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Abstract

The purpose of the paper is to present the implications of a new definition
of context-free langnages. The main interests of this approach are first to allow
full formal proofs and second to enlight the crucial role of rational closures. The
proposed formalism is based on a theorem of Wechler. It is very near to the
“radical algebras” of Conway.

1 Introduction

In teaching general results on context-free or aigebraic languages one frequently meets
the difficulty to explain to students some construction which is not complex but some-
what lengthy to write down explicitly. This is the case for instance for the grammar
for the intersection of a context-free and a rational language

This difficulty is well-known, and there have been several attempts to present the
theory of formal languages in a diffetent framework : regular tree grammars, Hotz
algebras [9], or the description through Kolmogorov complexity [10]. Conway [3] uses
systems of equations and inequalities His radical algebras, even if they are introduced
in a different way, are closely related to our stable algebras.

The present paper is along the lines of these attempts. Its aim is to show how the
theory of algebraic languages is organized when one takes as definition not arbitrary
context-free grammars, but grammars in Greibach normal form, and reformulate them
according to a weak version of a theorem of Wechler (18] : a language is context-free if
and only if it belongs to an algebra of languages that is finitely generated and stable
under left quotient.

We intend to prove some of the main results of the theory of context-free languages
starting with this characterization, and without using any other result about these lan-
guages. On the contrary, we admit the theory of finite automata and rational languages
(14, 12]). |

We shall try to show that this approach results in a double benefit. First, we get a
great number of standard results about algebraic languages without effort, and with. very
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short full proofs (we get no new result) Next, our approach highlights the ubiquity of
rational closure as a basic operation, in various formulations. Up t¢ now, our approach
has limitations: we are unable to obtain as precise pumping lemmas as Ogden’s one.
Also, the theory of deterministic languages seems difficult to express in our formalism:
push-down automata are easily introduced, but by nature they are always real-time

The paper is organized as follows: in the first section, we review some properties
of quotients. In section 2, we define context-free algebras and give some examples.
The next section contains those closure properties which are straightforward Section 4
present an extension of stable algebras which will be used in the next section devoted
to various normal forms Closure under morphism and, more generally, under rational
transductions, is the object of Section 6 Pumping lemmas are studied in Section 7
Then, we prove a theorem of Chomsky-Schiitzenberger and, in the last section, a theo-
rem of Shamir

The paper is self-contained Notation is the usual one, as found in Salomaa [12] and
Eilenberg [4].

2 Quotients

For easy reading and writing, we denote union by the symbol +. Given an alphabet A,
one defines for w € A* and X C A”, the left quotient by

wilX ={ve A |wwe X}
Symmetrically, one defines the right quotient

Xwl={ve A |owe X}
The following computation rules are clear:

() X = v (v X)
u'l(X +Y)= u X +u Y
HXNY)=u X NnutY
and for a lettera € 4

aH{XY)= (a1 X)Y +{X Nn{eh)(a1Y)
aH{X*) = (a7 X)X

The first of these formulas can be written as:

-IX)Y ife ¢ X;
-3 XY — (G’, 1
aT(XY) { (871X)Y +a71Y  otherwise

The notion of quotient is extended to languages by:

YI'X =)y ' X={ued|YunX+#0}

yEY

One has (Y +2)' X =YX 42X
(YZ)'X = Z-1(Y~1X)
(Y*)1X = X + Y ((Y)71X) = X + (V7)Y LX)
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The last formula comes from the fact that Y* = e+ ¥Y*Y = e+ YY* Finally,
ZHXY) = (Z7'X)Y + (X' Z)Y

and
X =% al@X)+Xn{e}
a€A
All these formulas also hold for right quotients.

3 Context-free Algebras

3.1 Definition

An algebra A over an alphabet A is a set of languages over A closed under union and
product, and containing all finite subsets.

Let T be a set of subsets of A* We denote by Po1(7} the set of polynomials
over T, that is the set of languages that can be expressed as finite unions of products
(monomials) of the form

T Ty

with ¥ > 0 and for 0 <7 < k, either T; € T o1 T; = {a} for some letter a € A Thus, 4
is an algebra if and only if A = Poi1(A). f A= PoL(T), cne says that A is generated
by T and that T is a basis of A.

An algebra A is of finite type if it has a finite basis. I T = {T},.. , Ty} is a finite
basis of A, then we also write 4 = Por(Ty,.. ,Th)

An algebra A is stable if it is closed under left quotient, that is if

veA Xed=ulXecAh

The verification of stability of an algebra is easy due to the following rule:

RULE. An algebra A with basis T is stable if and only if a™1T € A for any letter a € A
and any T e T '

Proof. By the first formula of the preceding section, it suffices to consider the quotient
by a letter. Next, the formulas e (X + ¥) = ¢ 1X + a7V et ¢ (XY) = (71 X)Y +
(X N {e})(a™'Y") show how to reduce the quotient to the quotient of a monomial and
eventually of a generator u

We call context-free algebra any algebra that is stable and of finite type. A language
L is algebraic if and only if it belongs to some context-free algebra A We say then
that A is a (context-free) algebra for I Thus, the set of algebraic languages over the
alphabet A is the union of all context-free algebras over A

3.2 Examples

ExaMPLE 0. Wechler’s theorem [13} in its version for languages, is the following:

THEOREM 3.1. A language L over A is context-free iff L belongs to a finitely generated
stable algebra over A :
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Thus, algebraic languages coincide with context-free languages in the usual sense. For
languages, the proof is not difficult when one uses Greibach normal form.

EXAMPLE 1. The language of Lukasiewicz over the alphabet A = {a,b} satisfies the
equation L = b+ aLL. It follows that @™1L = L? and § 'L = {e}. Consequently, the
algebra POL(L) is stable; it is a context-free algebra for L.

