present a self-contained
proof of a famous theorem of Fife that gives a full description of the set of
infinite overlap-free words over a binary alphabet. Fife’s characterization
consists in a parameterization of these infinite words by a set of infinite
words over a ternary alphabet. The result is that the latter is a regular
set. The proof is by the explicit construction of the minimal automaton,
obtained by the method of left quotients.

Introduction

One of the first results about avoidable regularities in words was Axel Thue’s
proof of the existence of an infinite overlap-free words over two letters. In two
important papers [16, 17], Thue derived a great number of results in this and
related topics. His papers were overseen for a long time (see [6] for a discussion)
and his results have been rediscovered several times (e. g. by Morse {10}), when
interest in combinatorics on words, both stimulated by symbolic dynamics and
computer science, became more important.

Axel Thue also looked for a complete description of all overlap-free and
square-free words. His main tools were morphisms and codes (in contempo-
rary terminology). His aim was to express sets of infinite words as homomorphic
images of what is now called a minimal set. He achieved this very quickly for
overlap-free two-sided infinite words (since they form a minimal set), and in his
second paper, obtained such a description for large families of square-free infinite
words as a result of a more than thirty pages long investigation.

The description of one-sided infinite words, either square-free or overlap-free,
is much more involved. It was E. D. Fife [4] who gave, among other deep results,
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the first full “description” of the set of infinite overlap-free words. His clever
method consists in decomposing each such word in longer and longer blocks,
where each block is obtained from preceding ones by exactly one among three
rules. Coding each rule by a new symbol, he obtains a “description” by an
infinite word over a new, ternary alphabet. The truly remarkable result is that
the set of all words obtained in this way is regular, that is recognized by a finite
automaton (with five states, as we shall see).

The proof of this result is not quite easy. In the terminology of automata the-
ory, it consists in computing the minimal automaton by the well-known method
of derivatives (or left quotients). The purpose of this paper is to present this
proof in this context. The paper is aimed to be self-contained, excepted for
some basic facts on overlap-free words that can be found in Lothaire [9] and
Salomaa [14].. After some preliminaries, we give two general, basic lemmas on
overlap-free words. In the next section, we present the result of Fife. The last
section is devoted to the proof.

Recently, two results have given new insights in this topic. J. Cassaigne [2]
and A. Carpi [1] have presented encodings of finite overlap-free words that are
similar to Fife’'s. Both act simultaneously on both ends of the words to be
described. J. Cassaigne succeeded in giving explicit recurrence equations for
the number of overlap-free words of a given length, a problem that was open
for a while; A. Carpi also constructs automata but which are different from
Cassaigne’s for the description of overlap-free words.

1 Preliminaries

An alphabet is a finite set (of symbols or letters). A word ovet some alphabet A
is a (finite) sequence of elements in A. The length of a word w is denoted by
jw|. The empty word of length 0 is denoted by €. An infinife word is a mapping
from the set of nonnegative integers into A.

A factor of a word w is any word u that occurs in w, i. e. such that there
exist word ¢, y with w = zuy. A square is a nonempty word of the form uu. A
word is square-free if none of its factors is a square. Similarly, an overlap is a
word of the form zuzuz, where = is nonempty. The terminology is justified by
the fact that xuz has two occurrences in zuzue, one as a prefiz (initial factor)
one as a suffiz (final factor) and that these occurrences have a common part (the
central z). As before, a word is overlap-free if none of its factors is an overlap.

The set of words over A is denoted by A*. A function h : A* — B*is a
morphism if h(uv) = h(u)h(v) for all words u, v. If there is a letter a such that
h(a) starts with the letter @, then h"(a) starts with the word h"~!(a) for all
n > 0. If the set words {h™(a)) | n > 0} is infinite, the morphism is prolongeable
in @ and defines a unique infinite word say x by the requirement that all A" (a)
are prefixes of x. The word x is said to be obtained by iterating h on «, and x is
also denoted by h“(a). Clearly, x is a fixed point of h. For a detailed discussion
and results on iterating morphisms, see [3].
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2 The Thue-Morse sequence

In this section, we recall some basic properties concerning the Thue-Morse se-
quence. Other properties and proofs can be found in Lothaire [9] and Salo-
maa [14].

