Context-Free Languages and Pushdown
Automata

Jean-Michel Autebert!, Jean Berstel?, and Luc Boasson?®

! UFR d’Informatique, Université Denis Diderot, Paris
2 LITP, IBP, Université Pierre et Marie Curie, Paris
® LITP, IBP, Université Denis Diderot, Paris

Contents

1. Imtroduction.
1.1 Grammarso ot
1.2 Examples ...
2. Systems of equations
2.1 Systems
2.2 Resolution
2.3 Linear systems
2.4 Parikh’s theorem
3. Normal forms
3.1 Chomsky normal form
3.2 Greibach normal forms
3.3 Operator normal form
4. Applications of the Greibach normal form
4.1 Shamir’s theorem
4.2 Chomsky-Schutzenberger’s theorem
4.3 The hardest context-free language........
4.4 Wechler’s theorem
5. Pushdown machines
5.1 Pushdown automata............,
5.2 Deterministic pda
5.3 Pushdown store languages
5.4 Pushdown transducers
6. Subfamilies...
Linear languages
Quasi-rational languages
Strong quasi-rational languages
Finite-turn languages
Counter languages i
Parenthetic languages
Simple languages
LL and LR languages........ i i,

[NerNerNerNerNerNerNe]
OO =IO O LN —

2 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

1. Introduction

This chapter is devoted to context-free languages. Context-free languages
and grammars were designed initially to formalize grammatical properties of
natural languages [9]. They subsequently appeared to be well adapted to the
formal description of the syntax of programming languages. This led to a
considerable development of the theory.

The presentation focuses on two basic tools: context-free grammars and
pushdown automata. These are indeed the standard tools to generate and to
recognize context-free languages. A contrario, this means also that we do not
consider complexity results at all, neither of recognition by various classes of
sequential or parallel Turing machines nor of “succinctness” (see e.g. [52]),
that is a measure of the size of the description of a language.

We have chosen to present material which i1s not available in textbooks
[17,29, 1,47, 28, 4, 30, 32, 2] (more precisely not available in more than one
textbook) because it is on the borderline between classical stuff and advanced
topics. However, we feel that a succinct exposition of these results may give
some insight in the theory of context-free languages for advanced beginners,
and also provide some examples or counter-examples for researchers.

This section ends with notation and examples. In Section 2, we present
the relationship between grammars and systems of equations. As an example
of the interest of this formalism, we give a short proof of Parikh’s theorem.

In the next section, three normal forms of context-free grammars are es-
tablished. The one with most applications is Greibach’s normal form: several
variants are given and, in Section 4, we present four such applications. The
first three are closely related to each other.

Section b is devoted to pushdown automata. We consider carefully the
consequences of various restrictions of the general model. The section ends
with two results: one concerning the pushdown store language of a pda, the
other the output language of a pushdown down transducer.

In the last section, we consider eight important subfamilies of context-
free languages. We study in detail linear and quasi-rational languages, and
present more briefly the other families.

In the bibliography, we have generally tried to retrieve the references
to the original papers, in order to give some flavour of the chronological
development of the theory.

1.1 Grammars

As general notation, we use £ to denote the empty word, and |w| for the
length of the word w.

A context-free grammar G = (V, P) over an alphabet A is composed of a
finite alphabet V' of variables or nonterminals disjoint from A, and a finite
set P C V x (VU A of productions or derivation rules. Letters in A are
called terminal letters.

Context-Free Languages and Pushdown Automata 3

Given words u, v € (V U A)*, we write u — v (sometimes subscripted
by G or by P) whenever there exist factorizations u = Xy, v = ray, with
(X, o) a production. A derivation of length k > 0 from u to v is a sequence
(g, uy, ..., ug) of words in (V U A)* such that ;7 — w; fori=1,...,k,
and u = ug, v = uy. If this holds, we write u — v. The existence of some
derivation from u to v is denoted by u —— wv. If there is a proper derivation
(i.e. of length > 1), we use the notation u —* v. The language generated by

a variable X in grammar G is the set
La(X)={we A" | X = w}

Frequently, grammars are presented with a distinguished nonterminal called
the aziom and usually denoted by S. The language generated by this variable
S in a grammar is then called the language generated by the grammar, for
short, and is denoted L((G). Any word in (V U A)* that derives from S is a
sentential form.

A language L is called contexi-free if it is the language generated by some
variable in a context-free grammar. Two grammars G and G’ are equivalent
if they generate the same language, i. e. if the distinguished variables S and
S’ are such that Lg(S) = L. (9).

More generally, if € (V U A)*, we set

Lo(x)y={we A" |z = w}.
Context-freeness easily implies that

La(zy) = La(2)La(y) -

Consider a derivation v = ug — uy — -+ — up = v, with u,v €
(VU A)*. Then there exist productions p; = X; — o; and words #;,y; such
that

Ug Il‘iXZ'yZ', Uj41 = Ti0GY; (i: 0,...,]6‘— 1)

The derivation is leftmost if |a;| < |@;41| for i = 0,...,k — 2, and rightmost
if, symmetrically, |yi| < |ys41] for ¢ = 0,...,k — 2. A leftmost (rightmost)
derivation is denoted by

It is an interesting fact that any word in a context-free language Lg(X) has
the same number of leftmost and of rightmost derivations. A grammar G =
(V, P) is unambiguous for a variable X if every word in Lg(X) has exactly
one leftmost (rightmost) derivation. A language is unambiguous if there is
an unambiguous grammar to generate it, otherwise it is called inherently
ambiguous.

A grammar G = (V, P) over A is trim in the variable S if the following
two conditions are fulfilled :

4 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

(i) for every nonterminal X, the language Lg(X) is nonempty;

(ii) for every X € V, there exist u,v € A* such that S —— uXwv.

The second condition means that every variable is “accessible”, and the
first that any variable is “co-accessible”. It is not difficult to see that a gram-
mar can always be trimmed effectively. A variation of condition (i) which is
sometimes useful is to require that Lg(X) is infinite for every variable X
(provided the language generated by the grammar is itself infinite).

