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ABSTRACT

In this survey paper, we present some recent results concerning finite and infinite Stur-
mian words. We emphasize on the different definitions of Sturmian words, and various
subclasses, and give the ways to construct them related to continued fraction expan-
sion. Next, we give properties of special finite Sturmian words, called standard words.
Among these, a decomposition into palindromes, a relation with the periodicity theo-
rem of Fine and Wilf, and the fact that all these words are Lyndon words. Finally, we
describe the structure of Sturmian morphisms (i.e. morphisms that preserve Sturmian
words) which is now rather well understood.

1 Introduction

Combinatorial properties of finite and infinite words are of increasing importance in
various fields of physics, biology, mathematics and computer science. Infinite words
generated by various devices have been considered [9]. We are interested here in a spe-
cial family of infinite words, namely Sturmian words. Sturmian words represent the
simplest family of quasi-crystals (see e.g. [3]). They have numerous other properties,
related to continued fraction expansion (see e.g. [5, 8]). There are numerous relations
with other applications, such as pattern recognition. Early results are reported in
[25, 23].

In this survey paper, we start with the basic definitions of finite and infinite
Sturmian words , for characteristic words and Christoffel words, and describe their
relation with continued fraction expansion.

Next, we give a description of all Sturmian morphisms, and a characterization in
terms of automorphisms of a free group.

Finally, we give various properties and characterizations of standard words. These
are inductively defined, and are in fact special prefixes of characteristic words.

An infinite word is here a mapping

x: Ny — A

where Ny = {1,2,---} is the set of positive integers and A is an alphabet. In the
sequel, we consider binary words, that is words over a two letter alphabet A = {a, b}.
A¥ is the set of infinite words over A and A* = A* U A¥.
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Let f: A* — A* be a morphism. Assume that, for some letter a, the word f(a)
starts with a. Then f"*!(a) starts with f"(a) for all n. If the set {f™(a) | n > 0} is
infinite, then there exists a unique infinite word x such that every f"(«a) is a prefix of x.
The word x is said to be generated by iterating f. For general results, see [19, 10]. An
infinite word x is morphic if it is generated by iterating a morphism. Any morphism
that generates x is a generator.

2 Infinite Sturmian words

In this section, we give three equivalent definitions of Sturmian words, first as ape-
riodic words of minimal complexity, next as words with good distributions of letters
(socalled balanced word), finally as discretized straight lines.

The complexity function of an infinite word x is the function Px where Px(n) is
the number of factors of length n of x. It is well-known (e. g. [6]) that x is ultimately
periodic as soon as Px(n) < n for some n > 0. Thus, any aperiodic words x has a
complexity function that satisfies Px(n) > n + 1 for all integers. This leads to the
first definition of Sturmian words as those with minimal complexity:

A word x is Sturmian if Px(n) = n + 1 for all n. Note that by definition, a
Sturmian word is over two letters (because Px(1) = 2). This restriction can be
overcome simply by requiring that the equality Px(n) = n + 1 holds only for great
enough n (see e. g. [7]).

Since Sturmian words are aperiodic, the distribution of letters must be somehow
irregular. This is described by the next characterization. For any finite or infinite
word w € A®, let Sub(w) denotes the set of finite factors of w. Next, define the
balance of a pair u and v of words of same length as the number

§(u,v) = |Jula = [ola| = |luls — [0
(Here |w], is the number of a’s in w.) A word w € A™ is balanced if 6(u,v) < 1 for
any u,v € Sub(w) with |u| = |v|. Thus, in a balanced word over two letters, say a
and b, occurrences of letters are regularly distributed. In particular, the number of
b’s between two consecutive a’s can take only two values.

Sturmian words are intimately related to straight lines in the plane. This char-
acterization was called the “mechanical” by Morse and Hedlund in [14]. Let a, p be
real numbers with 0 < o < 1. Consider the infinite words

Sy = a1y S, = by by (1)
defined by
an:{a if la(n +1)+p] = [an +p) 2)
b otherwise
and

bn:{a if [a(n+ 1)+ p] = [an + p] (3)

b otherwise



Both words are discretized straight lines. Consider indeed the straight line y =
ax + p. Then there are two sets of integral point associated with it: the points
L, = (n,|lan + p|) and U, = (n,[an + p]). The encoding of the line is by writing
an a whenever the segment [L,,, L,41] (or [Uy,, Uyt1]) is horizontal, and a b otherwise.
Observe that, even if o > 1, the expression |a(n + 1) + p| — [an + p]| can take only
two values. If @ < 1, these are 0 or 1. For a > 1, one encounters two formulations:
some authors take the function |a(n + 1)+ p| — [an + p| — |«], with values 0 or 1,
others consider words over the alphaber {k, k + 1}, where k& and k 4 1 are the two
values of the function.

