
EISEVIER Theoretical Computer Science 155 (1996) 439-446

Theoretical
Computer Science

Local languages

Jean

Note

and the Berry-Sethi algorithm

Berstel, Jean-Eric Pin*

LITP. htitut EIaise Pascal, 4 place Jussieu, 75252 Paris, France

Received February 1995

Communicated by M. Nivat

Abstract

One of the basic tasks in compiler construction, document processing, hypertext software
and similar projects is the efficient construction of a finite automaton from a given rational
(regular) expression. The aim of the present paper is togive an exposition and a formal proof of
the background for the algorithm of Berry and Sethi relating the computation involved to
a well-known family of recognizable languages, the local languages.

1. Introduction

One of the basic tasks in compiler construction, document processing, hypertext
software and similar projects is the efficient construction of a finite automaton from
a given rational (regular) expression. There exist a great variety of algorithms for this.
An impressive account has been given recently by Watson [l 11. For several reasons,

the algorithm of Berry and Sethi [2] is of particular interest (see [4,5] for a dis-
cussion). The aim of the present paper is to give an exposition and formal proof of the
background for this algorithm by relating the computation involved to a well-known
family of recognizable languages, the local languages.

Local languages were studied in some detail in [lo], see also [7]. These languages
are very easy to define, and they are exactly the languages recognized by a special
family of automata also called Glushkov automata. The main result used in the
Berry-Sethi algorithm is that every language denoted by a linear rational expression
can be recognized by a Glushkov automaton. We give a short proof of this, by
showing that every language denoted by a linear rational expression is local. Observe
however that the inclusion is strict.

*Corresponding author. Email: pin@litp.ibp.fr

03043975/96/$15.00 0 1996-Elsevier Science B.V. All rights reserved

SSDI 0304-3975(95)00104-2

440 J. Berstel, J.-E. Pin / Theoretical Computer Science I55 (1996) 439-446

The development of efficient algo~thms is an important issue (see [g, 5,131) but we
are not concerned with this problem in this paper. Our goal is rather to provide
a simple formal proof of the correctness of the algorithm.

In the topic of transducing a regular expression to an automaton, the terminology is
not yet uniform. Thus, linear expressions are called restricted in [l 11. Also, what we
denote by P and S is frequently written First and Last. The set of factors of length 2 of
a language (or of the language denoted by an expression) that we write F for short is
sometimes written Follow.

A first presentation of the relation between the Berry-Sethi algorithm and local
languages appeared in [3].

2. Local languages

Given a language L c A* define

P(L)=faeAIaA*nL#$), S(L) = (a E A 1 A*a R L # 61,

F(L) = (x E A2 1 A*xA* AL # 01, N(L) = A’\F(L).

By definition, P(L) is the set of first letters of words in L and F(L) is the set of factors
(subwords) of length 2 of words in L. Clearly, for every language, one has

LUl3 = VYL)~* n A*S(L))\A*~(L) A*.

A language L is called local if equality holds. More precisely, a language L c A* is
said to be local if there exist two subsets P and S of A and a subset N of A* such that’

L\{ l} = (PA* n A*S)\A*NA*.

For example, if A = (a,b,c), the language

(abc)* = (1) u [(aA* n A*c)\A* faa, ac, ba, bb, cB, cc) A*]

is local. The terminology “local” can be explained as follows: in order to know
whether a given word is in L, it suffices to verify that its iirst letter is in P, its last letter
is S, and all its factors of length 2 are not in N. Thus, membership in L can be checked
by scanning the word through a window of size 2. Conversely, if a language L is local,
it is easy to recover the parameters P, S and N. Indeed P (respectively S) is the set of all
first (last) letter of the words of L and N is the set of words of length 2 that are not
factors of any word in L.

One can easily find a deterministic automaton recognizing a local language given
the parameters P, S and N. We consider the following type of automata which, as we
shall see, characterize local languages: a deterministic (but not necessarily complete)

’ P stands for prefix, S for suffix, and N for non-factor.