A production is termenalif its right side contains no variable. A production
is called an e-rule if its right side is the empty word. At least one e-production
is necessary if the language generated by the grammar contains the empty
word. It 1s not too difficult to construct, for every context-free grammar G, an
equivalent grammar with no e-production excepted a production S — ¢ if
¢ € L(G). The final special kind of grammars we want to mention is the class
of proper grammars. A grammar G is proper if it has neither e-productions
nor any production of the form X — Y, with Y a variable. Again, an
equivalent proper grammar can effectively be constructed for any grammar
G if L(G) 3 <. These constructions are presented in most textbooks. Normal
forms are the topic of the next section.

1.2 Examples

There are several convenient shorthands to describe context-free grammars.
Usually, a production (X, &) is written X — «, and productions with same
left side are grouped together, the corresponding right sides being separated
by a ‘4+’. Usually, the variables and terminal letters are clear from the context.

Subsequently, we make use several times of the following notation. Let
A be an alphabet. A copy of A is an alphabet that is disjoint from A and
in bijection with A. A copy is frequently denoted A or A’. This implicitly
means that the bijection is denoted similarly, namely as the mapping a — a
or @ — a'. The inverse bijection is denoted the same, that is @ = a (resp.
(a')' = a), and is extended to a bijection from (A U A)* into itself (the same
for ‘bar’ replaced by ‘prime’) by Ty = y .

The Dyck languages. Let A be an alphabet and let A be a copy. The Dyck
language over A is the language D% generated by S in the grammar

S — TS+¢; T — aSa (a € A)

The notation is justified by the fact that D% isindeed a submonoid of (AUA)*.
It is even a free submonoid, generated by the language D of Dyck primes
which is the language generated by the variable 7" in the grammar above. If
A has n letters, then the notation D} is frequently used instead of D7 . If
n = 2, we omit the index.

There is an alternative way to define these languages as follows. Consider
the congruence & over AU A generated by

ad =¢ (a € A)

Context-Free Languages and Pushdown Automata 5

Then B
Di={we(AUA) | w=emodéb}

The class of a word w, that is the set of all words x that are congruent to w,
is denoted by [w]s. Of course, D% = [g]s. We often omit the subscript § in
this notation.

The Lukasiewicz language. Let A = {a,b}. The Lukasiewicz language is
the language generated by the grammar

S — aSS+0b

It is sometimes denoted by L. As we shall see below, L = D7b.

2. Systems of equations

This section 1s devoted to an elementary presentation of systems of equa-
tions and their relation to context-free languages. Context-free languages
may indeed be defined as the components of the least solution of systems
of polynomial equations, whence the term “algebraic” languages introduced
by Chomsky and Schiitzenberger [10]. The same construction was used by
Ginsburg and Rice [20]. They preferred to call them ALGOL-like languages
because they are “a model for the syntactic classes of the programming lan-
guage ALGOL”. Indeed, one says “an instruction izs...” rather than “the
symbol for instructions derives...”.

From the methodological point of view, considering equations rather than
grammars shifts the induction argument used to prove properties of languages
from the number of derivations steps to the length of words. This may fre-
quently simplify exposition, too.

The proofs of the results presented in this section are intentionally from
scratch. In fact, most results can be treated differently, in at least two ways:
first, they hold in a much more general framework, namely for formal power
series over suitable semirings (see the chapter of Kuich[37]); next, there are
general results, such as fixed-point theorems in conveniently ordered sets, that
imply easily the present results. The present style of exposition was chosen
to show what the minimal requirements are to make the arguments work.

The reader should notice that we never assume, in systems of equations,
that the right hand sides are finite, and indeed this appears nowhere to be
required. Even finiteness of the number of equations is not necessary. Next,
the reader should check that all results also hold for partially commutative
free monoids (this was observed already by Fliess [15]). Indeed, the argument
used in most proofs is just an induction on length, and thus carries over to
such monoids.

6 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

2.1 Systems

For the definition of equations, we need variables. It will be convenient to
number variables. Let V' = {X;,...X,,} and A be digjoint alphabets. A
system of equations over (V, A) is a vector P = (Py,..., P,) of subsets of
(VU A)*, usually written as

Xi=P i=1,....n (2.1)
Introducing X = (X1, ..., X,), this can be shortened to
X=P

We frequently emphasize the dependence of the set V' by writing P;(X) or
P(X) instead of P; and P. An advantage of this is to yield a simple notation
for substitution.

Let L = (L1,..., Ly) be a vector of languages over V' U A. This defines a
substitution as follows.

(1) e(L) = {e}

(2) a(l)=a a€ A
(3) X;(L) = L; i=1,...,n
(4) wo(L) = u(L)v(L) u,v € (VU A

) Q) =Upequ(l) QC(VUA)”

Observe that the last equation implies that Q(LUM) = Q(L)UQ(M), where
LU M is componentwise union. A vector L = (Ly,..., L) of languages over

A is a solution if

LZIPZ(L) i:l,...,n
that is if P;(L) is obtained from P;(X) by substituting L; to X; in any of its
occurrences. It is sometimes convenient to write L = P(L) instead L; = P;(L)
for all 7.

Frample 2.1. 1) Consider the following system of two equations

X=YX+¢
Y = aXb

Here, the variables are X, Y and the terminal alphabet is {a, b}. The vector
(D3, Dq) is a solution of this system, since indeed

Di=DyD; +e

D1 = ClDTb
2) The system
X = (aXb)*
Y =aY"b

has right sides that are rational sets. The vector (D7, Dy) is also a solution
of the second system, as 1t follows from elementary properties of the Dyck
set. A simple formal proof will be given below.

Context-Free Languages and Pushdown Automata 7

Solutions are compared componentwise: given two vectors L = (L, ...,
Lp)and M = (My,...,M,), then L = M iff L; = M, for all i, and L C M
iff L; ¢ M; for all 4.