Reverting to the case 0 < o < 1, observe also that the two infinite words s, , and
s, , are equal except in the case where an + p is an integer for some n. If this holds,
then a,_1a, = ba and b,_1b, = ab. This happens for n = 0 in the important special
case where p = 0. However, this is ruled out by our convention (and this is in fact
the reason of this convention) that indices start at 1.

The present definition as discretized lines shows that, by changing the starting
point (i. e. by replacing p by some p 4+ ma), one gets the same kind of infinite words.
For this reason, a variation of the definition is to consider twosided infinite words.
This theory has been developed carefully by Coven and Hedlund [6].

The following theorem states that the three basic definitions of Sturmian words
are indeed equivalent.

Theorem 2.1 [6, 14] Let x be an infinite binary word. The following conditions are
equivalent:
(i) x is Sturmian;
(ii) x is balanced and not ultimately periodic;
(iii) there exist an irrational number o (0 < o < 1) and a real p such that
X =8,,0rX=8, .

Several proofs of this result exist. It was proved first by Hedlund and Morse in
1940; another proof is by Coven and Hedlund. These are of combinatorial nature,
another, based on geometric considerations, is due to Lunnon and Pleasants [15].
Many proofs of partial results have appeared in the literature. Observe that the
theorem does not hold in this formulation for twosided infinite words, since a“6“ has
complexity n + 1 but is not balanced.

A Sturmian word x is characteristic if x = s, for some irrational o (0 < o < 1).
We write then ¢, = s, 0. In this case, s, = S/a,o- The number « is the slope of x,
and x is characteristic for the number a. By definition, the slope is the limit of the
quotients |u|y/|u|, where u ranges over the prefixes of x, and |ul, is the number of b’s
in u.

Sometimes, a variation of characteristic words are considered. Christoffel words
are the words as and bs, where s is a characteristic word. In other terms, Christoffel
words are discretized straight lines, where the indices start at 0.

The most famous characteristic word is the Fibonacci word

f = abaababaabaab - - -



generated by the morphism
a v ab
b—a

Its slope is 1/¢*, where ¢ is the golden ratio. In view of the preceding theorem,
it is clear that for any Sturmian word s, one of the words as or bs is Sturmian.
Characteristic words are also described by

Proposition 2.2 A Sturmian word s is characteristic iff both as and bs are Sturmian.

If s is characteristic, then as and bs are Christoffel words and bas and abs are Stur-
mian. Characteristic words have also be called homogeneous spectra, and Sturmian
words inhomogeneous spectra.

A popular equivalent formulation of the “mechanical” definition of Sturmian words
is by rotation. Let « be irrational, 0 < a < 1. The rotation of angle « is the mapping

R,:2— x4+ amod1l
from R/Z into itself. Iterating R,,, one gets
R(2) = {na+ 2}
where {z} = z — |z] denotes the fractional part of z. Since
[(n+Da+z] = |na+z] < R,(z)€[0,1—qf
the Sturmian word s, , = a1 ---a, - - is also defined by

an:{a it R2(p) € 10,1 —qaf

b otherwise

Finally, there is a definition of Sturmian words by cutting sequences. This notion is
exploited by C. Series [22] and Crisp et al. [8]. We consider here only the homogeneous
case. Consider the square grid consisting of all vertical and horizontal lines through
integer points in the first quadrant. Consider a line y = fx, where 3 is any positive
irrational. Label the intersections of y = faz with the grid using a if the grid line
crossed is vertical, and & if it is horizontal. The sequence of labels, read from the
origin out, is the cutting sequence of y = fa and is denoted by Sg. The following
proposition (see e. g. [8]) shows the relation of cutting sequences with characteristic
words.

Proposition 2.3 Let 0 < a < 1 be irrational. Then ¢, = Sg, where § = a/(1 — «).

Cutting sequences are equivalent to billiard sequences: consider a billiard ball
hitting the sides of a square billiard, the reflection being without side-effect. Denoting
a the hitting of a vertical side, and b the hitting of a horizontal side, one gets merely
the same as a cutting sequence, provided the initial angle of the direction of the ball
is irrational.