ExampPiE 2 Over the alphabet A = {a,b}, consider the language
CE={a"t"|0<n<m}

Setting U = v, one gets

a'L=1Lb
bIL=U
e =46

U =U

thus {L, U} generates a stable algebra for L.
ExaMpPLE 3 Still over A = {a, b}, consider the language

L={a"b" |n,mn >0, n ¥ m}
Set I/ = &t and 14 =gt Then

o 'L=Ub+Vb+Lb a =0 aW=ec+V
1L = W =e4U bV =0

Thus the algebra POL(L,!/,V) is stable We shall see later how to get 1id of the
intermediate variables I/ and V by authorizing also the star operation (semi-stable
algebras).

EXAMPLE 4 The algebra Po1(§) of finite languages is clearly context-free

EXAMPLE 5. Every rational language K over A is algebraic. Indeed, the set {u 'K |
u € A*} is finite, and therefore generates an algebra of finite type which of course is
stable.

ExXaMPLE 6. Assume that a grammar G is given in Greibach normal form (with e-
productions added when needed). Then, the associated system of equation gives effec-
tively the expressions of the left quotients of the components of the solution as poly-
nomials in the components of the solution. They determine uniquely and effectively
the components, provided one remembers, for each component, whether it contains the
empty word or not (see also Corollary 3 4 below).

EXAMPLE 7 In view of the preceding remark, the membership problem is decidable
for algebraic languages. Indeed, in order fo check whether u € L, it suffices to check
whether the polynomial «~'L has a constant term &.

3.3 Proper Basis

The special and frequently disturbing role played by the empty word in context-free
languages is considerably weakened here by the fact that «='(L U {¢}) = a~'L for any
language L and any letter & The presence or absence of the empty word has almost no
influence on the relations that express the quotients of elements of a basis as polynomials
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in this basis. Consider for example the language L of the example 2 above, without the
empty word:
I={at"|0<n<m}=U"+alb
with U’ = bt Since /' = Ub, one has L', I/" € PoL(L,U). Conversely, since L = I +¢
and U = U’ + ¢, one has L, U € Por{L',U'} Thus {L,U} and {L', U’} generate the
same algebra.
A family of languages Tisproperife ¢ Tforall T € T.

LEMMA 3.2  Every context-free algebra possesses a finite proper basis

Proof. Let A be a context-free algebra and let 7 be a finite basis of 4 For T' € 7,
denote by T = T — {c} the language without the empty word, and let 7/ = {1" | T' ¢

T} Since
T'=7% a(a'T)

a€A

one has 7' € PoL{T) for all . Conversely, T = T'+ (T'N {e}), whence T € PoL(T")
for all 7. This shows that PoL(7} = PoL{T") =

3.4 Homomorphisms of algebras
Let A be an alphabet and let A and B be two stable algebras over A A mapping

a: A—=B

is an algebra homomorphism if a({w}) = {w} for all w € A* and if, for X,Y € A and
a€ A,
(X +Y)=a(X)+ oY)
a(XY) = a(X)a(Y)
a(a™'X) = a ta(X)
(learly, a homomorphism is determined by its values on a basis 7 of A

ExaMPLE 1. Let 7 be a basis of A, and define e on 7 by a(T) =0 forall T € 7. The
image of A by « is the algebra of finite languages.

EXAMPLE 2 Let 4 be a context-free algebra over A with basis 7, and let 7" = {1 |
T e T} whete T' = T + {¢} for T € T. The mapping & : 7" — T is 2 homomorphism
of the algebra PoL(7") over A because a T = a7

An algebra homomorphism « : A —+ B is a renaming (with respect to 7) if o is 2
bijection of some basis T of A onto a basis 7" of B.

PROPOSITION 3.3, Let A and A’ be two stable algebras, let T be a basis of A and let
a: A — A be a renaming with respect to T H

Tniel =a(T)n{c}
forallT €T, thena(X)=Xforal X € 4, and A=A
Another formulation of this proposition is the following:
COROLLARY 3.4 A stable algebra is completely determined by those elements of a

basis that contain the empty word £ and by the quotients of the elements of this basis
by letters. '
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Proof. We prove the proposition by showing, by induction on the integer » > ( that
X NA™ = a(X)N A", (X € 4)
For n = 0, this results from the hypotheses by considering

(X+Nn{el=(Xn{ehH+{¥n{eh
(XY)n{el = (X {h(F nie}h)

Next, since

X =Y a(@ X} + (X n{e})

a€A
on obtains for n > 0

XNA™ =3 a(a'X NA")

acAd
By the induction hypothesis and from a(a™'X) = ¢ ta(X), one gets

a !X NA" =a(et X)NA*=alo(X)N A"

whence
XnA™ =3 alata(X)NA™) = ofX) N AML x

aEA

Observe that, in the terminology of grammars and systems of equations, we just
proved that the system of equations associated to a grammar in Greibach normal from
{even with e-productions) has a unique solution.

4 Elementary Operations

In this section are gathered together those closure properties of context-free languages
which can be proved in an elementary way For others, an extension of the definition
will appear to be useful.

4.1 Rational Closure

Proprosirion 4.1 If L and L' are algebraic languages over A, then L + L' and LL'
are algebraic over A

Proof. If : '
LePor(ly,...,T,) and L' €PoL(S:,. ,5)

then _
L+ L Ll ePor(Ty,. .., Tn, 51, . Sm)

and it is straightforward, by the Rule, that PoL(Ty,. .,T,, S1,. . Si) is stable, u

PROPOSITION 4.2, If L is algebraic over A, then L* is algebraic over A
Proof. Let A= PoL(Ty,.. ,T,) be a stable algebra containing L. Then the algebra

B="Poi(Ty,.. T L")
contaiﬁs of course L*. To show that B is stable, observe that

a1l = (a'1 LL»
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and since a='L € A, one has a7*L* € B. s

We denote by RAT(T) the rational closureof 7, i e the smallest family of languages
containing 7 and the finite languages, and closed under union, product and star. A
family of languages L is rationally closed if £ = RAT(L). A consequence of the preceding
propositions is :

COROLLARY 4 3. Tke family of algebraic languages is rationally closed "