To every context-free grammar over an alphabet A is canonically as-
sociated a polynomial system of equations (i. e. a system where the right
sides are finite sets). Assume indeed that the grammar is G = (V, P), with
V ={X1,...,X,}. The associated system is

X, =P (2.2)

with
PZ'I{OéE (VUA)* |(Xi,Oé)EP}

Theorem 2.1. Let G = (V, P) be a context-free grammar over A with V =
{X4,...,Xn}. Then the vector

Le = (La(X1),..., La(Xyn))
15 the least solution of the associated system.

We start with a lemma.

Lemma 2.1. Let M = (My,..., M,) be a solution of (2.2), and let u,v €
(VU A be words. If u — v then v(M) C u(M).

Proof. Indeed, if v — v, then there exists a production (X;, «) in G, and
two words x, y such that

u=arX;y, v=uzay

Thus
w(M) = 2(M)Miy(M), v(M) = a(M)a(M)y(M)

Since o« € P; and M 1s a solution, one has
a(M) C P(M) = M;

and consequently v(M) C u(M). n
Proof of the theorem. Clearly, for each ¢ = 1,... n,

La(Xi) = | La(a)

aEP;
Now, for any word w in (V U A)*,
La(u) = u(La)
so that the equation can be written as

La(X;) = Pi(Lg)

8 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

showing that L is indeed a solution.

Consider next a solution M = (My, ..., My). To show the inclusion Lg C
M, let w € Lg(X;), for some i. Then X; —~. w, and by the lemma (extended
to derivations)

w(M) C X;(M)
Since w € A*, one has w(M) = {w}, and since M is a solution, X; (M) = M;.
Consequently w € M;, showing that Lg(X;) C M;. n
This theorem gives one method for computing the minimal solution of a

system of equations, namely by derivations. There is another method, based
on iteration. This is the fixed point approach.

Theorem 2.2. Given a system of equations
XZ'IPZ' i:l,...,n

over V.={X1,...,X,} and A, define a sequence L") = (L(lh), e Lﬁ[”) of
vectors of subsets of A* by

IO =(0,....0)
LD = (PU(LM), ., (L)) = P(LO)
and set
L= i=1,...n
R>0
Then the vector
L=(Ly,...,Lp)

15 the least solution of the system.

Proof. First,
Li= | na™)y = Al L™) = P(L)
B>0 B>0
showing that L 1s indeed a solution.
Next, if M = (M, ..., M,) is any solution, then L(*) ¢ M for all h > 0.
This is clear for A = 0, and by induction

LY = p(™) ¢ P(M) = M; -

Let us remark that the basic ingredient of the proofis that P; 1s “continuous”
and “monotone” in the lattice P((V U A)*)", for the order of componentwise
inclusion (see also the chapter by Kuich [37]).

A system of equations

XZ'IPZ' i:l,...,n

over V. ={Xy,...,X,} and A is called
o properif, for all 7, one has PN ({e}UV) =0,

Context-Free Languages and Pushdown Automata 9

o strictif, for all ¢, one has P; C {e} U(V U A)* A(V U A)*.
Thus, in a proper system, every word in the right side of an equation is either
a terminal letter (in A) or has length at least 2. If a context-free grammar
is proper, the associated system of equations is proper. In a strict system,

every nonempty word in a right side contains at least one terminal letter.
A solution L = (L1, ..., Ly) is properif ¢ ¢ L; for all <.

Theorem 2.3. A proper system has a unique proper solution. A strict sys-
tem has a unique solution.

Before starting the proof| let us give some examples.

FEzample 2.2. The equation X = X X is proper. Its unique proper solution is
the empty set. However, every submonoid is a solution. Thus a proper system
may have more than one solution.

FEzample 2.3. The system
X=YX+¢
Y = aXb

is neither proper nor strict. However, replacing ¥ by aXb in Y X + £, one
sees that the first component of a solution is also a solution of

X =aXbX +¢

which is strict. This shows that the system has only one solution.
The system
X = (aXb)*
Y =aY"b

is strict, so it has a unique solution. It 1s easily checked that
X =(aXb)" =aXbX +¢

and

aXb=a(aXb)"b

Thus the unique solution of this system is equal to the unique solution of the
first.

Frample 2.4. We claimed earlier that 1. = Djb. Here is the proof. The
Lukasiewicz language L is the unique solution of the strict equation X =
aX X +b, and D7 is (the unique) solution of the strict equation X = a XbX+e¢.
Thus D} = aD7bD] + ¢, and multiplying both sides by b, one gets Db =
aD7bD7b + b, showing that Djb is a solution of X = aXX + b. Since this
equation has only one solution, the equality follows.

10 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

It is convenient to introduce a notation. For any k£ > 0, define an equiva-
lence relation ~j, for languages H, H' C A* by

H~y H <= {weH|lwl<k}={weH |lw <k}

Extend these equivalences to vectors componentwise. Then one has the fol-
lowing general lemma:

Lemma 2.2. Let L and M be two solutions of a system of equations X = P.
If

L~ M (2.3)
L~y M = P(L) ~p41 P(M)

then L = M.

Proof. Since L = P(L) and M = P(M), the hypotheses imply that L ~; M
for all £ > 0, and thus L = M. m
Proof of the theorem 2.3. It suffices to show that the conditions of the lemma
are fulfilled in both cases.

Consider first the case where L and M are proper solutions of the proper
system X = P. Then by assumption L ~g M. Assume now L ~; M, and
consider any o € P; forsome i. If « € AT, then a(L) = a(M) = . Otherwise,
there exist non empty words 3,7, such that o = gv. Clearly 8(L) ~; 8(M)
and y(L) ~; v(M), and since the empty word is not in these languages, one
has

B(L)Y(L) ~p41 B(M)y(M)
Thus P;(L) ~p+1 Pi(M). This proves (2.4).

Consider now the case where L and M are solutions of the strict system
X; = PFfori=1,...,n. Since € € L; for some ¢ iff ¢ € P;, one has L ~q M.
Next, as before assume L ~; M, and consider any « € P; for some ¢. If o # ¢,
then o = fay for words 3,7 and a letter a € A. Again, (L) ~; S(M) and
Y(L) ~p v(M), and since a is a terminal letter, this implies that a(L) ~p41
a(M). This proves (2.4). n

As we have already seen, a system may have a unique solution even if it
is neither proper nor strict. Stronger versions of the above theorem exist. For
instance, call a system of equations

X = P(X)

weakly proper (resp. weakly strict) if there is an integer k such that the system
X = P*(X)

is proper (resp. strict).