3 Subwords of Sturmian words

Subwords of infinite words are important because of their relation to dynamical sys-
tems. Recall that a symbolic dynamical system is a set of infinite words that is both
closed under the shift operator (the operator that removes the first letter) and topo-
logically closed (for the usual topology, where two words are “close” if they share a
long common prefix). It is known that two infinite words x and y generate the same
dynamical system iff Sub(x) = Sub(y).

Proposition 3.1 The dynamical system of a Sturmian word is minimal.

A system is minimal if it does not strictly contain another system. Minimal
systems have an interesting combinatorial characterization: they are exactly those
generated by uniformly recurrent words, i. e. infinite words x such that, for any
n > 0, there exists an integer N > 0 with the property that any subword of x of
length N contains all subwords of x of length n.

Concerning the sets of subwords in Sturmian words, the first observation is that
they depend only on the slope:

Proposition 3.2 Let s and t be Sturmian words.
(1) Ifs and t have the same slope, then Sub(s) = Sub(t).
(2) Ifs et t have distinct slopes, then Sub(s) N Sub(t) is finite.

In particular, for any p, one has Sub(s, ,) = Sub(c,). Next, since in any Sturmian
word s, there are exactly n + 1 subwords of length n, there exists, for each n, exactly
one subword of length n that can by extended in two ways into a subword of length
n + 1. More precisely, call a word w a special subword for s if wa,wb € Sub(s).
Then there is exactly one special subword of length n for each n in a Sturmian word.
Special words have been determined by F. Mignosi [16]:

Proposition 3.3 The special subwords of a Sturmian word s, , are exactly the re-
versals of the prefixes of the characteristic word ¢, = s,.

4 Characteristic words

Characteristic words have numerous additional properties, mainly related to the con-
tinued fraction expansion of their slope. They can also be generated systematically.
The corresponding formulae are slightly different if one considers characteristic or
Christoffel words.

Before describing these properties, we start with the description of the relation
between characteristic words and the famous Beatty sequences (see e. g. [23]).

A Beatty sequence is a set

B ={lsn) |n>1)

for some irrational s. Two Beatty sequences B and B’ are complementary if B and
B’ form a partition of Ny = {1,2,...}.



Theorem 4.1 (Beatty) The sets {|sn| | n > 1} and {|s'n| | n > 1} are complemen-
tary iff

11

LRI

S s’

The relation between characteristic words and Beatty sequences is described by the
following

Proposition 4.2 Let « = 1/s, and ¢, = ayaz---a,---. Then
flsn) In>1} = (k| ax = b}
Let E be the morphism that exchanges the letters a and b:

a — b
E b o
Then it is easy to check that
E(Ca) = Ci—q (4)
Indeed, setting = 1 —a, one has an+ fn = n for all n, whence |an|+ |fn| =n—1

1 —«,
and (|a(n + 1)] — [an]) + (|B(n 4+ 1)] — |Bn]) = 1. This constitutes a proof of

Beatty’s theorem.
We now turn to the relation between a characteristic word and the continued
fraction expansion of its slope. The basic observation is:

Proposition 4.3 Let o = [0;1+4dy,ds,...] be the continued fraction of the irrational
a, with 0 < o < 1. Define a sequence (s,),>—1 of words by

s_1=0b, sy=a, S, = Sin_lsn_z, (n>1) (5)
Then every s, for n > 1, is a prefix of ¢, and

c, = lim s, .

n—oo

The sequence (d,),>1 is the directive sequence of c,, and the sequence (s,,),>_1 is
the standard sequence of c,.

Example The directive sequence (d,,) for the Fibonacci word is (1,1,1,...), since

1/¢* =10;2,1,1,...], and the standard sequence is the sequence of finite Fibonnaci
words.

Example Since 1/¢ = [0;1,1,1,...], the corresponding standard sequence is s; = b,
83 = ba, s3 = bab,.... The sequence is obtained from the Fibonacci sequence by
exchanging a’s and b’s, in concordance with equation (4).

Example Consider o = (V3 —1)/2 = [0;2,1,2,1,...]. The directive sequence is

(1,1,2,1,2,1,...), and the standard sequence starts with s; = ab, sy = aba, s3 =
abaabaab, ..., whence

C(/3-1)/2 = abaabaababaabaabaababaabaabaab - - -
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Consider, as in Proposition 2.3, the irrational 8 = /(1 — «), and set § = [eg; €1, .. ..
Then ¢ = 0, and ¢, = d,, for n > 1, if dy > 0, i.e. if @ < 1/2, and ¢, = d,42 for
n > 0 otherwise. Define

t_z = a, t_l == b, tn == tzn_ltn_g (n Z 0)

Then ¢, = s, or t,, = s,42, and ¢, = Sg = limt,. Because of the complete corre-
spondence of the continued fraction for # and the construction of the sequence (¢,),
this second expression is sometimes preferred.

