
DISCRETE 
MATHEMATICS 

ELSEVIER Discrete Mathematics 153 (1996) 29 39 

Random generation of finite Sturmian words 

J e a n  B e r s t e l  a ,  M i c h e l  P o c c h i o l a  b,. 

a Laboratoire d'lnJormatique ThOorique et de Proyrammation, Institut Blaise Pascal, 4 place Jussieu, 
75252 Paris Ckdex 05, France. 

b Dkpartement de MathOmatiques et bl/brmatique, Ecole normale supkrieure, ura cnrs 1327, 
45 rue d'UIm, 75230 Paris Ckdex 05, France. 

Received 31 August 1993: revised 12 July 1994 

Abstract 

We present a bijection between the set of factors of given length of Sturmian words and some 
set of triples of nonnegative integers. This bijection and its inverse are both computable in linear 
time. Its applications are: a bijective proof of Mignosi's formula for counting Sturmian words, a 
linear probabilistic algorithm for generating finite Sturmian word at random, and, using similar 
techniques, a linear on-line algorithm for computing the longest Sturmian prefix of a given word. 
The construction of the bijection relies on concepts from combinatorial geometry. 

I. Introduction 

A doubly infinite sequence w . . . .  w - 2 w - l W o W l W 2 ' ' '  over the alphabet {0, 1} is 

called S t u r m i a n  if  there exist real numbers 7,/3 with 0 ~< ~, fl < 1 such that 

w. = Lc~(n + 1 ) +/3J - Icon + [3j ( 1 ) 

for all integers n. Sturmian words have a long history and appear under a great variety 
of  denominations. A clear exposition of  early work by J. Bernoulli, Christoffel, and 

A.A. Markov is given in the book by Venkov [29]. The term 'Sturmian'  has been used 

by Hedlund and Morse in their development of  symbolic dynamics [11-13].  The same 
objects are known as 'characteristic'  sequences, 'cutting'  sequences, 'Beat ty '  sequences, 
'nonhomogeneous spectra', 'billiard' trajectories and others. 

There is a large literature about properties of  these sequences (see, for example, 

[27,9,28]). From a combinatorial point of  view, they have been considered by Rauzy 
[22-24] ,  Brown [5], Ito and Yasutomi [14] in particular in relation with iterated mor- 
phisms, and by S66bold [26] and Mignosi [20]. Sturmian words appear in ergodic 
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theory [21 ], in computer graphics [4], and in crystallography [ l 8]. Dulucq and Gouyou- 
Beauchamps [7] considered the set of all finite words that are factors of some Sturmian 

word. They proved that the complement, say C, of this set is a context-free language, 
and they conjectured that C is inherently ambiguous. To show this, they in fact con- 
jectured a formula for the number of factors of length m of Sturmian words. Since 
the generating series of these numbers is transcendental, the Chomsky-Schiitzenberger 
theorem would prove inherent ambiguity (see [8] for a systematic exposition). This 
formula was proved later by Mignosi [20] and will be obtained in the present paper 

as an easy corollary of our main result. 
The aim of this paper is to present a bijection between the set 6 e of factors of 

length m of Sturmian words and some set 5- of triples (a, p, q) of nonnegative in- 
tegers bounded by m. This bijection and its inverse are both computable in linear 
time. The derivation of the bijection involves the analysis of the partition of lines 
induced by the lattice points and some elementary concepts of combinatorial geo- 

metry. 
The bijection has several interesting applications. First we obtain a straightforward 

proof of Mignosi's enumeration formula for factors of Sturmian words. A second con- 
sequence is an algorithm for random generation of Sturmian words of given length 
which may have some application in computer graphics. More precisely, it is a prob- 
abilistic algorithm in the sense that it successfully terminates only in the average. A 
third application is of interest in pattern recognition: we give a linear-time algorithm 
to compute the longest prefix of a word that is Sturmian. It is on-line and tests in 
constant time whether the given prefix can be extended by the next input symbol to a 
Sturmian word. Our algorithm is simpler and more general than [3]. 