Let A = {a,b} be a two letter alphabet. Consider the morphism y from the
free monoid A* into itself defined by

p(a) =adb,  p(b) =bda

Setting, for n > 0,
u, = p"(a), v = p"(b)

one gets
Upg = a Vg = b
uy = ab vy = ba
ug = abba vy = baab

uz = abbabaab vz = baababba
and more generally

and

Uy = Un, Uy = Up

where W (the opposite of w) is obtained from w by exchanging a and b. Words
Uy, and v, are Morse blocks. Tt is easily seen that uy, and vy, are palindromes,
and that usn4+1 = 3,41, where w™ is the reversal of w. The morphism g can
be extended to infinite words; it has two fixed points

t = abbabaabbaababbabaab - - - = u(t)

t = baababbaabbabaababba - - - = u(t)

and u, (resp. v,) is the prefix of length 2™ of t (resp. of t). It is equivalent to
say that t is the limit of the sequence (uy)n>0 (for the usual topology on finite
and infinite words), obtained by iterating the morphism p.

The Thue-Morse sequence is the word t. There are several other characteri-
zations of this word. For instance, let ¢,, be the n-th symbol in t, starting with
n =0. Thent, = a or t, = b according to the parity of the number of bits equal
to 1 in the binary expansion of n. For instance, bin(19) = 10011, consequently
di(19) = 3, and indeed ¢35 = a.

Theorem 2.1 [17](Satz 6) The sequence t is overlap-free.

What Thue actually shows is that a word w is over]ap-free iff u(w) is overlap-
free.
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3 Factorization of overlap-free words

The following’lemmas have been given by many peoples independently (e. g.
Shelton and Soni [15], Kobayashi [8], Restivo and Salemi [11], Kfoury [7].)

Lemme 3.1 (“Progression Lemma”) Let n > 0 and let ¢ = uvwc be an overlap-
free word of length 1 4+ 3 - 2", with |u] = jv| = |w| =2" andc € A. If v and v
are Morse blocks, then w is a Morse block.

Proof. By induction on n. The result is clear for n = 0. Assume n > 1. By
assumption, ¢ has the form

z=UVUVBCe, or z=UVVUBCec

where U and V are the Morse blocks of size 2"~! and |B| = |C| = 2"~!. By
induction, both B and C are Morse blocks. It remains to show that BC # UU
and BC #VV.

If z = UVUVBCa, then BC # UU,VV since otherwise z has an overlap.
If £ = UVVUBCa, then clearly BC' # UU. Suppose BC = VV. Then x =
(UVV)2a, but a can be neither the first letter of U nor the first letter of V
without producing an overlap in z. The proof is complete. n

Lemme 3.2 (“Factorization Lemma”) Let ¢ be an overlap-free word. There
exist three words u,v,y, with u,v € {¢,a,b, aa,bb}, such that

z = up(y)v.

Moreover, the triple (u,y,v) is unique if |¢| > 7.

Proof. The result is straightforward by inspection if |z} < 5. Suppose |z| > 6.
We show that z contains two consecutive Morse blocks ab or ba. The result then
follows from the progression lemma.

By symmetry, we may suppose that « starts with a. The possible prefixes of
z, developed up to an encounter of two consecutive Morse blocks ab or ba are:

aabaab, aabab, aabba, abaab, abab, abba

This shows that the prefixes are of the required form. To prove uniqueness,
consider two triples (u,y,v) and (v/,y',v’) such that z = uu(y)v = o' u(y')v'.
Since |z| > 7, one has |y|,|y’| > 2. But then the occurrences of u(y) and p(y’)
cannot overlap without being equal. This shows uniqueness. n

As an illustration, we mention the following result, already known to A. Thue
(for a related result, see T. Harju [5]): ’

Theorem 3.3 The overlap-free squares over A are the words
w2, (UnUnty)?
for n > 0, their opposites, and their conjugates.

As a consequence, if xx is an overlap-free square, then |z| = 32" or |z| = 2"
for some n.
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4 Fife’s Theory

Let X, = {un,v,} denote the set of Morse blocks of length 2" and set X =

Un>0 X"" .
TLet w € A*X;. Thus w ends with ab or ba. The canonical decomposition of

w is the triple
(z,9,9)

where y is the longest word in X such that
w = zyy

In other terms, (z,y,§) is the canonical decomposition of w iff gy is not a suffix
of z. As an example, the canonical decomposition of aabaabbabaab is

(aaba, abba, baab)
and that of aabaabbabaababbauabbabaabbaababbaabbabaab is
(aabaabbabaababbaabbabaab, baababba, abbabaab)

Define now three mappings o, 8,7 : A*X; — A* Xy, written on the right of their
arguments like actions, as follows: let w € A* X have the canonical decomposi-
tion (z,y,§), then

weo = zyy - o = 2yyyyy = wyyy
w-pB = zyy B = zygyyyy = wyyyy
wey =2y ey = zyyyy = wyy