A similar construction to that of Proposition 4.3 for characteristic words exists

for Christoffel words (see e. g. [4, 1]).

Proposition 4.4 Let o = [0;1+4dy,ds,...] be the continued fraction of the irrational
a, with 0 < a < 1. Define three sequences (U, )n>—1, (Vn)n>—1 and (w,),>_1 of words
by

Uy =V 1 =w_1=0b, Uyg=vy=wo=a

and
_ d _ d
Uz = Uzp—o(Uzp_1)™" n>1 Vo = (V2p-1)"" V252 n>1
_ d ? _ d
Ugptr = (U2n)"Hug,_q n >0 Vong1 = Uap—1(vg,)"2nH! n>0
W, = w,_g(w,_1)™ n>1
Then
ac, = lim,_ . Uy, be, = lim,_o v,
abc, = lim,_ . wa, bac, = lim,_. wo,iq -

These sequences of words are related altogether, and can be derived from a more
basic sequence called the palindrome sequence.

Proposition 4.5 Let o = [0;1+4dy,ds, . ..] be the continued fraction of the irrational
a, with 0 < o < 1. Define a sequence (7,),>_1 by 7_1 = a™', 7o = b™! and

_ d
Ton = Won—2(bamy,_1)*" n>1

_ d
Tont1 = (manba)®timy, n >0
The words x,, for n > 1 are palindromes; moreover,

Son = Taba, U, = ar,b, Wy, = abmy,,

Son41 = Tanptr0b, v, = bm,a,  wony1 = bama,i.

The palindromes appearing in these sequences have interesting properties, de-
scribed below.

All these words have the same length. More precisely, let o = [0; 1+ dy, ds,...] be
the continued fraction of the irrational «, and define integers by

¢-1=1, q=1, ¢ = dpGn1 + ¢z, (n>1).



Then of course

[sn] = |un| = |va| = Jwn| = 2 4 [7n] = ¢n
There is a nice interpretation of ¢, in a number system associated to (g,), (see
T. C. Brown [5]). Any integer m > 0 can be written in the form

m = zZpqn + -+ + Zoqo, (0 <z <di1) (6)
and the representation is unique (but we do not need this here) provided
2, = di-l—l = z;, 1 =0 (Z > 1)

Proposition 4.6 (Brown) If m = z,qn + -+ - + zo0qo as in eq. (6), then the prefix of
¢, of length m has the form
Sp e 8g0
There is another relation between characteristic words and Christoffel words, re-
lated to lexicographic order. Let x = ajay--- and y = byby - - - be two infinite words.

We write x < y when x is lexicographically less than y, i. e. when there is an integer
n > 1such a = b for 1 < k <n and a, = a, b, = b. First, we observe that

Proposition 4.7 Let 0 < p,p' <1 and let 0 < a < 1, a be irrational. Then
Sap < Say = p<p.
Also, the two Christoffel words are extremes for Sturmian words of given slope.
Proposition 4.8 Let 0 < o < 1 be irrational. For any 0 < p < 1, one has
ac, < S, < be,.

It is quite natural to extend the notion of Lyndon word to infinite words as follows:
a word x is an infinite Lyndon word iff it is lexicographically less than all its proper
suffixes. Borel and Laubie have shown [4]:

Proposition 4.9 Let 0 < a < 1 be irrational. The word ac, is lexicographically
smaller than all its suffixes, 1. e. is an infinite Lyndon word, and be,, is lexicograph-
ically greater than all of its suffixes.

Characteristic words are not Lyndon words. In that case, Melancon [18] has
proved:

Theorem 4.10 Let 0 < a < 1 be irrational, and let (d,) be the directive sequence
and (s,,) be the standard sequence of ¢,. Then

c, = gabgih .. ‘522“2 .

where the sequence

l, = ang"Jrl_lszn_lsgn
is a strictly decreasing sequence of finite Lyndon words, and s}, is just sy, without
its last letter.

) d dany1—1
Observe that, since $g,11 = 85" 82,21 = S8 1"

a conjugate of Sg,11.