J. Berstel, J.-E. Pin / Theoretical Computer Science 155 (1996) 439-446 441

automaton J&’ = (Q, A, ., i, T) is said to be local if, for every letter a, the set {qa 1 q E Q}
contains at most one element. A deterministic automaton is said to be standard if it
contains no transition arriving on the initial state.

Proposition 2.1. Let L = (PA* n A*S)\A*NA* be a local language. Then L is recog-
nized by the standard local automaton d having A u {l} as set of states, 1 as initial
state, S as set offinal states and whose transitions are given by the rules 1.a = a $a E P
anda.b=bifab$N.

Proof. Let indeed u = ai . ..a. be a word accepted by d. Then there is a successful
path

Consequently, the end of the path, a,,, is a final state and thus a, E S. Similarly, since
there is a transition l&al, one has necessarily ai E P. Finally, for 1 < j < n - 1,
there is a transition aj aaj+ r, and thus a .a. , ,+ 1 4 N. It follows that u E L.

Conversely, if r.4 = a, ... a, E L, it follows that al E P, a, E S and, for 1 < j < n,
ajaj+ 1 $ N. Therefore 1% arf-r u2 *** a,_ 1 Aa, is a successful path of d and

d accepts w. Consequently the language recognized by d is L.
If the local language contains the empty word, the previous construction can be

applied, by taking S u { l> as set of final states. This completes the proof. Cl

Proposition 2.2. Let L c A* be a rational language. The following conditions are
equivalent:

(1) L is a local language.
(2) L is recognized by a local automaton.
(3) L is recognized by a standard local automaton.

Proof. (1) implies (3) by Proposition 2.1. (3) implies (2) is trivial.
(2) implies (1): Let d = (Q, A , ., i, T) be a local automaton that recognizes a lan-

guage L. Set

P = {a E A 1 i.a is defined),

S = {a E Al there exists q E Q such that q.a E T},

N = {x E A2 1 x is the label of no path in ~$1,

K = (PA* n A*S)\A*NA*.

Let u = a l ... a,, be a non-empty word of L. Then u is the label of a successful path

C: i=qoL qG--+q2*** q.- 1&q"

442 J. Bersiel, J.-E. Pin / Theoretical Computer Science 155 (1996) 439-446

Fig. 1.

In particular, al E P, q. E T and thus a, E S, and for 1 < j < n - 1, one has UjUj+ I $ N.
Consequently u E K, and thus L\(l) is contained in K.

Conversely, let u = a, -1. a, be a non-empty word of K and set q. = i. By assump-
tion, a, E P, a, E S and, for 1 < j < n - 1, UjUj+l $ N. Since al E P, qO.ul is defined.
Set qO.ul = ql. We show by induction that there exists a sequence of states qj
(0 < j < n) such that al *a. Uj is the label of a path q. + ql + ... + qj of d. Indeed,
since ojaj+ 14 N, ajuj+ 1 is the label of some path p-% 4% r. But since the
automaton d is local, qj- 1. Uj = p. Uj, that is q = qj and thus qj+ 1 is defined as

4j+l = r. Finally since a, E S, it follows that qn E T. Consequently
qo”!,qlAq, . ..qn_$+ q. is a successful path of d and its label u is recognized
by d. Cl

Example 2.1. Let A = (a, b,c}, P = {a, b}, S = {a,~} and N = (ub, bc,cu}. Then the
language L = (PA* n A*S)\A*NA* is recognized by the automaton represented in
Fig. 1.

Local language are stable under various operations:

Proposition 2.3. Let Al and A2 be two disjoint subsets of the alphabet A, and let
Ll c A: and L2 c Aa be two local languages. Then the languages Ll v L2 and LILz
are also local languages.