Corollary 2.1. A weakly strict (weakly proper) system has a unique (a uni-
que proper) solution.

Context-Free Languages and Pushdown Automata 11

Proof. Let indeed L be a solution of X = P(X). Then L = P*(L), showing
that L is solution of X = P*(X). Hence the solution of X = P(X) is unique.

Observe that, if L is the solution of X = P*(X), then it is also the
solution of the system X = P(X). This may provide an easy way to compute
the solution.

Frample 2.5. Consider the system X = P(X) given by

X=YX+¢
Y = aXb

Replacing P by P2, one gets

X =aXbYX +aXb+e¢
Y =aYXb+ab

which is not proper but strict. Hence the system is weakly strict.

2.2 Resolution

One popular method for resolution of systems of equations is Gaussian elim-
ination. Consider sets X = {X1,..., Xy} and ¥ = {¥7,..., V), } of variables.

Theorem 2.4. For any system of equations

Yooy 29
over (X UY, A), let L} be a solution of the system of equations

Y =Q(X,)Y)
over (Y, AU X), and let Lx be a solution of the system of equations

X =P(X,Ly)

over (X, A). Then (Lx, L% (Lx)) is a solution of (2.5).
Proof. Let indeed Lj, = L{(X) be a solution of the system ¥ = Q(X,Y).

For any vector L = (Ly,..., Ly) of languages over A, one has
Ly(L) = Q(L, Ly (L)) (2.6)
by substitution. Next, let Lx be a solution of
X = P(X, Ly (X)) (2.7)
and set Ly = L4y (Lx). Then (Lx, Ly) is a solution of (2.5) since Lx =
P(Lx,Ly) by (2.7) and Ly = Q(Lx, Ly) by (2.6).]

A special case is “lazy” resolution. This means that some variables, or
even some occurrences of variables or factors in the right sides are considered
as “fixed”, the obtained system is solved, and the solution is substituted in
the “fixed” part. More precisely,

12 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

Proposition 2.1. The two systems

X = P(X,)Y) and X = P(X,Q(X))
YV = Q(X) Y = Q(X)
have same sets of solutions. [

As an example, consider the equation X = a XX + b, that we write as

Y =aX

The first equation is equivalent to X = Y*b, thus the equations X = aX X +b
and X = (aX)*b have the same solution.

2.3 Linear systems

Left or right linear systems of equations are canonically associated to finite
automata. The general methods take here a special form. A system of equa-
tions

XZ'IPZ'(X), i:l,...,n
over (V, A) is right linear (vesp. left linear) if P, C A*V U A* (resp. P; C
VA* U A*). If furthermore it is strict (resp. proper), then P, C ATV U A*
(resp. P; C ATV U AT). A (right) linear system may be written as

Xi=) RijX;+S i=1,...n (2.8)
ji=1
where R; ; C A%, S; C A*. These sets are the coefficients of the system. One

may also write

X=RX+S

by introducing a matrix R = (R; ;) and a vector S = (5;).
Given a finite automaton with state set @ = {1,...,n}, denote by R; ;
the set of labels of edges from state ¢ to state j, and set

] otherwise

g — { {e} if i is a final state

Then it is easily verified that the least solution of the system (2.8) is the vector
(L1,...,Lyp), where L; is the set of words recognized with initial state <.

Theorem 2.5. The components of the solution of a strict linear system are
i the rational closure of the set of coefficients of the system.

Context-Free Languages and Pushdown Automata 13

Proof. There are several proofs of this result. The maybe simplest proof is
to consider an alphabet B = {r;; |1 < di,j < n}U{s; |1 <i < n} and
to consider the system obtained in replacing each R;; by r;; and similarly
for the S;. Build an automaton with state set {0,1,... n}, having an edge
labeled r; ; from state ¢ to state j for 1 < ¢,7 < n and an edge labeled s;
from state 7 to the unique final state 0. The component L; of the solution of
the system is the set of label of paths from state ¢ to state 0, and therefore
is a rational set over B. To get the solution of the original system, it suffices
to substitute the sets R; ; and S; to the corresponding variables.
An equivalent formulation is to say that the vector

L=R'S

is the solution, where

R =|JR™.
m>0
One way to solve the original set of equations is to use Gaussian elimination
(also called Arden’s lemma in the linear case). One rewrites the last equation
of the system as
n—1
X, = RZ,n Z Ry ;X5 + 55

ji=1

and substitutes this expression in the remaining equations.
Another way is to proceed inductively, and to compute the transitive
closure R* from smaller matrices, using the formula

A B\ _((A4+BD*C)* A*B(D+CA*B)*
C D) ~\D'C(A+BD*C)* (D+ CA*B)*

provided A and D are square matrices. [

A system (2.8) is called cycle-free if none of the diagonal coefficients of
the matrix

R+ R+ -+ R

contains the empty word. The terminology is from graph theory : consider
the graph over {1,...,n} with an edge from i to j iff ¢ € R; ;. Then this
graph is cycle-free iff the system is. In fact, cycle-free systems are precisely
weakly strict right linear systems. Indeed, the graph is cycle-free iff there is
no path of length k for & > n. This is equivalent to say that in the matrix
RF none of the coefficients contains the empty word. Thus one has

Proposition 2.2. A cycle-free (right or left) linear system has a unique so-
lution. m

14 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

2.4 Parikh’s theorem

In this section, we prove Parikh’s theorem [43]. Our presentation follow [44].
A more general result is given in Kuich’s chapter [37]. As already mentioned,
all results concerning systems of equations, provided they make sense (e.g.
Greibach normal form makes no sense in free commutative monoids) hold
also for free partially commutative monoids, since the only argument used is
induction on length. Two special cases of partially commutative free monoids
are the free monoid and the free commutative monoid. Context-free sets in
the latter case are described by Parikh’s theorem:

Theorem 2.6. Any contert-free set in the free commutative monoid is ra-
tional

An equivalent formulation is that the set of Parikh vectors of a context-
free language 1s semi-linear. Indeed, let A be an alphabet, and denote by
A? the free commutative monoid over A. There is a canonical mapping o
from A* onto A® that associates, to a word w, the element [T ¢ 4al®l* in A%
where |w|, is the number of occurrences of the letter a in A.