Setting

B ={e 8,7}
the word w - f is well defined for all f € B*. Since w is a prefix of w -, w-
and w -+, the infinite word w - f is well defined of any infinite word f over B.
A finite or infinite word f over B is called a description of the finite or infinite
word z if = ab- f or & = aab - f (or symmetrically ¢ = ba - f or & = bba - f).
Here are some examples:

ab - o = abaab

ab - 3 = ababba

ab -y = abba

aba ab ba - o = aba ab ba ab ab ba = abaabbaababba

aba ab ba - 3 = aba ab ba ab ba ba ab = abaabbaabbabaab
ab -y =t

aab - a = aabaab = a(ab - )

aab - o®y = aabaabbabaababbaubbabaabbaababbaabbabaab

The word

u = aaba abbabaab abbabaab baababba baababba abbabaab baababba baabbaa
= (aab- aafy)baababba baabbaa
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of Restivo and Salemi [11] admits no description. As we shall see, this means
that it is not the prefix of an infinite overlap-free word.

Proposition 4.1 Every infinite overlap-free word admits a unique description.

Proof. This is a simple application of the progression lemma. )
Let
I={a, B}(v*)"{Ba, 7B, a7}
and consider the set
F =BY - B*IB*

of infinite words over B having no factor in I, and the set
G={f|pfeF}

Theorem 4.2 (“Fife’s Theorem”) Let x be an infinite word over A.
(1) Ifx starts with ab, then x is overlap-free iff its description is in F';
(2) If x starts with aab, then x is overlap-free iff its description is in G.

The set F of Fife’s words is recognized by an automaton with 5 states, given
in the following figure.

Fig. 1 Fife’s automaton.

Fife’s theorem has a number of consequences. Call a word w infinitely ez-
tensible if it is a prefix of an infinite overlap-free word. Then one has:

Corollaire 4.3 A word w is infinitely extensible iff it is a prefix of a finite word
that admits a description which is a prefix of a word in F or G. It is decidable
whether a word is infinitely extensible.

Indeed, it is easily seen that if w is a prefix of a werd z that admits a (finite)
description, then |z] < 2|w|. Another consequence is:
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Corollaire 4.4 The Thue-Morse t is the greatest infinite overlap-free word, for
the lexicographic order, among those starting with the letter a.

Proof. If one chooses a < band o < ﬂ < v then indeed f < f’ implies abf < abf’.
Now the greatest word in F'is v* and t = ab-7*. =

Observe that this result can also be proved directly, by arguing on the form
of overlap-free words, and using the progression lemma.

5 Proof

We observe first that the second statement of the theorem is a consequence of
the first statement. Indeed, let & be an infinite overlap-free word starting with
aab, and let f be its description (which exists by the proposition). To prove that
Bf is in F, observe that

w(aab - £) = p(aab) - f = ababba - f = ab - 5f

and since aab - f is overlap-free iff p(aab - f) is overlap-free, the word aab - f is
overlap-free iff ab - Bf is overlap-free, thus iff gf € F.

It is convenient to use, for the proof, the notation n for u, = p"(a), and
symmetrically @ for v, = u™(b). (Consider n as a shorthand for p™.) For
example

0=a, 0=2»%
1 = ab, T=ba
2 = abba, 3 = abbabaab
It follows that
l.a=02, n-a=(@m-1n+1)
1-8=12, n-f=n(n+1)
1-y=2, n-y=n+1

We denote by P the set of finite overlap-free words over A and by W those words
over B that are description of words in P starting with 1 = ab:

W={feB"|1-feP}

Recall that
I ={e,BY¥?)*{Ba, 7B, a7}

Fife’s theorem is a straightforward extension to infinite words of the following:
Theorem 5.1 One has W = B* — B*IB".

We start with a useful observation:

Proposition 5.2 The set W is factorial : if 1 - fgh is overlap-free, then 1-g is
overlap-free.
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Proof. We show first that W is suffix-closed, by showing that if of € W, then
f € W, and similarly for # and 7. Now

Loaf=02 - f=02-f=0u(1-f)
1-ﬂf:12'f:1p(1~f)
L-yf=p(l-f)

This shows that in all three cases, the word 1- f is overlap-free.

We now prove that W is prefix-closed. Let fg € W and set w = 1 - fg and
u=1-f. Then w=u-g and u is a prefix of w. Consequently u is overlap-free
and f € W. This completes the proof. =

For the proof of 5.1, we compute the minimal automaton of the set W. This
will be done by the method of quotients. For a word u and a set Y, we definie

Y = {w | uw e Y}

We shall see that the minimal automaton of W is the automaton of the figure
which recognizes B* — B*IB*. This shows the theorem.
We start by the following easy properties:

Lemme 5.3 (a?7)"!'W = (afa)~'W = (ay8)~'W = 0.