2. Results 

We call a factor of length m of a Sturmian word, a Sturmian m-factor. It is easily 
verified that the sequence 

([~(n + 1) + flJ - Icon + flJ)O<~n<m (2) 

ranges over all Sturmian m-factors when ~ and /~ range over [0, 1 [. We denote by 5 ~ 
the set of Sturmian m-factors. 

The main result of the paper is a description of a natural bijection between the set 
5 e and a subset 5 of {0, 1 . . . . .  m} 3. The set 5 is defined by 

Y = {(m, 1, 1)} U { (a ,p ,q )  [ 1 <<.q<<.p<~a + p<~m, gcd(p,q)  = 1 }. (3) 

Let B be the mapping which associates with a triple (a, p ,q)  E Y the sequence 

B(a,p ,q)  = ul - u o ,  u2  - Ul . . . . .  Um - U m - l ,  (4) 
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where 

{Lotn + fiJ for n = 0 . . . . .  a, 
un = ~ n  + f17 - 1 for n = a + 1, . . . ,m, 

with ~ = q/p and fl = [~a7 - ~a. 
The sequence B(a,p,q) is a {O, 1}-sequence because is less than 1. 

(5) 

Theorem 1. The mapping B is a bijection from J- onto the set ~9 ~ of Sturmian 
m-factors. 

Observe that B is computable in linear time. The fact that the inverse mapping B-1 

is also computable in linear time will be a consequence of Proposition 3 below, 

The proof is based on a geometric encoding of Sturmian words. Sturmian m-factors 

are defined by straight lines but many different straight lines may define the same 

Sturmian m-factor. Each equivalence class is a convex polygon in the space of lines. 

As we shall see each polygon can be characterized by choosing a suitable edge. In 
some sense which will be made precise this is equivalent to representing a class by 

a pair of lines. This representation is specially convenient for computation because 

it allows a simple derivation of the associated triple in ,Y-. The construction will be 
detailed in the next section. 

We now come to the applications. 
Mignosi [20] proved the following result. 

Proposition 1. The number of factors of length m of Sturmian words is given by the 
s u m  

p=m 

1 + Z ( m  - p + 1)qb(p), (6) 
p=l 

where 4~ is the Euler function, i.e., d~(n) is the number of natural inteoers less than 
n and coprime to n. 

The authors of  the present paper gave another proof in [2]. In view of the theorem 
above this proposition becomes straightforward. Indeed, formula (6) counts precisely 
the number of  elements in the set ~ .  

The next application concems random generation of Sturmian m-factors. For this it 

suffices in view of Theorem 1 to generate triples (a, p,q) in the set Y with uniform 
distribution. This is done by the following algorithm. 

Algorithm 1 
( 1 ) Repeat 

Generate uniformly a triple (a,p,q)E {0 . . . . .  m} 3 
until (a,p,q) is in Y ;  

(2) Compute B(a,p,q). 
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Step 1 is the usual rejection algorithm: we generate triples (a,p,q)  in {0, 1 . . . . .  m} 3 
uniformly and reject those which are not in ~'~. Since the size of J~ is asymptotically 
equal to m3/rc 2 (see [10, p. 268]) the expected number of samplings is asymptotically 
n 2, and therefore is independent of m. Thus we have: 

Proposition 2. Algorithm 1 generates factors of  length m of  Sturmian words in linear 
expected time. 

Finally, we consider the problem of testing if a given word is Sturmian. More 
precisely, we shall prove the following result. 

Proposition 3. Given a word w in {0, 1}*, its maximal Sturmian prefix z can be 
computed on-line in time proportional to the length of  z. 

Briefly, the algorithm runs as follows. For each Sturmian prefix we maintain the 
polygon (in the space of lines) of all lines defining this Sturmian factor. We incre- 
mentally transform this polygon by adding the geometric constraints defined by a new 
letter. The main point is that this can be done in constant time because the current 
polygon always has at most 4 edges. Our algorithm is on-line, this means that it is not 
necessary (contrary to the algorithm in [3]) to read the whole word w before starting 
the decision process. Details will be given in the last section. 