Rational sets are defined in A® as they are in any monoid: they constitute
the smallest family of languages containing the empty set, singletons, and
closed under union, product and star. Here, product is the product in A® of
course. Because of commutativity, there are special relations, namely

(XUY) =X"Y", (X'Y) ={s}uX"'Y*Y
Using these, on gets easily the following
Proposition 2.3. In the free commutative monoid AP, every rational set

has star-height at most 1. [

Proof of the theorem. Consider first the case of a single (strict) equation
X = P(X)

where P(X) is any rational subset of (AU X)®. This equation may be rewrit-
ten as
X = R(X)X + S

where S = P(X) N A%, and R(X) is a rational subset of (4 U X)¥. The set
G = R(S) is rational, and we show that G*S is the (rational) solution of the
equation.

Consider indeed two subsets K, M of A" and set P = K*M. For every
w € (AU X)® containing at least one occurrence of X, one has the equality

w(P) = w(M)K*

because the set K* can be “moved” to the end of the expression by commu-
tativity, and K* K* = K*. As a consequence, for every word w € (AU X)%,
one gets w(P)P = w(M)P. Thus in particular for P = G*S,

Context-Free Languages and Pushdown Automata 15

S+ R(P)P =S+ R(S)P=S+GG*S =G*S

If the system has more than one equation, then it is solved by Gaussian
elimination. m

Ezample 2.6. Consider the equation
X=aXX +9b

The set R(X) of the proof reduces to aX, and the solution is (ab)*b =
{a"b"*! | n > 0}.

3. Normal forms

In this section, we present three normal forms of context-free grammars. The
two first ones are the Chomsky normal form and the Greibach normal form.
They are often used to get easier proofs of results about context-free lan-
guages. The third normal form is the operator normal form. It is an example
of a normal form that has been used in the syntactical analysis.

3.1 Chomsky normal form

A context-free grammar G = (V, P) over the terminal alphabet A is in weak
Chomsky normal form if each nonterminal rule has a right member in V* and
each terminal rule has a right member in AU {¢}. Tt is in Chomsky normal
formifit s in Chomsky normal form and each right member of a nonterminal
rule has length 2.

Theorem 3.1. [28, 9] Given a conlexi-free grammar, an equivalent conlext-
free grammar in Chomsky normal form can effectively be constructed.

Proof. The construction is divided into three steps. In the first step, the
original grammar is transformed into a new equivalent grammar in weak
Chomsky normal form. In the second step, we transform the grammar just
obtained so that the length of a right member of a rule is at most 2. In the
last step, we get rid of the nonterminal rules with a right member of length
1 (that is to say in V).

Step 1 : To each terminal letter @ € A, we associate a new variable X,. In
all the right members of the rules of the original grammar, we replace each
occurrence of the terminal letters a by the new variable X,. Finally, we add
to the grammar so obtained the set of rules X, — a. Clearly, the resulting
grammar so constructed is in weak Chomsky normal form and is equivalent
to the original one.

Step 2 : We now introduce a new set of variables designed to represent the
product of two old variables. More precisely, to each pair (X,Y) € V x V| we

16 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

associate a new variable (XY). We then construct a new grammar by replac-
ing any product of three or more old variables XY 7 ... T by (XY)Z-.-T.
Then we add all the rules (XY) — XV This reduces the maximal length
of nonterminal rules by 1. This process is repeated until the maximum length
of any right member is 2.

Step 3 : We finally get rid of nonterminal rules with a right member in
V. This is achieved in the same usual way than the one used to get a proper
grammar from a general one. m

3.2 Greibach normal forms

A context-free grammar G = (V, P) over the terminal alphabet A is in Grei-
bach normal form iff each rule of the grammar rewrites a variable into a word
in AV*. In particular, the grammar is proper and each terminal rule rewrites
a variable in a terminal letter.

It is in quadratic Greibach normal form iff 1t is in Greibach normal form
and each right member of a rule of G contains at most 2 variables.

It is in double Greibach normal form iff each right member of the rules
of G are in AV*A U A. In particular, a terminal rule rewrites a variable in a
letter or in a word of length 2.

Tt is in cubic double Greibach normal form (resp. in quadratic double Grei-
bach normal form iff it is in double Greibach normal form and each right
member of a rule contains at most 3 variables (resp. at most 2 variables).

The fact that any proper context-free grammar G can be transformed in
an equivalent grammar G’ in Greibach normal form is a classical result [28].
However, the fact that the same result holds with G’ in quadratic Greibach
normal form is more rarely presented. Nearly never proved is the same result
with G’ in quadratic double normal form. Hence, we show how such equivalent
grammars can effectively be constructed.

Theorem 3.2. Given a proper context-free grammar G, an equivalent con-
text free grammar in quadratic Greibach normal form can effectively be con-
structed from G.

A weaker similar result has originally been proved by Greibach [24]: she
showed that, given a proper context-free grammar, an equivalent context-
free grammar in Greibach normal form can effectively be constructed. The
additional statement stating that this grammar can be in guadratic Greibach
normal form was proved later by Rosenkrantz [45]. We sketch here the proof
he gave; we will see below an alternative proof.