Proof. Let dl = (Ql, A,, El, iI, T,) and d2 = (Qz, AZ, E2, i2, T2) be standard local
automata recognizing Ll and L2 respectively. Then Ll u L2 is recognized by the local
automaton (Q, A, E, i, T) where

Q = (Ql\{il}) u (Qz\{iz}) u {i} (i is a new state)

E = ((4, a,q’) I (4, a, d) E El u -% 4 Z h, 4 Z i2)

u {(i, a, d I(4, a, d E El or (i2, a, 4) E J&j

For

J. Berstel, J.-E. Pin / Theoretical Computer Science 155 (1996) 439-446

*= 2”iuT2

i

if il & T1 and i2 $ T2

(T,\(4)) u fT,\fi,)) u (i> otherwise.

the product, set JX! = (Q, A, E, f, T), with

Q = (Qi u Q2)\{i21

E = El u ((q,a,d) E E2 14 # i2) v (GII,G~~) I q1 E TI and (i2,ayd E E2)

I= II

T =
7-2 if i2 $ T2.

T1 u (T,\(i)) if iz E Ti (that is if 1 EL,).

443

By construction, d is a local automaton and it is easy to verify that it recognizes
LrL2. q

Proposition 2.4. Let L be a local language. Then the language L* is also a local
language.

Proof. Let H’ = (Q, A, E, i, T) be a standard local automaton recogni~ng L. Consider
the automaton d’ = (Q, A, E’, i, Tu ii>), with

E’=Eu{(q,a,q’)Iq~Tand(i,a,q’)~E}

Then AI’ is local and recognizes L*. 0

3. BerrySethi Algorithm

Berry and Sethi proposed an algorithm to find a non-deterministic automaton
recognizing a given rational expression. For any rational expression e, we denote by
L(e) the language that e represents.

We say that a rational expression is linear if every letter a has at most one
occurrence in the expression (in Watson [111, it is called restricted). For example, the
expression [ala2(a3a4)* u (a5a6)*a7]* is linear. One can linearize any rational expres-
sion by replacing all the letters that occur in it by distinct symbols. For example, the
above expression is a linea~~tion of the expression e = [ab(bu)* u (ac)*b]*. Now,
given an automaton that recognizes the language L(e’) of a linearized version e’ of
a rational expression e, it is easy to obtain an automaton for the language L(e), by
replacing letters of e’ by the corresponding letters of e. For instance, if ,.4 is the
automaton represented in Fig. 2 (which recognizes the language [(uIa2)*a3]*), one
obtains, by replacing al and a3 by a and u2 by b, the (non-dete~inistic) automaton
d’, which recognizes [(ab)*a]*.

Therefore it suffices to be able to compute an automaton for each linear expression.

Proposition 3.1. For every linear expression e, the language L(e) is local.

444 J. Berstel, J.-E. Pin j Theoretical Computer Science 155 (1996) 439-446

A:
- A’ :

Fig. 2.

Proof. The proof is by induction on the formation rules of linear expressions. First,
the languages represented by 0,l and a, for a E A, are local languages. Next, by
Proposition 2.4, if e represents a local language, then e* represents also a local
language. Let now e and e’ be two linear expressions and suppose that the expression
(e u e’) is linear. Let B (respectively B’) be the set of letters occurring in e (e’). Since
(e u e’) is linear, the sets B and B’ are disjoint, and the local language L(e) (L(e’)) is
contained in B* (B’*). By Proposition 2.3, the languages L(e u e’) and L(ee’) are also
local. 17

Observe that the converse does not hold: for instance, the language (&)*a is local
but is not denoted by a linear expression.

We have seen in the previous section an algorithm to compute a deterministic
automaton recognizing a given local language L. It suffices to test whether the empty
word belongs to L and to compute the sets

P(L) = {a E A Id* f-l L # S}.

S(L) = {u E A 1 A*a f-l L # S},

F(L)={xEA$4*xA*nL#g}.