4.2 Length-preserving Morphisms

PROPOSITION 4 4. Let f : A* — B* be a length-preserving morphism. If A is a
context-free algebra over A*, then f(A) = {f(X) | X € A} is a context-free algebra
over B. In particular, the image of an algebraic language under a length-preserving
morphism Is an algebraic language

Proof Let B = f(A) = {f(X)| X € A} It is of course an algebra of finite type It
suffices to show that B is stable. We prove that for X € Aand b € B,

(X)) = Y f@7'X) (41)
Ha)=b
Indeed, if bw = f(z) with « € X, then z = ay with f(e) = b and f(y) = w, whence
w € f(a'X). Conversely, if w € f(a™X), then w = f(y), for some y such that
ay € X Thus f(ay) = bwand w € b1 f(X).
Consequently, each quotient b~! f{X) is a finite sum of polynomials, and thus is itself
a polynomial. n

4.3 Intersection with a Rational Language

PROPOSITION 4.5 The intersection of an algebraic language and a rational language
is an algebraic language

Proof. Let, L be an algebraic language, and let A = PO1(My,.. ,M,) bea context-free
algebra for L.

Let K be a rational language, recognized by a finite deterministic complete automa-
ton A = (Q,4,T, ) with initial state i, final states T and next-state function - Let Ky,
denote the set of words recognized by the automaton A when taking p as the initial and
¢ as the final state. Since

Ln K ZZL M K',"t
teT
it suffices to prove that every L N K, is algebraic,

Consider for this the algebra B generated by the languages M; N Ky, for 0 < j < n

and p,g € Q@ Observe first that, for all X,V

(X + Y) n Kp,q = (X 0 Kp,q) + (Y n Kp.q)
XY NKpy=Y_(XNEK, )Y NK,)
re@

Consequently, all languages of the form MNK, o, for M € A, belong to B. In par ticular
LNK,,€Bforallpgeq.
It remains to prove that B is stable Since

e MO K,g) =a M0 a " Ky = a M N Kyayg
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and a™'M € A, one has a*M N K, ,, € B. .

1t is not difficult to check that most of the usual “syntactic” proofs of the intersection
property can be rephrased in the framework of context-free algebras. Our claim is that
rephrasing simplifies the verification.

4.4 Syntactic Substitution and Inverse Projection

Let A and B be two disjoint alphabets and X C A*, Y C B* The syntactic substitution
of ¥ in X is the language
Z=X1Y

defined by
Z = Z{alYagY cap Y | n 20, a1, .6, €A, a1 -0, € X}

In particular, X T {e} = X et {€} T ¥ = {e}. The following identities are easily
verified Fora € Aand be B:

(X 1Y) =Y ((aX) 1Y)

(X 1Y) =@
(X+XVY=X1Y+X'1Y

(XX)1Y=(XTY)X' 1Y)

PROPOSITION 4.6. Jf X is algebraic over A and Y is algebraic over B, then X 1Y is
algebraic over AU B.

Proof. Let A = Poi(7T) and B = PoL(S) be context-free algebras for X and Y
respectively. The algebra C generated by

U=TUSU{T1Y|TeT}

is of course of finite type and contains X 1Y Now ¢ (T 1Y) is a polynomial in the

languages of I, and consequently C is stable, .
Let A be an alphabet, let B be a subset of A and set C = A\ B. Let r be the

projection of A* onto A*, defined by #(b) =bfor b€ Betn(c)=cforec e C

PROPOSITION 4.7 If L is an algebraic language over B, then n=Y(L) is algebraic over
A
Proof. One has (L) = C* (L T C*), and the result follows from proposition 4 6. =
In view of general results on decomposition of morphisms (see e g. {1]), the clo-
sure properties of this section imply closure of algebraic languages under nonerasing
morphism, and it suffices to show closure under (elementary) projection to get closure
under general morphisms, rational transductions and substitutions
It appears that closure under projection is much more difficult to prove, and is
post-poned to Section 6.

5 Semi-stable Algebras
An algebra A is semi-stable if RAT(A) is stable.

PRroposITION 5 1. Let A be an algebra, and let T be a basis of A The following
conditions are equivalent :
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(i) the algebra A is semi-stable;
(if) for all words u and all X € A, one has X € RAT(A);
(iii) for each letter a,and each T € T, one has a™'T € RAT(A).
Proof. The implications (i)=>(ii) and (ii)=>(iii) are clear It suflices to prove the impli-
cation (iii}=(i)}. We check first that a7'X € RAT(A) for all X € RAI(A) and all
letters ¢ Let 8 be the family of languages defined by

S = {8 € Ra1{A) | a'S € RAT(A) for each letter a € A}

By hypothesis, 7 C 8. Let us show that § = RAI(A) Indeed, if $1,5 € &, then
51+ 52,515, € & Tinally, if § € &, then a~1(8*) = (a715)5* Both factors of
this product are in RAT{A), whence $* € § Thus, the family S is rationally closed,
and RAT{A) = RAI(T) C § C Rat1(A), whence S = Ra1(A). This shows that
a1X € Rar(A) pour X € Ra1(A).

To ptove the implication, consider now X & RAT(A) et u € A" We show that
wlX € RAT(A) by induction on |u]. Set u = va, with a a letter. Then u™'X =
¢~}(v™'X). By induction hypothesis, ¥ = v™*X € RAT(A), and by the preceding
argument, a”'Y € RAT(A) 1

Note that the algebra RAT(A) is not of finite type in general, even if A is of finite
type. On the contrary, some sub-algebras of finite type may be constructed explicitly
This will be done now.

Let e be a rational expression. We associate to e a finite set of languages denoted
S1(e) (for Stars of €) inductively as follows:

e If ¢ is a singleton or e = 0, then ST(e) = §;
o SI{e; e3)=Si(er+e)=S1(er)UST(ez);
o St(e’) = S1(e) U {L(e*)}, where L(e) is the language denoted by e

For example, for the expression e = ({a* + 6)*(c*d))", one has
S1{e) = {({e” + &)"(c"d))", (@* + b)", a", "}
The definition extends to a set £ of rational expressions by

S1(E) =[] S1{e).
eel
We denote by L(E) the set of languages L{e), for e € E. By construction, E{e)
is contained in PoL(SI(E)) Recall that by convention POL{L) contains all finite
languages.