Sketch of the construction:

We may assume that the grammar is proper and in Chomsky normal
form, that is that each right-hand side is in 4 U V2. Consider the associated
system of equations

XZ'IPZ' i:l,...,n

Context-Free Languages and Pushdown Automata 17

This may be written as

X=XR+S
where
S, =P NA
and
R;; = X]»_lpi
Using lazy evaluation, this system is equivalent to
X =SR"
and since
R*=RR*+1
one has
X =5Y
Y =RY +1

where ¥ = (Y;;) is a new set of n? variables. Observe that each R;;is a
subset of V. Thus, using the system X = SY, each R;; can be replaced by

the set R
Rii= > (SY)
XeER;

and the whole system is equivalent to

X =5Y
Y=RY+I

where R = (RN) In order to get the quadratic Greibach normal form, it
suffices to eliminate the e-rules. This is done in the usual way. L]

Theorem 3.3. Given a proper context-free grammar G, an equivalent con-
text free grammar in quadratic double Greibach normal form can effectively
be constructed from G.

This result has been proved by Hotz [31]. We follow his proof. It should
be noted that the same technique allows to give an alternative proof of the
previous theorem 3.2.

The proof of theorem 3.3 turns out to be a complement to the proof of

Theorem 3.4. Given a proper context-free grammar G, an equivalent con-
text free grammar in cubic double Gretbach normal form can effectively be
constructed from (.

18 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

The construction of the desired grammar is decomposed into four steps.
The two first ones will lead to an equivalent grammar in quadratic Greibach
normal form. The last two ones complete the construction of an equivalent
grammar in quadratic double Greibach normal form.

Let G = (V,P) be a proper context-free grammar in weak Chomsky
normal form over the terminal alphabet A.

Step 1 (construction of the set of new variables needed):

To each variable X € V| we associate the sets

L(X):{amEAV*|X%>a—>am a eV}

R(X)={ma € V*A|X 5~ a — ma a€V*}

The idea is to construct a new grammar including rules the X — am for
each am € L(X). The difficulty comes from the fact that the sets L(X) are
infinite. This difficulty can be overcome using the fact these sets are rational.
The sets R(X) will only be used to get the double Greibach normal form.
Formally, to each variable X € V and to each terminal letter a € A, we
associate the sets

L(a,X):a_lL(X):{mEV*|X%> a—am o€V}

R(X,a):R(X)a_l:{mEV*|X%a—>ma a eV}

Clearly, each L(a, X) and each R(X,a) is a rational language over V since
L(X) and R(X) are rational: to get a word in L(X), we look at leftmost
derivations in the original grammar. Then, such a derivation can be decom-
posed in a first part where the obtained words all lie in V*. The second part
consists in the last step where the leftmost variable is derived in a terminal
letter a. In this process, we then always derive the leftmost variable of the
sentential forms. So, this derivation is obtained by using the grammar as if
it were left linear. Hence, the set of words so obtained forms a rational set.
It then follows immediately that each L(a, X) is rational too.

A similar proof using right linear grammars shows that each R(X,a) is
rational.

Next, define two families £ and R of languages by

L={L(a,X)]|ae A, X eV}, R={R(X,a)|a€eA,X eV}

We then define H as the closure of £|JR under the right and left quotients
by a letter of V. Since each language in £|JR is rational, this gives raise to
a finite number of new regular languages over V. Thus, the family H is finite.

The idea is now to use the languages in ‘H as variables in the grammar to
be constructed. The set of new variables will be denoted like this family of
languages, that is, an element L € H will denote both the language and the
new variable.

Context-Free Languages and Pushdown Automata 19

Frample 3.1. Let G = (V, P) be the following grammar in weak Chomsky
normal form :

S — SXSS + b

X —a
We can now look for the family £. Since
L(a,S)=0 L,S)=(XSSY =Ly L(a,X)={e}=F L}X)=10
L is formed of the three languages {0, Lo, E'}.
Similarly, R = {0, L1, £} because
R(S,a)=0 R(S,b)=(SXS)*=L, R(X,a)={c}=F.

Thus, LUR = {0, Lo, L1, F'}. From this family, we derive the family H by
closing £|JR under left and right quotient by a letter in V. Here are the
new languages that appear :

X~'Lo = SS(XSS)* =Ly LoS~' = (XSS)*XS = Ls
SL, = XS(SXS)* = Ly LiS™' = (SXS)*SX = Ly
S_le IS(XSS)* = Ls L25_1 IS(SXS)* = Lg
X~1Ls = (SSX)*S = Lg L3S~! = (XSS*X = L;
ST1Ly = (XSSPFX =1L; L4X~' = S(XSS)* =Ly
S'Ls = (XSS =Lo LsS~' = (SXS)* =1,
S 'Ls = (SXS)* =L LsS~' = (SSX)* = Ls
X~1L; = (SSX)* =1Ls L:X~'=(XSS)* =L
S'Ls = SX(SSX)* = Ly LsX~' = (SSX)*SS = Lo

Hence, the family H contains 11 languages: the languages Ly, ..., Lg, the
language F = {¢} and the empty set §. (In the above computations, we
have omitted all empty quotients.) Among these languages, £, Ly, L1 and Lg
contain the empty word.

Step 2 (Construction of an equivalent grammar in quadratic Greibach nor-
mal form)
The new grammar has the set of variables V UH, and the following rules:

(i) Each terminal rule of the original grammar is a terminal rule of the new
grammar.

(ii) To each variable X € V of the original grammar is associated the (finite)
set of rules X — al for each a € A, with L = L(a, X) € H. The rules
so created have all their right members in AH.

(iii) Each new variable L € H gives raise to the finite set of rules L — XL/
for X € V with I/ = X~1L € ‘H and to the rule L — ¢ if ¢ € L. Each
such rule has its right member in VH U {¢}.

(iv) In each new non e-rule added just above, the leftmost variable in V is
replaced by the right members generated in step (ii); since these right
members are in AH, the rules so obtained have all their right members

in AHH.

20 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

Hence, the grammar so obtained is almost in quadratic Greibach normal
form: each right member is in AHH U AU {c}.

To obtain such a normal form, i1t suffices to complete a final operation
eliminating the ¢-rules. We do this in the usual way, that is we replace any
occurrence of a variable L giving the empty word by (L U {¢}) in the right
members and erase the e-rules.

The fact that the new grammar i1s equivalent to the original one is imme-
diate: it suffices to look at the two grammars as systems of equations. So far,
we have proved Theorem 3.2.

