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Abstract 

We study a sequence, c, which encodes the lengths of blocks in the T h u e - M o r s e  sequence. In 
particular,  we show tha t  the generat ing function for c is a simple product. 
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Consider the sequence 

¢: CO, C1,  (:2, C3 . . . . .  1,3,4,5,7,9,11,12,13 . . . .  

defined to be the lexicographically least sequence of positive integers satisfying n~c 
implies 2n¢c. In fact, the lexicographic minimality of c makes it possible to replace the 
previous 'implies' with 'if and only if.' Equivalently, c is defined inductively by Co = 1 
and 

~ ck+l  if (Ck+ 1)/2¢C, 
Ck+~=(Ck+2 otherwise, (1) 

for k >~0. This sequence was the focus of a problem of Kimberting in [7]. (In fact, he 
looked at the sequence 4Co,4Cl,4c2 . . . .  ) The solution was given by Bloom [4]. Our 
Corollary 7 answers essentially the same question. Related results have recently been 
announced by Tamura [9]. 
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At the 46 Colloque S6ries Formelles et Combinatoire Alg6brique (Montr6al, June 
1992) Plouffe and Zimmermann [-8] posed the following problem. Show that the 
generating function for e is 

2 c R x k = l  l ~ H I - - x E ~ ) - - l  l - x U { I + x ~ J  ) 
k>~O - - X  j>~I 1 - - x e J  - -  .j>~l 

(2) 

the sequence of exponents being 

e: e l ,e2,e3,e  4 . . . . .  1, 1,3,5, 11,21,43 . . . . .  

where el = 1 and 

= ~ ' 2 e j + l  i f j  is even, 
ej+l ~2e j -1  i f j  is odd, (3) 

forj>~ 1. They found this conjecture by using a method that goes back to Euler. First 
they assumed that the generating function was of the form 

H 
1 - -  X aj 

1 -- x bj 
j>~o 

for a certain pair of sequences a j, bj. Then they took the logarithm to convert the 
product into a sum. Finally they used M6bius inversion to determine the 
candidate sequences. Details of this procedure can be found in the text of Andrews 
[2, Theorem 10.3]. 

The purpose of this note is to prove (2). Before doing this, however, we will show 
that c has a number of other interesting properties. Chief among these is the fact that 
c is closely related to the famous Thue-Morse  sequence, t. See the survey article of 
Berstel 1-3] for more information about t. 

First we need to have a characterization of the integers in the sequence c. 

Proposition 1. l f  n is any positive integer then nec if and only/fn = 22i(2j-t- 1)for some 
nonnegative integers i and j. 

Proof. Every positive integer n can be uniquely written in the form n--2k(2j + 1) where 
k, j>~0. We will proceed by induction on k. 

If k = 0, then n is odd. But then n/2 is not an integer, and so n is in the sequence by 
definition (1). 

Now assume that k ~> 1 and that the proposition holds for all powers less than k of 2. 
If k = 2 i  is even, then by induction we have 22i- 1(2j+ 1)~C. So n=22i(2j+ 1)~c by (1). 
On the other hand, if k = 2 i + l  is odd, then induction implies 2~i(2j+l)~c. Thus 
n=221+ l (2 j+ l )¢c  as desired. [] 
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Let X be the characteristic function of c, i.e., 

{ ; i f n ~ c ,  

z(n) = otherwise. 

Restating the previous proposition in terms of Z yields the next result. 

L e m m a  2. The function Z is uniquely determined by the equations 

z(2n + 1 ) = 1 

z ( 4 n + 2 ) = 0  

z(4n)=z(n).  

Another way of obtaining the sequence z(n) for n ~> 1 is as follows. Starting from the 

sequence 

101 • 101  • 101 • 101 • . . .  

defined on the alphabet {0, 1, •}, fill in the successive holes with the successive terms of 
the sequence itself, obtaining: 

101110101011101 • . - -  

Iterating this process infinitely many times (by inserting the initial sequence into 
the holes at each step), one gets a 'Toeplitz transform' which is nothing but our 
sequence Z. The proof of this fact is easily obtained using Lemma 2. See the article 
of Allouche and Bacher [-1] for more information about Toeplitz transformations. 

