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Abstract

We study a sequence, ¢, which encodes the lengths of blocks in the Thue—Morse sequence. In
particular, we show that the generating function for ¢ is a simple product.
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Consider the sequence
C Cp.C1,Cp,C3y... =1,3,4,5,7,9,11,12,13, ...

defined to be the lexicographically least sequence of positive integers satisfying nec
implies 2n¢c. In fact, the lexicographic minimality of ¢ makes it possible to replace the
previous ‘implies’ with ‘if and only if.’ Equivalently, ¢ is defined inductively by ¢q=1
and

o+ 1 if (e +1)/2¢c,
k1= (1)

¢, +2 otherwise,

for k=0. This sequence was the focus of a problem of Kimberling in [7]. (In fact, he
looked at the sequence 4c¢y,4c¢y,4c,, ...} The solution was given by Bloom [4]. Our
Corollary 7 answers essentially the same question. Related results have recently been
announced by Tamura [9].
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At the 4¢ Colloque Séries Formelles et Combinatoire Algébrique (Montréal, June
1992) Plouffe and Zimmermann [8] posed the following problem. Show that the
generating function for ¢ is

Zckx"=11xnlliiijj=lixn(l+xef) (2)

k=0 izl j=1

the sequence of exponents being
e €,,€,5,03,64,... = 1, 1,3, 5, 11,21,43, aey
where ¢; =1 and

2e;+1 if j is even,
em:{ y / (3)

2e;—1 if j is odd,

for j= 1. They found this conjecture by using a method that goes back to Euler. First
they assumed that the generating function was of the form

1 —x%

1—xbi
>0

for a certain pair of sequences a;, b;. Then they took the logarithm to convert the
product into a sum. Finally they used Mobius inversion to determine the
candidate sequences. Details of this procedure can be found in the text of Andrews
[2, Theorem 10.3].

The purpose of this note is to prove (2). Before doing this, however, we will show
that ¢ has a number of other interesting properties. Chief among these is the fact that
¢ is closely related to the famous Thue-Morse sequence, ¢. See the survey article of
Berstel [3] for more information about ¢.

First we need to have a characterization of the integers in the sequence c.

Proposition 1. If n is any positive integer then nec if and only if n=2(2j+1) for some
nonnegative integers i and j.

Proof. Every positive integer n can be uniquely written in the form n=2*(2j + 1) where
k, j=0. We will proceed by induction on k.

If k=0, then n is odd. But then n/2 is not an integer, and so # is in the sequence by
definition (1).

Now assume that k> 1 and that the proposition holds for all powers less than k of 2.
If k=2i is even, then by induction we have 22'~1(2j4 1)éc. So n=2%(2j+ 1)ec by (1).
On the other hand, if k=2i+1 is odd, then induction implies 2%(2j+ 1)ec. Thus
n=2%*1(2j+1)¢c as desired. O
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Let y be the characteristic function of ¢, i.e.,

1 1if nee,
x(n)=

0 otherwise.

Restating the previous proposition in terms of y yields the next result.

Lemma 2. The function y is uniquely determined by the equations

22n+1)=1
y(4n+2)=0
x(4n)=yx(n).

Another way of obtaining the sequence y(n) for n = 1 is as follows. Starting from the
sequence

10101016101l @101 @---

defined on the alphabet {0, 1, o}, fill in the successive holes with the successive terms of
the sequence itself, obtaining:

101110101011101 e ---

Iterating this process infinitely many times (by inserting the initial sequence into
the holes at each step), one gets a ‘Toeplitz transform’ which is nothing but our
sequence y. The proof of this fact is easily obtained using Lemma 2. See the article
of Allouche and Bacher [1] for more information about Toeplitz transformations.

The connection with the Thue-Morse sequence can now be obtained. This
sequence is

t to,f1,t3,13,...=0,1,1,0,1,0,0,1, ...
defined by the conditions

to=0,

tine1 =ty+1  (mod2),

ton=1,.

We will need a lemma relating ¢ and y. All congruences in this and any future results
will be mod 2.

Lemma 3. For every positive integer, n, we have

X(n)Etn'Ftn*l'
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Proof. This is a three case induction based on Lemma 2 and the definitions of y and .
We will only do one of the cases as the others are similar.

t4n+l4n—1512n+t2n—1+1

St,+t—1+2
=x(n)
= y(4n). O

Define d, to be the first difference sequence of ¢, ie., dy=c,—¢_,, for k=0
(¢c_1=0). So d is the sequence

d05d1’d2’d33d4-’--- =1725 1’ 17272’2’ 17 1a27 17--

Note that from the definition of ¢ in (1), the value of d; is either 1 or 2. Write the
Thue—Morse sequence in term of its blocks

t=011010011 .- =0do [ 4i Q2 1 d5 ...

defining a sequence d;. It is this sequence that is related to our original one via the
difference operator.