Frample 3.2. (continued) The rules S — SXSS + b give raise to the new
rules S — bLg + bF. The last rule X — a gives raise to X — aF.
The new set of variables gives raise to

L0—>XL2—|—€ L1—>SL3—|—€

Ly — SLs L3 — XLg
Ly — SL; Ls — SLg
L — SL; L7 — XLg

L8—>SL4—|—€ EF —¢

Replacing X by a® and S by bE 4 bLg, the new grammar becomes

S — bLy+bF X — al

Lo — ClEL2 + ¢ L1 — bEL3 + bLOL3 + ¢
L2 — bEL5 + bLOL5 L3 I ClEL6

L4 — bEL7 + bLOL7 L5 — bELO + bLoLO

L6 — bELl + bLoLl L7 I ClELg

Lg—>bEL4—|—bLOL4—|—E EF — ¢

This is the desired intermediate grammar obtained after step (iv). To obtain
the quadratic Greibach normal form, we replace everywhere E, Ly, L1 and
Ls by themselves plus the empty word in the right members and suppress
the e-rules. Then we get the following grammar (to be compared to the one
obtained with Rosenkrantz’s method):

S — bLy+b X —a

Lo I ClL2 L1 I bLg + bLQLg

L2 I bL5 + bLOL5 L3 I ClL6

L4 — bL7 + bLOL7 + bL7 L5 — bLo + bLOLO + b

L6—>bL1—|—bLOL1—|—bL0+b L7—>ClL8—|—Cl
Lg — bL4 + bLOL4

Note that this grammar is not reduced. The only useful variables are S, Ly, L+
and Ls. The seemingly useless variables and rules will appear to be useful
later. Note too that E disappeared because, when ¢ is removed from the
language, E becomes empty.

Context-Free Languages and Pushdown Automata 21

The next two steps will be devoted to the proof of theorem 3.3.

Step 3 (Construction of an equivalent grammar in cubic double Greibach
normal form)

We work on the grammar just obtained above. Each nonterminal rule of
this grammar ends with a variable in H. A variable now generates a language
that is proper. Thus, the language is not necessarily in M (considered as a
family of languages) because the empty word may be missing. However, the
set H (considered as a set of variables) remains the same. Each variable now
generates the associated language of H up to the empty word.

We first proceed to the same operations as in step 2, using right quotients
instead of left ones. This operation is presented below in a slightly different
way than we did in step 2. Precisely,

(i) For each language L € H, the set LX ™! is now a language of the family
‘H up to the empty word. So, each L in H can be described as the union
of L'X for each X € V with L' = LX~!, completed by X as soon as L
contains the empty word. We do this for each L.

Each language generated by a variable X € V is proper. Hence, in the
expression above, X can be replaced by the union of all the Ra for each
a € A, with R the variable associated to the language R(X, a). Again,
this union has to be completed by a as soon as the language R(X, a)
contains the empty word.

This gives a system of equations where each L € H is a sum of terms in
HHAUHAU A.

(ii) We now go back to the grammar in quadratic normal form resulting from
step 2, and replace each rightmost variable of the nonterminal rules in
the grammar by the expression in the system obtained in step (i). We
thus obtain an equivalent grammar where the nonterminal rules have
a terminal letter as rightmost symbol. It should be noted that, in the
resulting grammar, the number of variables is increased by at most one in
each rule, so that the grammar is cubic. Hence, the so obtained grammar
is in cubic double Greibach normal form.

Frample 3.3. (continued) The first identities are directly derived from the
right quotients computed before. They are

Lo = L3S Ly = L4S

Ly = LgS Lz = L7S

Ly = LsX Ly =1154S
Lg = LgS+ S Le=Le X+ X
Lg =L X+ X

Replacing now each S by L1b+ b and each X by a, we obtain

22 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

Lo — L3L1b + Lgb L1 — L4L1b + L4b
L2 — L6L1b + L6b L3 — L7L1b + L7b
L4 —>L5Cl L5 —>L1L1b—|—L1b
L6—>L8L1b—|—Lgb—|—b L7—>L0a—|—a

Lg I Lza +a

Going back to the grammar obtained at the end of step 2, we replace in it
each rightmost variable by the finite sum so obtained, giving raise to :

X —a

Lo I aL6L1b + aL6b

Ly — bL7L1b+bL7b+bLogL7L1b+bLoL7b

L2 — bLlle + ble + bb + bLoLlle + bLole + bLob
L3 I aLngb + aLgb + Clle + ab

L4 I bLoa + ba + bLoLoa

L5 — bLngb + bLgb + bLoLngb + bLoLgb + b

L6 — bL4L1b + bL4b + bLOL4L1b + bLOL4b

L7 — alsa+aa+a

Lg I bL5a + bLoLg,Cl

The steps 1, 2 and 3 allow thus to transform any context-free grammar
in weak Chomsky normal form in an equivalent grammar in cubic double
Greibach normal form, which proves Theorem 3.4. L]

Step 4 (Construction of an equivalent grammar in quadratic double Greibach
normal form)

We use here essentially the same technique of grouping variables that was
previously used to derive Chomsky normal form from weak Chomsky normal
form. It should be also noted that this technique can be used to transform a
grammar in Greibach normal form into quadratic Greibach normal form.

In the grammar obtained in the previous step, no variable of V appears in
the right member of a rule. Moreover, any variable of H represents, up to the
empty word, the corresponding language. In particular, a language . € ‘H
can be described by

- a left quotient description given by the rules of the grammar in quadratic
Greibach normal form obtained in step 2.

- aright quotient description obtained in the same way. It 1s the intermediate
description used in step 3 just before transforming the grammar in an
equivalent one in double Greibach normal form.

We now enlarge the family H by adding the family HH . To this new
family of languages is associated a new set of variables W. It should be noted
that, each Y € W represents a product L - L' € HH. Hence, replacing L
by its left quotient description, and L’ by its right quotient description, we
get a description of each Y € W as a finite union of terms in AHHHHA U
AHHHAUAHHAUAHAU AA.