Proof. 1t suffice to verify that the words 1-a?y, 1-afa and 1-ayf all have an
overlap. Indeed:

1-a%y = abaabb abaabb a ababba
1. afa = abaabbaababb abaabbaababb a
1. ayB = abaababb abaababb a abbabaab

The following equations are more difficult:

Proposition 5.4 The following equations hold for W :
(i) W= 'y"lVV;
(1) o'W = p-W = (aya)"'W = (ayy)"1W;
(1) (o®)"IW = (o) W,
(iv) (aB)"'W = (a2B)"1W;
(V) (a7)7'W = (afy)"'W.

Let P, be the set of overlap-free words that have no prefix that is a square
ending with the letter a. Thus w € P, iff for each prefix zczc of w with ¢ a
letter, on has ¢ = . We show that aw € P <= w € P,, that is

P,=a"'P

Indeed, let w € P,. If aw has an overlap, this overlap is a prefix of aw, and has
the form azaza. But then zaza is a prefix of w, a contradiction. Thus w € P,.
The converse is straightforward. The set P; is defined similarly. Set

Woe={feWI|l-feP)}, Wi={feW|l feP}
Then:
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Proposition 5.5 The following relations hold:
(1) feEW < yfeW;
FeEW, <= vfeW;
FTEW, < vfeW,;
(2) of e W < af €W, < f €W,
3) BfEW < feW,;
(4) o’feW = a’f € Wy
(5) aBfeW =>aBfeW,;
(6) ByfeW=pyfeW,.

Proof of proposition 5.4.
(7). From (1).
(#4). From (2) and (3), it follows that af € W <= §f € W. Next

af eW <= afeW, <= yafeW, <= ayafe W
af EW <= feW, < yWfEW, <= ay7feW

(#47). From (4) and (1), one obtains
CfeW=adlfeW, =2dfew

the converse implication holds because W is prefix-closed.
(#v). From (5),
aff €W = aBf €W, > a’Bf €W

the converse implication holds because W is suffix-closed.
(v). From (i7),(6) and (2), one gets

ayfEW < ByfeWpPyfEW, 2afyfeW .

It remains to prove proposition 5.5. For this, we use the following lemma:

Lemme 5.6 Let w be a word in P. Then
(a) ifw € abaabba Xy, then w € P,;
(b) ifw € aabba Xy, then w € Py;

(c) ifw € abaabX], then w € ;.

Proof of proposition 5.5.

(1). First 1- f € P <= p(l-f)y=1-vf € P. Next, let f € W, and suppose
p(1-f) = ububv. Then |ub] # 3, since otherwise u = ab and ubub = abbabb ¢ X7,
or u = ba and ubub = babbab ¢ X;. Thus |ub| is even, and 1- f ¢ P,. The
converse is immediate.

(2). One has w = 1-af = 02 f = abaabv for some v € X7, and by (c) of
the lemma, one has w € Py. Thus af € W;. Next

af €W, &= 02-f€ P, B _
feW, & 1.FeP, < 1-f€P, < 2.-f€ P,
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Thus it remains to show that 02- f € P, < 2-f e P,. If 02 - f € Py then
2. f € P, since otherwise 2 - f has an overlap. Conversely, if 2- f € P,, then
02 - f = a2 - f is overlap-free and, again by (c) of the lemma, it is in P;.

(3). One has w = 1:8f = 12 f = ababba - f = p(aab - f) = p(a(l - f)).
If 3f € W, then w € P, whence a(1- f) € P, and f € W, and even f € W,.
Conversely, if f € W,, then a(l - f) € P, whence w € P and ff € W.

(4). One has w = 1-a%f = 013 - f € abaabbaX; N P, and by (a) of the
lemma, o?f € W,.

(5). One has w = 1-aff = 023 - f € abaabbaX} N P, and by (a) of the
lemma, afBf € W,.

(6). One has w = 1-8yf = 1u(2 - f) = p(aabbav) for some v € X;. By
statement (b) of the lemma, aabbav € Py, whence w € P,. ™

Proof of the lemma.
(a). Suppose the conclusion is false. Then

w = abaabbaw’ = uuv

where u end with an a. The word u has not length 3, hence it has even length,
and is of the form u = au'a, with «’ of even length. But then w’aa is in X}, a
contradiction.

(b). Suppose the conclusion is false. Then

w = aabbaw’ = uuv = (au'b)(au'b)v

Again, u is not of length 3, hence it has even length. Since u'bau’b has odd
length, the word bv is in X7, and v starts by a letter @ and w has an overlap,
contradiction.

(c). Suppose the conclusion is false. Then

w = abaabw' = uuv = (au'b)(ar'b)v

Again, u has even length because its length is not 3, and bv € X7, thus v starts
with an ¢ and w has an overlap, contradiction. n

This ends the proof of Fife’s theorem. Let us mention again two finitary
versions of this result, which are more complicated, due to J. Cassaigne and A.
Carpi.
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