LEMMA 5 2 Let T be a family of languages, and let E be a set of rational expressions
over T. If a™*T € L(E) for each letier a and each T € T, then

A = PoL(T USI(E))

is a stable algebra

Proof In view of the Rule, it suffices to prove that a7?X € Afor all X € 7 U S1{E)
f X € T, this results from the hypothesis. If X € ST(E), one has X = R" for some
language R € A, and ™ 'X = (a"'R)X. Since the number of stars in the expression
denoting R is smaller than the corresponding number for X, an induction completes
the proof .
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PROPOSITION 5.3, Let A= PoL(T) be a semi-stable algebra with finite basis T, and
let

S=81({a'I'|a € A,TET)).
Then the algebra B generated by T U § is context-free

Proof. Since A is semi-stable, the languages a7, fora € A, T € T, arein RAI(A). Let
£ be a finite set of rational expressions denoting these languages, and set § = SI(E). By
the lernma, the algebra B generated by 7 U S is stable, whence context-free x

COROLLARY 5.4 A language is algebraic if and only if it belongs to a semi-stable
algebra of finite {ype .

6 Normal Forms

There exist many normal forms for context-fiee grammars Among the most well-
known, there are the Greibach quadratic normal form [6] and the two-sided normal
form [11, 8, 5] In this Section, we show how to derive, in a simple and constructive
manner, these normal forms in the framework of context-free algebras Moreover, they
will be useful to prove the closure of algebraic languages under morphism

Let A be a stable algebra and let T be a basis of .A. For each generator T € 7
and each letter @ € A, the language a™!7 is a polynomial over 7 The degree of T
is, by definition, the maximum of the degrees of the polynomials ¢*17. The degree
of a polynomial is the maximum of the degrees of its monomials and the degree of a
monomial is the number of letters and elements of the basis that composes it.

6.1 Greibach Quadratic Normal Form

PROPOSITION 6 1. Every context-free algebra possesses a (proper) basis of degree at
most 2,

Proof. Let A =PoL(T) be a stable algebra of degree k > 2. Without loss of generality,
we suppose that {a} € T for each letter a € A and that the basis is proper. Consider
now the finite set

(S‘={T1 "'TthI'ET, IShSk—l}

Forac Aand M =Ty T, € 8, one has a 'M = (a™'T})T; - T} because the basis
is proper  Each a7'T; is a polynomial in 7 of degree at most k. Thus, a'M is a
polynomial of degree at most k4+h—1 < 2k—21in 7 Now, each monomial of degree at
most 2k —2 in 7 can be written as a product of two monomials of degree at most k—1 in
T, and thus also as a monomial of degree at most 2 in §. Hence, a~'M is a polynomial
over & of degree at most 2, showing that S is a basis of degree at most 2. "

6.2 Bistable Algebras

In this section, it will be necessary to distinguish left and right quotients, and it is
convenient to add the prefix left to the previously introduced notations. An algebra
A = PoL(T) is called right stable if w € A, X € A imply Xu™! € A Similarly, A
is 1ight semi-stable if RAT(A) is right stable An algebra is bistable if it is both right
stable and left stable. ' '



J Berstel and L Boasson/Context-Free Languages 227

PROPOSITION 6.2 Every finitely generated left stable algebra is contained in a finitely
generated bistable algebra.

Proof. Let A be a left stable algebra of finite type and let 7 be a finite basis of A We
can assame that 7 is proper and contains the languages reduced to a letter. We show
first that A is right semi-stable For this,let T € 7 and ¢ € A One has

T =Y 6Pz
bEA

where P, = b7'T is a polynomial in 7 It follows that

Ta ' = E b(P;,,-;ra—l)

beA

and consequently that T'e™! is the sum of a polynomial in 7 and of a sum of productions
of the form
by Th(Tga_l)

withT: € T for 0 < i < h and b € A This proves that the set of languages T'a™?, for
T € T, satisfies a proper system of right-linear equations with coefficients in A. Thus
Ta™' € RAT(A).

It follows from (the symmetric statement of) proposition 5 3 that the algebra gen-
erated by

TUSI({Ta ' |ac A, TET})

is 1ight stable Tt is elementary to check that this algebra is also left stable =

We illustrate this construction and the following by a 1unning example, namely the
language of Lukasiewicz.

ExaMPLE. The language of Lukasiewicz, denoted here by S5, is a generafor of the
algebra POL(S) which is stable because

a”1§=88
b 185 =¢

To compute the right form, we observe that 5 = a(a=?S)+b(6"15) = aSS5 + b, whence

Sa! = aS(Sa™?) + (ba™")
Sb7! = aS(5h7) + (Bb7)

This implies that Sa=! = @ and S~ = (a5)*. Thus we introduce a new element in the
set of generators, namely R = (aS)* One obtains

Ra™' = (a8)*a(Sa") =0
Rb' = (aSya(S67') = RaR

whence the relations (we report only those with a nonempty result):

St'=R
Rb!'= RaR

Observe that this corresponds to the grammar

5 — Rb
R— RaBb+e
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According to the proof of the proposition, this algebra is also (left) stable, and indecd
one gets:

e 'R=5R
b'R=10

COROLLARY 6.3 Left stable algebras of finite type and right stable algebras of finite
type define the same families of languages .