S$2n-1, the Lyndon word £, is



5 Finite Sturmian words

Finite Sturmian words are defined as finite subwords of (infinite) Sturmian words.
The following shows that one of the characterizations of Sturmian words also holds
for finite words.

Proposition 5.1 A word w is a finite Sturmian word iff it is balanced.

A careful analysis of the property of being balanced shows that a word w is not
balanced iff it admits one of the factorizations

w = xauaybubz, or w = xbubyataz
for some word u. It follows that [13]:

Theorem 5.2 (Dulucq, Gouyou-Beauchamps) The complement of the set of finite
Sturmian words is context-free.

This remarkable property however does not extend to unambiguity: the language is
inherently ambiguous because its generating function is transcendental. Indeed, one
has the following:

Theorem 5.3 The number of finite Sturmian words of length n is

n

1—|—Z¢(i)(n—i—|—1)

where ¢ is Fuler’s function.

Several proofs of this result exist. See e. g. [16].

6 Sturmian morphisms

A morphism f : A* — A*is a Sturmian morphismif f(x) is Sturmian for all Sturmian
words. The following are known for Sturmian morphisms.

Theorem 6.1 [17] Every Sturmian morphism is a composition of the three mor-
phisms
E:a|—>b D:a|—>ab G:a|—>ba

b— a b— a b— a

in any order and number.

Theorem 6.2 [2] A morphism [ is Sturmian if f(x) is Sturmian for some finite
Sturmian word x.

Morphisms that map a characteristic word to a characteristic word are a subclass:



Theorem 6.3 [8] Let ¢, and cg be characteristic words. If ¢, = f(cg), then the
morphism f is a composition of £/ and D.

We call a Sturmian morphism standard if it is a composition of £ and D. An
explicit description of standard Sturmian morphisms will be given below.

There is an interesting relation between Sturmian morphisms and automorphisms
of a free group that has been discovered by Wen and Wen [26]. Denote by F' the free
group generated by {a,b} and let, as usual Aut(F') be the group of automorphisms
of F. It is well known the Aut(F') is generated, as a group, by the three morphisms
E G, D given above. Thus, any automorphism is generated by these morphisms or
their inverses. Call an automorphism 7 € Aut(F) a substitution if 7(a) € A* and

7(b) € A*. Then

Theorem 6.4 [26] Sturmian morphisms are exactly those automorphisms that are
substitutions.

7 Standard words

Consider two function v and ¢ from A* x A* into itself defined by

Y(u,v) = (u, uv), o(u,v) = (vu,v)
The family R of standard pairs is the smallest set of pairs of words such that

(1) (a,b) €R;
(2) R is closed under v and 6.

The components of standard pairs are called standard words. Their set is denoted S.
Observe that the two components of a standard pair always end with different letters.
It is easily seen that the set S of standard words is exactly the set of all words s,
appearing in standard sequences. More precisely:

Proposition 7.1 Let a = [0;14dy,da,. . .| be the continued fraction of an irrational
a, with 0 < a < 1, and let (s,)n>_1 be its standard sequence. Then (sy,_1, S2,) and
(82041, S2,) are standard pairs for n > 0, and

’7d2"+2 (S2041, S2n) = (S20415 S2042) 5 5d2n+1(52n—1752n) = (S2n+1, S2n) -

Standard pairs and standard words have numerous properties. First, the relation
between Sturmian morphisms and standard pairs is the following ([12]):

Proposition 7.2 Let f: A* — A* be a morphism. The following are equivalent:
(i) The morphism f is standard (i. e. is a product of E and D).
(ii) The set (f(a), f(b)) or the set (f(b), f(a)) is a standard pair.

(iii) The morphism f preserves standard words.

(iv

e e e

The morphism f preserves characteristic words.

10



A full description of general Sturmian morphisms has been obtained recently by
Séébold [21].

It appears ([11]) that every standard word w is either a letter or of the form
w = pry, with p a palindrome word, and x, y distinct letters. More precisely, let P
be the set of palindromes over the alphabet A. Then

S =AU (PN P{ab,ba})

The palindromes appearing here play a central role. Let II be this set. Then S =
AUTI{ab,ba}. The set II has the following properties:

Theorem 7.3
(1) The set 11 is the set of strictly bispecial factors of Sturmian words, i.e of
those words w such that all four words in AwA are Sturmian.
(2) The set 11 is the set of all words w having two periods p, ¢ which are coprime
and such that |w| =p+q—2.
(3) Every word in allb is a Lyndon word.

The first two characterization are from [11]. The last property is due to Borel and

Laubie [4].
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