The language of Lyndon words is not context-free
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1 Introduction

A word is primitive if it is not a proper power of a shorter word. A Lyndon
word is a primitive word which is minimal under cyclic permutation (for
properties of these words, see [the new printing of] Lothaire’s book [4]). The
status of the languages @) of primitive words and L of Lyndon words with
respect to the Chomsky hierarchy appears still to be open (see Petersen [5]
for a discussion). It has been shown in [5] that these languages cannot
be unambiguous context-free languages (another proof, based on automatic
sequences, is given by Allouche [1]). A proof that @ is not context-free would
also give a proof that L is not context-free, because () is the cyclic closure
of L and context-free languages are closed under cyclic permutation.

We prove here that the language L of Lyndon words over a two alphabet
{a,b} is not context-free. This is an easy consequence of Ogden’s iteration
lemma, and may constitute a good exercise in a course on Formal Languages.

2 Proof

Recall that Ogden’s iteration lemma (see e.g. [3]) states that, for every
context-free language I there exists an integer N such that, for any word
w € L and for any choice of at least N distiguished positions in w, there
exists a factorization

W=Tuyvz

such that

(1) either @, u, y each contain at least one distiguished position, or y, v, z
each contain at least one distiguished position.

(2) for any n > 0, the word zu"yv"z is in L.



Now, assume that the language L of Lyndon words over {a,b} (with
a < b) is context-free, and consider the word

w = a¥ T haNba™N

where N is the constant of Ogden’s lemma. Distinguish the central group of
N letters a. Then either the factor u of Ogden’s factorization or the factor
v (or both) are contained in the central group. Three cases arise:

(¢) If both w and v are in the central group (this includes the case where
w or v is the empty word), then pumping up twice, one gets a word of the
form a¥t1ba™ba®N with m > N 4+ 1 which is not Lyndon.

(¢¢) If w is in the first group and v is in the second group of a’s, then,
pumping down, on gets a word w’ = a*ba™ba™ with k¥ < N and m < N.
This word is not Lyndon because it is greater than its conjugate a™¥ a*ba™b.

(¢37) If w is in the central group and v is in the third group of a’s, then
pumping up twice, one gets a word w’ = aVtba™ba* with m,k > N 4 2
which again is not Lyndon.

3 Final remark

There seems not to exist such an easy proof for the set () of primitive words.
Indeed, it has been shown in[2] that the set @) satisfies strong iteration
lemmas.
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