COROLLARY 6 4. If L is an algebraic language, then its reversal is also algebraic =

6.3 Hotz Quadratic Normal Form

We call “Hotz Quadratic Normal Form” the two-sided quadratic norma)l form of a
grammar. Let now 4 be a bistable algebra of finite type with basis T. Foreach T € 7T,
and all ¢,b € A, the language a™'7b7! is a polynomial in 7 The maximum of the
degrees of these polynomials is the bidegrec of T

EXAMPIE (cont’d). The polynomials e 'Th! are computed as follows:

al8a 1 =8%""1=4¢ a'Re ' = SRa ! =1
a 186! = 8501 = SR a 'Rb! = (SR)b™ = S(Rb™') + Sb~! = SRaR+ R
b lSa =0 b 'Ra =0
ylSE =10 IR =0
whence
a 'S =Sk

a'Rb = SRaR + R

this leads to the two-sided Hotz grammar :

S —aSRb+ B
R —aSRaRb+ aBb+ ¢

PROPOSITION 6 5. Every bistable algebra of finite type possesses a basis of bidegree
at most 2,

Proof. The proof is in two steps. Let A be a bistable algebra of finite type, and let 7
be a proper basis of 4. By 1epeating the proof of prop 6.1 simultaneously for the sets
a™'T and the sets Ta™?, one may suppose that the basis 7 has degree at most 2 both
for the left quotients and for the right quotients This means that the languages a1 T
and Ta™' can be expressed as polynomials of degree 2 in T It results that for T € T
and a,b € A, a7'TH™ = Pb™* for some polynomial P of degiee at most 2, and that
Pb~1 is a polynomial of degree at most 3 in 7.

Now let & be the set of languages composed of T and of all monomials of degree 2
over 7. Clearly, a7'T&7, for T' € 7, is a polynomial of degree 2 at most 2 in S. Let
now § =N1;, with T3, T, € T Since T is proper, one has

a 1857t = (a1 T)(Teb ™)

The right term of the equation is a polynomial of degree at most 4 in 7T, hence a
polynomial of degree at most 2 in S. .
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EXAMPLE (cont’d} In order to obtain a basis of bidegree at most 2 from

2”151 =5R
a 1R ' =SRaR+ R

we turn first the following algebra into a left quadratic and right quadratic one:

a'§=55
S =¢
S '=R
Rb'= RaR
e 'R=S8R

For this, set (for instance) T = Ra. One gets b7 =Tb™* =@ and ¢ '7 = -SRa +¢,
Ta ! = R The quadratic system has the form:

e~ 18 =585
bl8=¢
Sh'=R
RV1=TR
e 'R=5R
a ' T=58T+¢
Te =R
For the two-sided form, one gets

e~ 18! = SR

e 'RV 1 =S5TR+ R

a M Ta'=SR

To eliminate the monomial which is not quadratic, set (for instance) U = ST Then
one obtains b~Wa™! = R and e 'Ua™! = (¢"15T)a"! = SSR, which leads to consider
the language V = S5, for which a7'Vb™* = VR et b7'Vb~' = R The adjunction of
these two languages to the set of generators yields the desired system, namely:

a 150 =Sk aUat=VR

g 'Rb'=UR+R bPWal=R

e 1Ta'= SR a 'V i=VR
FVl=R

(and this of course gives in turn a two-sided quadratic grammar).

6.4 Monomial Algebra

A basis 7 of a context-free algebra A over A is moneomiel if ¢~17 is a monomial for any
e € Aand any T € 7. An algebra is monomial (of degree k) if it admits 2 monomial
basis {of degree k).

PROPOSIIION 6.6 Any context-free algebia is the image through a length-preserving
homomorphism of a context-free monomial algebra with same degree
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Proof. Let A be a context-free algebra over A, and let 7 be a proper basis of .4 of
degree k. We assume that the languages formed by a single letter belong to 7. We
denote by M the set of monomials of degree at most k.

Let B be a new alphabet defined by

B={(e,T,M)|acA TeT, McM}

and let 7 : B* — A* be the length-preserving morphism defined by #({a,T, M)} = a.
Consider now the algebra A’ generated by the family 7/ = {T¥ | T € T} of those
subsets of B* defined by

T'n{e} =Tn{e}

and by

§ ifT# 5 o1 M isnot a monomialin a7,

M' otherwise,

(a0, T, M)S' = {

where, for each monomial M =T} - - T, de A, we denote M’ = T} .- T!. By construc-
tion, the algebra A’ is monomial. Let 7% = #{T") for 7 € 7’ and A" = n(A") By
proposition 4 4, the algebra 4" is context-free and, translating formula {4 1) gives, for
a€Aand T e T,

a T = Y w (67T
x(b)=a
=3 7{(a,5,M)"'T' | M e M, S €T}
=3 w{(a,T,M)"'T" | M monomial of a™'T}
=3 {M"| M monomial of =7}

where, as above, M" = m(M’). Furthermore, 7" Ne = 7' Ne = T Ne. Hence, due to
corollary 3.4, we get T" =T for all T, so that A" = 4 ]

7 Morphism

In this section, we prove that algebraic languages are closed under morphism, 1ational
transduction and substitution. We begin by the closure under projection. Let 4 be an
alphabet, b a letter not in A, and let B = AU {b} We denote r the projection of B*
on A*: it is defined by #(b) =c and w(a) =afora € A

PROPOSITION 7 1 If K is an algebraic language over B, then (K} is algebiaic over A

The proof of this proposition needs some preparation. For any language X over B, we

denote X = (5")*X Let a€ A Then
o~ 7(X) = x(a"X) (7.1)
Indeed, if w € ¢™'7(X), then aw € 7(X) and there exists an integer n > 0 and a word

v such that b"av € X and 7(v) =w Thus, v € (b"a)"1X = a"1X The other inclusion
is proved in the same way.
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LEMMA 7.2 Let Xy, ., X be languages over B. Then

k-1
(b')_l(Xl X)) =X X X+ Z (X X, b*) XipnXiga X (7.2)
=1

where

] #XNR=¢
(X, &) = { {e} otherwise

Proof The formula is proved by induction on k, and it is enough to prove it for k =2
Tt can be then deduced from the general formula :

Z7YXY)={(Z'X)Y + (X7'Z)'Y
In our case, Z = b*, and we have X' Z # Qif and only if 5*NX # B, s0 that X' Z = Z.