Theorem 4. For all k>0 we have d,=dj.

Proof. Since both sequences consist of 1’s and 2’s, we need only verify that the 1’s
appear in the same places in both. It will be convenient to let c;=Y ;. ,d{. We now
proceed by induction on k, assuming that d;=d; for i<k. Then, from the definitions,

dir1=1 = gl +1)=1 4
But by the induction hypothesis, ¢, =Y, di=Y <, di =ck. So, from Eq. (4),
des1=1 = i +1)=1
<>ty 1+t =1 (Lemma 3)
< g1 #lg
< dy+1=1 (definitions). ]

Brlek [5] used the sequence d in calculating the number of factors of ¢ of given
length. The paper of de Luca and Varricchio [6] attacks the same problem in
a different way.

Now if nec then we will consider its rank, r(n), which is the function satisfying

¢,m=n. Note that r(n) is not defined for all positive integers n. In order to obtain
a formula for r(n), we will need a definition. Let the base 2 expansion of n be

n=>y g2

iz0
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with the ¢e{0,1} for all i. Define a function s by

sm= ) (=1)s.

iz0

In other words, s(n) is the alternating sum of the binary digits of n.

Theorem 5. If nec then

r(n)=02n+sn))/3—1. (5)
Proof. The proof will be by induction. From Proposition 1, nec if and only if n is odd
or n=2%(2j+1) where i>0 and j > 0. To facilitate the induction, it will be convenient

to split the odd numbers into two groups depending upon whether the highest power
of 2 dividing n+1 is even or odd. So there will be three cases

(1) n=2%2j+1),
(2) n=2%2j+1)—1,
(3) n=2%712j+1)—1,

where i>0 and j=0. The arguments are similar, so we will only do the first case.

So suppose n is even (remember that i >0). Thus n+ 1 is odd and, by Proposition 1,
we have n+1ec. Since both n and n+1 are in ¢, the left-hand side of Eq. (5) satisfies
rin+1)=r(n)+ 1. So, by induction, it suffices to show that r'(n+1)=r'(n)+ 1 where
r'(n) is the right-hand side of this equation. Moreover, n is a multiple of 4, hence
s(n+1)=s(n)+1 (write down their binary expansions). Thus

rin+1)=02n+2+sn+1))/3—-1
=2n+2+s(n)+1)/3—-1
=(2n+s(n))/3

=r'(n)+ 1. O
As a straightforward corollaries we have the next two results.

Corollary 6. If nec then
r(n)=2n/3+0O(logn)

and r(n) takes the value 2n/3 infinitely often.

Corollary 7. For any nonnegative integer k
¢,y =3k/2+O(logk)

and ¢, =3k/2 infinitely often.
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We shall now prove the identity (2). First we note a property of the exponents
e; which is a simple consequence of their definition (3).

Lemma 8. For k22, let fy=Y%,¢;<ye;. Then

fi= ex+1—2 if k is even,
T lexri—1 if k is odd.

Finally, we come to the proof. We restate the generating function here for easy
reference.

Theorem 9. The generating function for ¢ is

Z c,‘x"=ﬁn(l + x%).

k>0 j=1

Proof. It suffices to show that if k>2 then

gk(x)=$(l +xH) (1 +xH(1 4+ x3) - (14 x%)

is the generating function for the sequence
1,3,4,5,7,...,¢p,, 252, 2% ..

with ¢, =2*—1. The proof is an induction, breaking up into two parts depending on
the parity of k. We will do the case where k is odd. (Even k is similar.) Now, by Lemma
8, gi(x)(1 +x%+1) is the generating function for the sequence

1,3, .00, 2 1,264 3, ke, 2KH1 k1

Using Proposition 1 and the fact that k is odd, we see that 2*+1=c¢;,, and
24 ¢, =2*"'—1=c¢; ;. So we want to show that

Cf,‘+|,Cf,‘+2,...,kaﬂ=2k+C0,2k+Cl,...,2k+Cﬁ‘.

But if n<2* then the highest power of 2 dividing n is equal to the highest power
dividing 2* +n. Thus, by Proposition 1 again, nec if and only if 2*+ nee. This gives us
the desired equality of the two sequences. [

One possible generalization of ¢ is the sequence ¢ defined by nec™ if and only if
ange!®. Thus ¢ is the special case a=2.
The following observation is a direct consequence of our definitions.
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Proposition 10. If '®(n) is the characteristic function of ¢, then the sequence (x'*(n)) is
the unique fixed point of the morphism

112710,
0—-12711

which begins with 1.

One can also see that ¢® satisfies analogs of many of our previous theorems. For
example, if one defines ¢ =1 and

o
j+1

_faeP 41 if jis even,
1e§“’—1 if j is odd,

for j=1, then the following result is a generalization of Theorem 9 and has an
analogous proof.

Theorem 11. The generating function for ¢ is

e(al

I l e"’ -
izl
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