The connection with the Thue-Morse  sequence can now be obtained. This 

sequence is 

t: to , ta , t2 , t  3 . . . .  =0,  1, 1,0, 1,0,0, 1, ... 

defined by the conditions 

t o ~ 0 ,  

t 2 . + l - = t , + l  (mod2), 

t2n  ~ t n. 

We will need a lemma relating t and Z. All congruences in this and any future results 
will be mod 2. 

Lemma 3. For every positive inteoer, n, we have 

z ( n ) = t , + t ,  1. 
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Proof. This is a three case induct ion based on Lemma 2 and the definitions of  Z and t. 
We will only do one of  the cases as the others are similar. 

t4n + t4n - 1 ~ t2n + t2n - 1 + 1 

= - - t n + t n - l + 2  

=z(n) 

=x(4n). [] 

Define dk to be the first difference sequence of  Ck, i.e., dk=Ck--Ck-1, for k~>0 

(c_ 1=0).  So d is the sequence 

do,dl ,dz ,da,d4 . . . . .  1,2, 1, 1,2,2,2, 1, 1,2, 1, .. 

No te  that  from the definition of  c in (1), the value of dR is either 1 or 2. Write the 

T h u e - M o r s e  sequence in term of its blocks 

t =011010011 . . . .  0 d~, 1 d', 0d~ 1 d~ ... 

defining a sequence d~. It is this sequence that is related to our  original one via the 

difference operator.  

Theorem 4. For all k >>-0 we have dk = d~. 

Proof. Since both  sequences consist of l 's  and 2's, we need only verify that the l 's 

appear  in the same places in both. It will be convenient to let C'k=Y~i<~kd[. We now 
proceed by induct ion on k, assuming that  di = dl for i~< k. Then, from the definitions, 

d k + l = l  ~ Z(Ck+I )=I .  (4) 

But by the induct ion hypothesis, C k = ~ i < ~ k d i = ~ i < ~ k d ~ = c ' k .  So, from Eq. (4), 

d k + l = l  ¢~, Z (c~ ,+ l )= l  

,~. tc ,+l+t, , ;-1 (Lemma 3) 

,*~ d;,+ 1 = 1 (definitions). [] 

Brlek [5] used the sequence d in calculating the number  of  factors of t of  given 

length. The paper of de Luca and Varricchio [6] at tacks the same problem in 
a different way. 

N o w  if nec then we will consider its rank, r(n), which is the function satisfying 

cr~,)=n. Note  that r(n) is not  defined for all positive integers n. In order to obtain 
a formula for r(n), we will need a definition. Let the base 2 expansion of n be 

n = ~ e~2 i 
i~>o 
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with the ei6{0, 1} for all i. Define a function s by 

s(n) = ~ ( -  1)iei. 
i~O 

In other  words, s(n) is the al ternat ing sum of the binary digits of  n. 

Theorem 5. I f  nEe then 

r(n) = (2n + s(n) )/3 -- 1. t5) 

Proof.  The p roof  wilt be by induction. F r o m  Proposi t ion  1, n ~c if and only if n is odd 
or n = 22/(2j + 1) where i > 0 and j >/0. To  facilitate the induction, it will be convenient  
to split the odd numbers  into two groups  depending upon  whether  the highest power  
of 2 dividing n + 1 is even or odd. So there will be three cases 