LEMMA 7.3 Let B be a bistable algebra with basis T. The languages T' = (6*)'T,
for T € T, belong to Ra1(B).

Proof The basis T can be assumed to be proper; it can be assumed too to contain ali
the languages reduced to a single letter. Let T'€ 7. As T is proper,

T=3% (Ta")a

sEA

As b* = ¢ + bb*, we get
T=T+ @) I T=T+ )T =T+ Y (1) Uy

aEA

where U, = 4 1Ta™. Uy, is a polynomial over 7. Using formula 7.2, the language
(b*) 10, 4 is the sum of a polynomial over 7 and of a sum of products of the form
T\Ty - Ty where Ty, ., Th € T. In other words, the languages T for T € T, satisfy
a system of left-linear and proper equations with coefficients in B. Hence, they belong
to Ra1(B) N

LEMMA 7 4. Let B be a bistable algebra of finite type over B Then n(B) = {n(X) |
X € B} is a semi-stable algebra over A

Proof. Clea,rly, n(B) is an algebra. Let T bea basis of B,let T € T and a € A. By (7.1),
weget a” (ﬂ(T)) = n(a~'T"). By lemma 7.3, the language T, and therefore the language
a7 belongs to 3 RAT(B). It follows that a7 (x(T)) € RAT(n(B)) = x(RAI(B)). =

P:r'oof of proposition 7.1. The proof is now immediate : if K is in a context-free algebra
B, by proposition 6.2, it lies too in a bistable algebra of finite type B’ , so that, by the
previous lemma, 7(K) is in the semi-stable algebra #x(B’) , hence 7(K) is algebraic by
corollaire 5.4 .

COROLLARY 7.5. The family of algebraic languages is closed under rational transduc-
tion

Proof 1t is well known ([4]) that any rational transduction can be decomposed in a
sequence of inverse projections, an intersection with a 1ational langnage and a sequence
of projections. ' "

Morphisms and inverse morphisms are rational transductions, hence :
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COROLLARY 7 6 The family of algebraic languages is closed under morphism and
under inverse morphism =

COROLLARY 7.7 The family of algebraic languages is closed under substitution.

Proof. Tt is well known ([1]} that an algebraic substitution can be realized through the
syntactical substitution, finite unions and rational transductions. "

& Iteration

It is not surprising that an iteration lemma as general as Ogden’s lemma is difficult to
prove in this context. The following proposition, even if it does not deal with itezation,
1s very simple to prove and allows to establish that some languages are not algebraic.

PROPOSITION 8 1. For any algebraic language L over A, there exists an integer C
such that for any word u in A*, either u~'L is empty, or u='L contains 2 word of length
at most C- |u|.

Proof. Let A be a context-free algebra for L, and let 7 be a proper basis for A of degrec
k. We may assume that L belongs to T For any T € T, let b7 be an integer such that
T contains a word of length at most A7, and let k = maxyer b7 For any word u € A*,
the polynomial u™'T" has degree at mostfu| k. Hence, if u='T is not empty, it contains
a word of length at most |u|- C, with C = k- A .

EXAMPLE. The language {a™™ | n > 1} is not algebraic More generally, a language
of the form {a™d/™ | n > 1}, where f grows faster than an affine linear function, can
never be algebraic

We now come to iteration properties We prove :

THEOREM 8.2. For any algebraic language L over A, there exists an integer C' such
that any word v in L of length |u| > C can be factorized v = azfyy, with 0 < |z| and
laz| < C, and oz By™y € L for alln >0

Proof. Let A be a context-free algebia for L. By proposition 6.6, we may assume that
A has a proper monomial basis 7 of degree 2. We may assume too that the letters are
in the basis, and that L € 7. We begin by a lemma :

LEMMA 8.3. Let u € A* be a word of length n and let M = TN be a monomial, with
T €T For0<i<n, let u; be the prefix of u of length i, and let M; = ui'M. If
deg{M;) > deg(M) for all i, then

Mi=('TIN (=0, ,n)
Proof. The lemma holds for ¢ = 0 because u; = & Assume M; = (u; 1’l’“)N . As
deg(M;} > deg(N), we have deg(u;'T) > 0, and setting uiy; = wa,

My = wiiM = a7 ((ui'TIN) = (a7 (7' TN = (i T)N

This proves the lemma n

Let now £ be the cardinal of 7' The number of monomials of degree at most k is
k If—_‘ll Let v € L a word of lengthn > C, withC=1+% %—_"1'1"“ Weset u=ay  -ay,
with a; € A, and
w=a a4, Mi=u'L (0<i<n)
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Hence, M, = {¢} and deg{M;) > 1for i =90,.. ,n—1

If the monomials M; are of degree at most %, then, by the choice of C| there exist two
indices 0 < ¢ < s < n such that M, = M,. Then there exists a factorization u = az~y
such that o L. = M,, z7*M, = M,, v M, = {e}, and it follows ax™y C L.

So, we may assume now that there exists monomials of degree greater than &, and
hence, of degree k+ 1. Let Mgy be the smallest index § < n such that deg{M;) = k+1,
and for ¥ =1, .., k, let A; be the greatest index j < Agyy such that deg(M;) = r. We
then have

deg{M,,}) =1
deg(M)>r for A <i<Ap (8.1)

We set
P =M, =TN, (r=1, . ,k+1)

with T, € 7 and N, a monomial (of degree v —1). Let Ag =0, To = L, Ny = {¢} and
Py = My. Finally, let

'U,- = G’Ar“'l t G'Ar+1 (0 S 7 S k)
By construction, we have P.y; = v, 1F,, and it follows from (8.1) and from the lemma
that _

v P, = (o7 ') N, {(0<r <k)
so that (71T N, = T,4aNep1 As deg(Poy1) = 1 4 deg(F,), there exist elements
@r1+1 € T such that

U:lTr = Tr+1Q1+15 Nr+1 = QT-I—].NT (0 S T S k)

The choice of k implies that there exist two indices 0 <7 < 5 < k such that T, = T,
So, we get
(00,41 Vo) T =Th Qs Qi
Set
U= Qrw
with
@=vy U1, T=U;041 Va1, W= (az) u
By construction, we have o™ = T\ N,, 27T, = T.Q, with Q@ = Q. - (@, 41, so that
e =u 'L = w'T,QN,. But, this implies that w € T,QN,, and that there exists a

factorization w = fSyv, with g € T,, y € @, v € N, It follows immediately that
oz™py"y € L for all n. .