3. The bijection 

Recall that a Sturmian m-factor is a factor of length m of a Sturmian word, and 
that the sequence 

(L~(n + 1) +/~J - L~n + flJ)0~<,<m (7) 

ranges over all Sturmian m-factors when ~ and fl range over [0, 1[. We denote by 5 e 
the set of Sturmian m-factors. 

In what follows, we consider the Sturmian m-factor (7) as a function of the straight 
line represented in Cartesian coordinates (x, y) by the linear equation 

y = ~x +/~.  (8) 

The real c~ is the slope of the straight line and the real fl may be called the intercept. 
For a straight line { with Eq. (8) we denote by {+ the closed half-plane y~<7.x + ft. 

Let ~ be the set of straight lines with slope and intercept in the closed interval 
[0, 1] and let Lf be the subset of those straight lines whose slope and intercept lie 
in the semi-open interval [0, 1[. For { and {' in ~YF, the segment [{, fl] is the set of 
straight lines with equation 

y = (u~ + (1 - u )~ ' )x  + (u/~ + (1 - u)/~') 
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where u ranges over [0, 1] and where ~, £ and fl,/3' are the slopes and intercepts of 
and f~, respectively. Related notions, such as open segment, polygon, convexity, etc. 
are defined as usual and freely used in the sequel. 

To represent sets of lines by sets of points we use a duality transform x ~-~ x*. 
Duality maps the line { E ~ with equation y = ~.x+/3 to the point (* with coordinates 
(ct,-/3) and the point p with coordinates (~, fl) to the line p* with equation y = 0~x-fl. 
It can be easily verified that the duality transform is an involution, and that it preserves 

the incidence relation i.e., 

p E ( e : ~ f * E p * ,  p E / + C : ~ / * E ( p * )  +. (9) 

The (x, y)-plane and (~,fl)-plane are called the primal and dual plane, respectively. 
The segment [ ( , ( ' ]  is then represented in the dual plane by the segment [(*,f '*] (see 
Fig. 1 ). 

We define the upper closure of a subset X of the plane to be the set of points (x, y) 
of the topological closure of X such that (x,y - ~) E X for every sufficiently small 
positive e. We define then the upper closure of a set of lines by duality. 

For a straight line E with Eq. (8), we denote by S({) the Sturmian m-factor given 
by (7). This defines a mapping S from Lf onto O °. The mapping S induces a natural 
partition of LP whose parts are the sets S- l ( s )  when s ranges over 5P. The following 
proposition relates this partition to the lattice set P defined by 

P =  { (x,y) E N I O<~x<<.m }. (10) 
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Proposition 4. Two lines { and ( '  in L/? define the same Sturmian m-factor, i.e. 

S ( ( )  = S( ( ' ) ,  i f  and only i f  

[+ NP = ('+ NP. 

Proof. The set f+ N P is clearly defined by the lattice points (n, [ctn + r / )  for 
n = 0 . . . . .  m, and consequently by the Sturmian m-factor defined by ~ since 

fl E [0, 1[. [] 

As shown by the previous proposition the Sturmian m-factors are closely related 
to the way lines separate the lattice set P or equivalently the way lattice points of 
P separate the set of lines £f. We make a brief account of this classical subject of 
combinatorial geometry. 

Each lattice point p in P induces a partition of ~q' in at most three parts, namely, 

{ { C &a [ p E • } the lines through p, 
{ ( E £¢ [ p ¢~ E + } the lines below p, 

{ f C £ g i p E f + , p ~ t  ~} the lines above p. 

We denote by d the intersection of these partitions as p ranges over P. For any line 
t' E J r ,  let c ( f )  denote the number of lattice points in P lying on the line E, i.e., 

c ( ( )  = Card(t" n P). It is clear that the function c is constant on each part of ~ .  One 
can easily verify that the cells (or parts) of ~1 are relatively open convex polygons of 
J f  of dimension 2, 1 or 0 according to the value 0, 1 or I> 2 of the function c on the 
cell. The cells of dimension 0, 1 and 2 are, respectively, called the vertices, edges and 
faces of the partition d ;  their sets are denoted 1/', g and i f ,  respectively. 