(1) n = 2 2 i ( 2 j +  1), 
(2) n=22i(2j+ l)-- l, 
(3) n = 2 2 i -  l ( 2 j+  1)-- 1, 

where i >  0 and j ~> 0. The a rguments  are similar, so we will only do the first case. 
So suppose n is even ( remember  that  i > 0). Thus  n + 1 is odd  and, by Propos i t ion  1, 

we have n + 1 ee. Since both  n and n + 1 are in c, the left-hand side of Eq. (5) satisfies 
r(n+ 1 ) = r ( n ) +  1. So, by induction, it suffices to show that  r'(n+ 1 ) = r ' ( n ) +  1 where 
r'(n) is the r ight-hand side of this equation.  Moreover ,  n is a multiple of 4, hence 
s(n + 1) = sln) + 1 (write down their binary expansions). Thus 

r'(n + 1) =(2n + 2 + s(n + 1))/3 - 1 

= ( 2 n + 2 + s ( n ) +  1 ) / 3 -  l 

= (2n + s(n))/3 

= r ' ( n ) +  1. [] 

As a s t ra ightforward corollaries we have the next two results. 

Corol lary 6. I f  n~c then 

r(n) = 2n/3 + O(log n) 

and r(n) takes the value 2n/3 infinitely often. 

Corol lary 7. For any nonnegative integer k 

Ck = 3k/2 + O(log k) 

and Ck = 3k/2 infinitely often. 
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We shall now prove  the identity (2). First we note a proper ty  of the exponents  
e) which is a simple consequence of their definition (3). 

L e m m a  8. For k >~2, let fk=Y~2<<j<,kea. Then 

S ek + l -- 2 !f k is even, 
fk 

~{ ek + l --1 (f k is odd. 

Finally, we come to the proof. We restate the generat ing function here for easy 
reference. 

Theorem 9. The generating funct ion for  c is 

2 c k x k = I I x H ( 1  +xeJ). 
k>~O j>~l 

Proof.  It suffices to show that  if k/> 2 then 

gk(X) = l ~ x ( 1  + xl)(1 +X1 )(1 "{-X 3 ) "'" (1 "{-X ek) 

is the generat ing function for the sequence 

1 ,3 ,4 ,5 ,7  . . . . .  cfk, 2k, 2k, 2k . . . .  

with cyk = 2 k -  1. The p roof  is an induction, breaking up into two parts  depending on 
the par i ty  of  k. We will do the case where k is odd. (Even k is similar.) Now,  by L e m m a  
8, gk(X)(1 + X  e~÷l) is the generat ing function for the sequence 

1,3 . . . . .  cy~, 2k + 1 ,2k+3 . . . . .  2k+cy~,2k+ X,2 k+l . . . .  

Using Propos i t ion  1 and the fact that  k is odd, we see that  2 R + I = c A + I  and 
2 k + c f = 2 k + l - - l = c f ~ + l .  So we want  to show that  

c~+l,cla+2 . . . . .  Cf~+,=2R+Co,2k+cl . . . . .  2k +Cf~. 

But if n < 2  k, then the highest power  of  2 dividing n is equal to the highest power  
dividing 2k+ n. Thus,  by Propos i t ion  1 again, n ec  if and only if 2k+ n ~c. This gives us 
the desired equali ty of the two sequences. [] 

One  possible general izat ion of c is the sequence c (~) defined by n e c  I~) if and only if 
~n~c (~. Thus  c is the special case a = 2 .  

The  following observa t ion  is a direct consequence of our  definitions. 
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P r o p o s i t i o n  10. l f  )((')(n) is the characteristic function oJe (~), then the sequence (gc~(n)) is 

the unique.fixed point o f  the morphism 

l ~ l ~ - a 0 ,  

0__+1 ~ 1 1 

which begins with 1. 

O n e  can  also see tha t  e ~) satisfies ana logs  of  m a n y  of  o u r  p r ev ious  theo rems .  F o r  

example ,  if one  defines e~')= 1 and  

{ze~ " ) + 1  i f j  is even,  

e~+ ~1= ~e~ ~ - 1  i f j  is odd,  

for j~> 1, then  the fo l lowing  resul t  is a g e n e r a l i z a t i o n  of  T h e o r e m  9 and  has an 

a n a l o g o u s  proof.  

T h e o r e m  11. The generating function Jbr e I~) is 

1 l l  1 - -  x ~ e i  al 

1 ~xi>~ I11 1 - -xe~ "~" 
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