9 Chomsky-Schiitzenberger’s Theorem

The aim of this section is to prove the existence of a family (S,).»0 of algebraic lan-
guages such that :

THEOREM 9.1 (Chomsky-Schiltzenberger) For any algebraic language L, there exist
an integer n, a rational language K and a length-preserving morphism 3 such that

L=B(S.,nK)
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Proof The language L being algebraic, there exists a bistable algebra A with a mono-
mial quadratic basis T and a length-preseving morphism 8 such that L = 8(T5), for
some Ty € T (proposition 6.6). Hence, it suffices to prove the result for a language
belonging to a proper bistable monomial quadratic basis
Hence, let L be an algebraic language over a fixed alphabet E, and let A be a
context-fiee algebra for L. Let T be a finite monomial proper bistable basis of A
We first prove that the language L is the homomorphic image of a language that
we qualify as "very simple”. Tn a second step, we prove that, to this "very simple”
language, is naturally associated a rational language K. In the final step, we show
that there exists a language S, such that S, N K is exactly the previous "very simple”
language. Let us call residue any monomial ¢ 'T', for a € E and T € 7. We index the
quadratic residues from 1 to m, the linear residues from 1 to m and the ("constant”)
residues which are formed of the empty word from 1 to p To this indexing, we associate
the alphabets ~ '
A={a|1<i<n} A={g|1<i<n}
B={b|1<i<m} B={h|1<i<m}
C={a|lgi<pl C={al1<i<p}
Next, we construct as many disjoint copies of the alphabet E as there are elements in

the basis 7. If Ey is such a copy, we consider the alphabet Dy = {a7 |e € TN E}
The union of the alphabets Dy, for T € T is denoted D We then set

Z=AUBUC, Z=AUBUC, Z=ZUZubD

We now define a context-free algebra B over Z and a length preserving morphism o
from Z* to E* as follows The algebra B is generated by the basis T'= {T" | T € T},
with

—1lmiz=1 _ vyt
o T'a;” = G_D = the ith quadratic residue is v 71Ty~ 1 = GD
afa;) =z, of@) =y

—1rT—1 __ 15/
Z’(;Sb; m,_ ‘SEB}) - y} <= the jth linear residueis z7'Ty ' = U

C;lT"Elzl =£ - - -1 -1

- — the kth constant residueis z7 'yt =¢
aler) =z, a(ér) = y}
Finally, we set a(e;)=eforec TN E.

By construction, in the algebra B, each letter of Z U Z lies in a single residue. A
letter from A defines a quadratic residue, a letter from B a linear residue and a letter
from C a constant residue We call "very simple” the elements of the basis B.

Moreover, for any T¥ € T', we have afT") = T by corollairy 3 4. So,

L= a(T3)

where T} is a very simple language.

Consider now the algebra B In the sequel, we write 7 instead of 7'. With these
notations, we have L = a(Tp) To each language T' € T are naturally associated two
alphabets X

deb(TV={z€Z|2'T#0} CAUBUCUD
fin(T)={z€ 2| T>""#£0}c AUBUCUD
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Note that
L (deb(T) U fin(1)) = Z.
TeT
Observe also that,ina word u € V, with V € T,
o aletter a € deb(T) N A is followed by a letter in deb(G) if the corresponding
guadiatic residue is ¢~ 178"t = GD;
o aletter @ € fin(T)N A follows a Iettel in fin(D) if the corresponding quadratic
residue is ¢ 1Ta ! = GD;
o aletter b € deb(T) N B is followed by a letter in deb(¥) if the corresponding
linear residue is 5 'Th ! = U;
o aletter » € fin(T) N B follows a letter in fin(V) if the corresponding linear
residue is 5175t = U,
o aletter ¢ € deb(T") N C is followed by a letter ¢ if the corresponding constant
residue is ¢~ 727! = ¢;
o aletter € € fin(T) n C follows a letter c if the corzesponding constant residue
is e 1TE = e,

So, to each letter z in Z we can associate a set of letters, denoted succ(z), contained
in Z U D and composed of those letters that can follow z in a word. Similarly, to each
letter 7 in Z we can associate a set of letters, denoted pred(Z), contained in ZU D and
composed of those letters that can be followed by Z in a word. These (local) rules define
a rational language R ovex 7. We denote Ry the rational language over Z formed by
those words in R beginning by a letter in deb(T') and ending by a letter in fin(1'). By
comstruction, T C Rr. In particular, if K = Ry, we know that I C K, and we so
obtain the announced result of this second step.

Finally, it should be remarked that

'Ry # 0 < z € deb(T)
Rz ' # 0 < z€fin(T)

Over the alphabet 7, we now define an algebra C of monomial bistable quadratic proper
basis {S} given by :
a'Sa;'=585  (1<i<n)
b_le' =5 (1<j<m)
cle =g (1<k<p)

with § N Z = D. We will prove that
SNRr =T, forall TeT

In order to do so, set Sz = SN T for T' € T, and let us compute
2 8 =278 N IRy 2T

First, we observe that to get a nonempty flist term in the intersection, we have to
choose » € AUBUC and z = 2/ Similarly, to avoid the second term of the intersection
being empty, we must chose z € deb(T") (so that z € fin(T'))