By the duality transform the partition d is represented by the arrangement of the 

square ~(g* = {(~,fl) I O~<~,-fl~< 1} induced by the dual lines in P* which intersect 
the square LP*, namely the m(m + 1)/2 dual lines of the lattice points (x, y) such that 
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X 
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Fig. 2. The partition d for m = 5. 
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+P3P2 

P2 + P l ~ /  

J 
Fig. 3. Illustrate the proof of Proposition 6. 

1 <<.y<~x<~m. The partition .~,', for m = 5, is represented in the dual plane in Fig. 2: 
there are 17 vertices, 40 edges and 24 faces. 

The following proposition states precisely the relation between the partitions d and 
the partition induced by the mapping S. 

Proposition 5. Two lines ( and d r of  5~ define the same Sturmian m-factor, i.e. 

S(d) = S(E') if  and only if  d and d' belong to the upper closure of  the same face of  
the partition rod. 

Proof. Follows from Proposition 4 and the discussion above. [] 

In particular, the function S is constant on each cell of the partition ¢~'. 
We denote still by S the extension of S to ~ .  The restriction of S to f f  is a bijection 

from f f  onto ~ .  The encoding of the Sturmian words by the faces of the partition ~ 
will be done by selecting a distinguished edge in the upper boundary of each face. 

Proposition 6. The upper (lower) boundary of  a face of  the partition ~;d contains one 
or two edges. 

Proof. Assume, on the contrary, that the upper boundary of some face contains a 
sequence of three consecutive edges el,e2 and e3. Let Pi be the common lattice point 
of lines in ei for i = 1,2, 3. The configuration is depicted in Fig. 3. We assume that 
the edges are indexed in decreasing slopes in the dual plane, and consequently the 
lattice points pi are indexed in decreasing first coordinate. By assumption, the lines 
(P3P2) and (P2Pl)  define the same Sturmian m-factor, and consequently, according 
to Proposition 4, the cone of lines in the segment [(p3P2)(p2pl)] contains no lattice 
point in P excepted the pi. Now consider the points p2 q- p3p~ and p2 q- P---~2; they 
clearly belong to the cone and at least one of these points belongs to the lattice set P; 
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contradiction. A similar argument is used for the lower boundary. [] 

Corollary 1. The restrictions of  the function S to the sets ~ ,  ~, ~-~ are injective (but 

not surjective), surjective (but not injective) and bijective, respectively. 

For e E g we denote by g the common lattice point of the straight lines in e, and 

we denote by sup e (inf e) the straight line through d whose slope is the upper bound 

(lower bound) of  the slopes of  the lines in e. Clearly, e =] inf e, sup e[. Next, recall that 

the Farey sequence ,~-n of order n is the increasing sequence of irreducible fractions 

between 0 and 1 whose denominators do not exceed n. I f  we draw a ray through the 

lattice point (0, 0) and rotate it round the origin in the counterclockwise direction from 

initial position along the axis x, it will pass in turn through each lattice point (p ,q)  

such that q/p is a Farey fraction (see [10, Ch. III p. 29]). 

Proposition 7. Let e E ~, let (a, b) be the coordinates of  the lattice point ~, and let 

y = o~x + fl be the equation of  the line sup e E f and y = ct'x + fl' be the equation 

of  the line inf e E J#. Then 
(1) ~ and ~' are rationals, and 0 <~ ct ~ < ~ <<. 1, 

(2) O<~a<~m, 
(3) ~' and ~ are consecutive terms of  the Farey serie ~max(m-a,a), 
(4) b = Icea], fl = [~a 1 - ~ a ,  
(5) The Sturmian m-factor S(e) is" B(a, p,q). 