But this can be easily done given a rational expression (linear or not) representing the
language, by making use of the following well-known recursive procedures. First, we
compute A(e) = {l} n L(e) as follows:

A(O) = 0;

A(l) = (1);

A(u)=0 foralluEA;

A(e u e’) = A(e) u A(e’);

A(e.e’) = A(e) n A(e’);

A(e*) = (1);

J. Berstel, J.-E. Pin / Theoretical Computer Science 155 (1996) 439-446 445

Next,

P(O) = 0;
P(1) = 0;
P(a) = {a} for all a E A;

P(e u e') = P(e) u P(e’);

P(e.e’) = P(e) u A(e)P(e’);

P(e*) = P(e);

F(O) = 8;

F(1) = 8;

F(a) = 0 for all a E A;

F(e u e’) = F(e) u F(e’);

S(0) = 0;
S(1) = 0;
S(a) = {a} for all a E A;

S(e u e’) = S(e) u S(e’);

S(e.e’) = S(e’) u S(e)A(e’);

S(e*) = S(e);

F(e.e’) = F(e) u F(e’) u S(e)P(e’);

F(e*) = F(e) u S(e)P(e).

To sum up, given a rational expression e, Berry-Sethi algorithm produces a non-
deterministic automaton as follows:

(1) Compute a linear version e’ of e and memorize the encoding of letters.
(2) Compute recursively the sets P(e’), S(e’) and F(e’).
(3) Compute a deterministic automaton d’ recognizing e’.
(4) Decode the letters of e’ to compute a non-deterministic automaton recognizing e.

4. Final remark

Observe that Berry and Sethi have given an unusual proof of a well-known result,
namely that every rational language is the homomorphic image of a local language.

Added in proof. B.W. Watson’s thesis is: Taxonomies and Toolkits of Regular
Language Algorithms, Eindhoven University of Technology, Sept. 1995.

References

[l] A.V. Aho, R. Sethi and J. Ullman, Compilers: Principles, Techniques and Tools. Addison-Wesley Series
in Computer Science (Addison-Wesley, Reading, Mass., 1986).

[2] G. Berry and R. Sethi, From regular expressions to deterministic automata, 7’heoret. Comput. Sci. 48

(1986) 117-126.
[3] J. Berstel, Finite automata and rational languages, an introduction, in: J.E. Pin, ed., Formal Properties

of Finite Automata and Applications, Lecture Notes in Computer Science, Vol. 386 (1987) 2-14.

446 J. Berstel, J.-E. Pin / Theoretical Computer Science 155 (1996) 439-446

[4-j A. B~~emann-Klein, Regular expressions into finite automata, in: LATIN’92, Lecture Notes in
Computer Science, Vol. 583 (1992) 87-98.

[S] A. B~~ern~-Klein and D. Wood, Deterministic regular languages, in: STACS 92, Lecture Notes in
Computer Science, Vol. 577 (1992) 173-184.

[6] J.M. Champarnaud, From a regular expression to an automaton, Inform. Process. Lett., to appear.
[7] S. Eilenberg, Automata, Languages and Machines, Vol A (Academic Press, New York, 1974).
[S] V.M. Glushkov, The abstract theory of automata, Russian Math. Surveys 16 (1961) l-53.
(93 R. McNaughton and H. Yamada, Regular expressions and state graphs for automata, IEEE Trans,

EIectTonic Comput. 9 (1960) 39-47.
[X0] M. Nivat, Transductions des langages de Chomsky, Ann. Fourier 18 (1968) 339-455.
[Ill B.W. Watson, A taxonomy of finite automata constru~on algorithms, Computing Science Note

93-43, Eindhoven University of Technology. The Netherlands, 1993.
[12] B.W. Watson, A taxonomy of finite automata minimization algorithms, Computing Science Note

93-44, Eindhoven University of Technology, The Netherlands, 1993.
Cl33 D. Ziadi, J.L. Ponty and J.-M. Champarnaud, Passage dune expression rationnelle a un automate fini

non-deterministe, Bull. Belgian Math. Sot. Simon Steuin, to appear.