So, we just have to compute the elements of the form

z'l.S’;rZ =215z Nz IRT__l

with
z€deb(INVN{AUBUC)
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Case 1 - z€ A,thatis z =a¢ Then
a 158 =55Na " Ryat

and « € a”'Rra™" iff u € R and u begins by deb(G) = succ(a) and u ends by fin(D) =
pred(a} Hence,

a 15727 = {ow € R|v € SNdeb(G)Z*, w € SN Z*in(D)}

From this, as v and w lie in § and as v ends by fin{@) and as w begins by deb(D),we
deduce that v € Sg and w € Sp This means :

a”18ra™! = S58p.
Case 2 - z € B, that is z = b Then
b5 b7l = SN R ET!

and u € bRy b7 iff u € R and u begins by deb(I/) = succ(b) and u ends by fin(I) =
pred(d). This means u € Ry and

b18r67 = Sy
Case 3 — z € (C, that is z = ¢ Then
gt ={e}ne Ryt
As ¢f € Ry because € € succ(c) and ¢ € pred(7)), we get
‘ iSet =,

Finally, we remark that the set of letters in D which belong to Sz is the same than
the one which belongs to T So, the languages T and St are the same because of
corollary 3 4. It then follows :

SNRr =T, forall TeT

and in particular SN K =Ty,

In order to complete the proof of the theorem, we just note that, if A, B, C and D
are of different cardinalities, we may enlarge each alphabet by new letters. The 1ational
language K will not allow them to appear in any word. So, we may assume that S is
defined over an alphabet

2,=2,0Z,uD,
with D, of cardinality n, and Z, = A, U B, U C,, and Ay, B,, C, of cardinality n.
It is this language S over this alphabet that we denote S, and which is used in the
theorem. -

Note : It is now possible to prove that there exists a rational transduction 7, such
that 7,(S,) = S where S is the language over {a,b} defined by ¢~15a3"! = §S and
b€ 5 This would establish that S is a full generator of the rational cone of context-
free languages.
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10 Shamir’s Theorem

In this section, we prove a theorem originally established by Shamir. This theorem is
very similar to the “hardest language” theorem of Greibach (see below). Let A4 be a
contexti-free algebra over an alphabet A with a finite proper basis 7. We assume that
each letter of A is an element of 7.

Let Z be an alphabet in bijection with T through 8 : Z — 7 It is extended to
an application 4 from the set B of the finite languages over Z in A as follows. If

t1,. . ,tn € Z, then
Bty tn) = B(ta) -+ Blta)
that is to say

Bluv) = B(v)B(v)

for words u,v € Z*. Next, for p,q € B,

8(pu q) = B(p) + Blq)

As T is a proper basis of A, the application J is a suzrjection onto A
Furthermore, let Z ={z}z € Z} be a disjoint copy of Z, and let Z=ZUZ. We
consider, over Z* U {0}, where 0 is a new element, the usual one-sided Dyck reduction,
defined by
red(e) =

and, for m € Z*and t€ Z, by
red(mt) = 1ed(m)t

p if red(m) = pt
0 otherwise.

red(mt) = {

We denote .
D* ={m € 2" | red(m) = &}

the one-sided Dyck language. For each a € A et T € T, we denote p,,; an element of B
(hence a finite subset of Z*) such that

Bty=T and a'T = B(pa)

in such a way that
o™ B(t) = B(pas)

Finally, to each letter a € A, we associate the finite subset of AR

o(a) = | Tpa,

teZ

Observe that, almost by definition, the following holds : red(to(a)) = pss. More
generally :

LEMMA 10.1 Teta€ Aet g€ B Then

Blred(go(a))) = a7 B(q)
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Proof. By linearity, it is enough to prove the lemma for ¢ composed of only one word
w. Let w = vé, with v € Z* and t € Z. Then

wo(a) = vt ] ) 5pa,
s€Z

so that
red{we(a)) = vpa,
Consequently,
Blred(wo(a))) = B(vpa,) = B(pas)B(v)
=(a718(t))B(v) = a" ' (B(t)B(v))
=a"'f(vt) = a7 B(w)
The equality (¢7'8{t))8(v) = a=*(B(t)B(v)) holds because the basis 7 is proper =

The application ¢ is extended in a substitution from A* in the finite subsets of Z*
Then, the following holds :

COROLLARY 10.2. Letue A*and T € T Let t € Z such that 3(t) = T Then

B(red(to(u))) = u™'T
Proof. By induction on the length of w, the case of a letter being settled by the above
lemma. If ¥ = va, with @ € A, then

red(to(v)o(a)) = red(red(to{v))e(a))
By the previous lemma, denoting ¢ = red(te(v)), we have

- B(red(to(v))) = a7 Blg)

and, by induction, #(g) = v~'T. Hence the result. .

PROPOSITION 10.3. Letu € A*and T € T Then

ueT < to(u)N D" #0D.
Proof w € T if and only if ¢ € w~!T. By the previous corollary, this is equivalent to
¢ € B(red(to(u))) As the basis is proper, this holds only if € € red(to(u)) which, in
turn, means that to(u) N D* # .

From this result follows

THEOREM 10.4. {Shamir’s theorem) A language L over A is alggbiaic if and only if
there exists an alphabet Z and a finite substitution o from A* in Z* such that

v€l <= to(uynD* £

where t € Z and D* is the one-sided Dyck language over Z

Proof. The proposition is in fact the direct way. The converse is immediate : just
note that L = 77'(D*), where 7 is the rational transduction which transforms u in
to(u). .

REMARK 1. This theorem can be restated to obtain the “hardest context-free language”
H, TIn order to achieve this, just replace the finite subset o(a) = {zy,..  ,z,} by the
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word a'(a) = #z: + 22+ + o, where # and + are new letters. So o becomes a
homomorphism and the condition to(u) N D* # B 1eads #ifto'(u) € H,

REMARK 2. If, in the above remark, the letter + is considered as an addition and the
letter # as parenthesis, we get the formulation given by Hotz 8.

REMARK 3. It is possible to consider the set B as a context-free algebra by defining,
for a € A and £ € Z, the formal quotient by a~'t = p,,. We are then given an algebra
homomorphism as defined previously
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