Proof. Claims (1)-(3) are obvious. Claim (4) follows from the relation b = c~a + fl 
with 0~</~ < 1. Finally, claim (5) is obtained from the observation that S(e) = S({)  
where { is any sufficiently small clockwise rotation of sup e around the point g. [] 

Let ~ = q/p and ~P = qP/p'. An alternative way to compute S(e) is to use the line 

in e whose slope is 

t~ _ q + q~ 
p +  pl 

The computation of ~' from ~ can be made in time O(logm) [10, Ch. III]. The use of  
~ simplifies the practical implementation of B; indeed, one gets 

u. = L "n + Y'] 

for all n = 0 . . . . .  m. Thus, in practice, a call to a system routine (usually called 

'drawline') suffices. 
The mapping S is not injective on the set of edges g. We therefore shall distinguish 

a special edge among all edges (in fact at most 2 according to Proposition 5) associated 

with some Sturmian m-factor. We distinguish the edge e for which the first coordinate 
of ~ is minimal or equivalently the edge of minimal slope in the dual plane. Let gt 
be the set of distinguished elements of  g. 
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It remains to identify the set of triples (a, p, q) associated with the edges of ~'. Here 
is the place where the set ,Y- appears. 

Proposition8. The mapping e ~ ( a , p , q )  which 

e =] inf e, sup e[ the triple (a, p, q) such that 

- a is the .first coordinate o f  the lattice point d, 

- -  q /p  (with p and q coprime) is the slope o f  supe 

is a bijection f rom 6'  onto the set J .  

associates with each ed.qe 

Proof. An edge e is distinguished if and only if e is the rightmost edge (in the dual 
plane) of the upper boundary of some face of d .  In the primal plane this means that 
exists a lattice point in P on the line sup e whose first coordinate is greater than the 
first coordinate of d (see Fig. 4). Straightforward calculations give then the result. L~ 

The affiliation of Propositions 8, and 7 gives Theorem 1. 

4. Recognition of Sturmian m-factors 

In this section we consider the problem of testing whether a given word is Sturmian. 
Let s = vj v2 .. .  Vm be any {0, 1 }-word of length m and let u0 . . . . .  u,, be the integer 

sequence defined by 

Un ~ Z;l q- t)2 -/- " ' "  q- /~n 

(this is the 'spectrum' of s in the sense of [3]). 
The word s is a Sturmian m-factor if and only if there exists a line f E L/' such that 

S ( { )  = s. Let ~ and fi be the slope and the intercept of the line f.  The word s is a 
Sturmian m-factor if and only if the system of linear inequations 

u , < , ~ n + f l  < u , + l ,  n = l , 2  . . . . .  m (11) 

admits a solution. Observe that each letter in the word s adds two constraints to the 
above linear system. 
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Using Megiddo's algorithm [25, Ch. 15] the existence of a solution to (11) can be 
decided in linear time in the number of constraints i.e., in time O(m). However, we 
can do much better in our case. 

Proposition 9. Given a word in {0, 1}*, its maximal Sturmian prefix can be computed 
on-line in time proportional to its size. 

Proof. For each Sturmian prefix we maintain the minimal representation of the polygon 
(in the space of lines) of all lines defining this Sturmian factor. We incrementally 
transform this polygon by adding the two geometric constraints defined by a new letter 
and by removing the superfluous constraints. Since, according to Proposition 6, the size 
of the current polygon is 3 or 4 this amounts to a constant number of operations. Each 
operation requires to compute the position of a lattice point with respect to a lattice 
line and thus involves only the computation of the sign of an integral determinant. [Z 

5. Final remarks 

Several people have pointed out to us that the problem of testing whether a given 
finite word is a Sturmian factor is very basic in pattern recognition, and has been in- 
vestigated by many people. A comprehensive survey appears with a huge bibliography 
in [19]. More recently, Lindenbaum and Bruckstein [16] have designed an algorithm 
similar to ours for recognizing Sturmian factors. The characterization of Sturmian fac- 
tors by triplets of integers has been already discovered in [17]. A lengthy proof of 
Mignosi's enumeration formula appears in [15]. Very recently, de Luca and Mignori 
[6] have proposed a new proof based on purely combinatorial manipulation on words. 

Some unexpected interrelation between Sturmian words, Pizza slicing, and the 
Riemann Hypothesis are described in [1] and have the honor of the cover of the 
American Mathematical Monthly which pushes one step further our Fig. 2. 
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