Context-Free Languages and Pushdown Automata 23

Each product of four elements of H can be replaced by a product of two
elements of W ; similarly, any product of three elements of H can be replaced
by the product of an element in W by an element of H (or just the contrary
as well).

Then using this transformation in the right members of the rules of the
grammar in cubic double Greibach normal form and adding the new rules
induced by the representation of variables in W just obtained, we get an
equivalent grammar which is now in quadratic double Greibach normal form.

Frample 3.4. (end) The family W is formed of elements denoted (LL'} for
L, L’ € H. We first make quadratic the rules of the above obtained grammar
by introducing, when necessary, some of our new variables.

X — aL6L1b + ClL6b +a

Ly — bL7L1b+bL7b+ b<L0L7>L1b + bLoL7b

L2 — bLlle + ble + bb + b<LOL1>L1b + bLole + bLob
L3 I aLngb + Cngb + Clle + ab

L4 I bLoa + ba + bLoLoa

L5 — bLngb + bLgb + b(LoLg)le + bLoLgb + b

L6 — bL4L1b + bL4b + b<LOL4>L1b + bLOL4b

L7 — alsa+aa+a

Lg I bL5a + bLoLg,Cl

Doing this, we have introduced the four new variables (LoL1), (LoLs),
(LoL4) and (LoL7). Rather than computing the descriptions of all the ele-
ments (L;L;}, we will compute those needed as soon as they appear.

So we begin by computing the description of {LgLy): for this we use

Lo = ClL2 L1 = L4L1b + L4b
which gives raise to the rules
<LOL1> I a(L2L4)L1b + aL2L4b

Going on this way, we get the (huge) equivalent grammar in quadratic double
Greibach normal form:

24 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

X —a
Lo I aL6L1b—|—aL6b—|—a
Ly — bL7L1b+bL7b+ b<L0L7>L1b +bLoL7b
L2 — bL1L1b+bL1b—|—bb—|—b<LOL1>L1b+bLOL1b+bL0b
L3 I aLgL1b+aLgb+aL1b—|—ab
L4 I bLoa—l—ba—i—bLoLoa
L5 — bL3L1b—|—bL3b—|—b<LOL3>L1b—|—bLOL3b+b
L6 — bL4L1b—|—bL4b—|— b<LOL4>L1b—|— bLOL4b

7 —alsa+aa+a
0L1 I a(L2L4)L b + aL2L4b
0L3 I a(L2L7)L b + aL2L7b
oLa
0L7 I aLzLoa +a
olig) — b(L0L5)L5a + bL5L5a

)
)
)
)
)
2 L7)
)
)
)
1.

CEETTEEES
h

I (L0L5)L0a + bLoLg,Cl + bL5L0a + bL5a
0L5 —>Cl< >L b—|—ClL2L b+aL2b
2L1 — b<LOL5>< >b—|—b<LOL5>L4b—|—bL5<L4 >b—|—bL5L4b
41y — a <L0L7>< >b + b<L0L7>L4b + bL7<L4 >b + bL7L3b

Remark 3.

The only useless variable 1s now X.

3.3 Operator normal form

We present here another classical normal form, namely the operator normal
form. A context-free grammar G over the terminal alphabet A 1s in operator
normal form if no right member of a rule contains two consecutive variables.
This normal form has been introduced for purposes from syntactical analysis.
For these grammars, an operator precedence can be defined which is inspired
of the classical precedence relations of usual arithmetic operators. From a
general point of view, the following holds :

Theorem 3.5. [28, 16] Given a contezl-free language, an equivalent conlexi-
free grammar in operator normal form can effectively be constructed.

Proof. Tt is very easy. Given a grammar (G in Chomsky normal form, to each
pair of a terminal letter @ and of a variable X is attached a new variable
X, designed to generate the set of words w such that X generates ua, that
is to say X, = Xa~!. So, each language Lg(X) is exactly the sum over A
of all the languages Lx,a, sum completed by {c} as soon as Lx contains ¢.
Identifying Lx and X, this can be written:

= (|J Xea)Uu({e} N X) (3.1)

In the right members of the original grammar, we now replace each occurrence
of the variables X by the right hand side of equation (3.1). This gives raise to

Context-Free Languages and Pushdown Automata 25

a set of rules say P;. Finally, we add the rules X, — « for X — aa € P;.
This gives raise to a new grammar which is equivalent to the original one
and is in operator normal form. Note that this new grammar may be neither
proper nor reduced. [

Frample 3.5. Consider the grammar given by the two rules
S —aSS +b.
We introduce two new variables S, and Sj. The set of rules in Py is
S — aSgaS,a+ aS,aSyb + aSybS,a + aSybSyb + b.
We then add the rules
Sy — aSgaS, + aSybs, Sy — aS,aSy + aSpbSy + €.

and get the desired grammar.
If we reduce the grammar, we note that the variable S, is useless. So, we
get the grammar

S — aSpbSpb+b Sy — aSpbSy + €.

If we need a proper grammar in operator normal form, we just apply the
usual algorithm to make it proper.

Remark 3.2. The theory of grammar forms [13] develops a general framework
for defining various similar normal forms. These are defined through patterns
like VAV 4+ A indicating that the right members have to lie in VAV U A.
From this point of view, the various normal forms presented above appear as
particular instances of a very general situation (see [5]).

4. Applications of the Greibach normal form

4.1 Shamir’s theorem

We present a first application of Greibach normal form. The presentation
given here follows [33]. Recall that, given an alphabet V' containing n letters,
we denote by D the Dyck set over the alphabet (V U V). Given a word
m € (V UV)*, we denote m the reversal of m. We denote B((V UV)*) the
family of subsets of (V UV)*. We now state Shamir’s theorem [51]:

Theorem 4.1 (Shamir). For any context-free language L over A, there ex-
ists an alphabet V, a letter X € V' and a monoid homomorphism @ : A* —
PV UV)*) such that

u€ L <= X&(u)ND,# 0.

26 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

Proof. Let G = (V, P) be a context-free grammar in Greibach normal form
over A generating L. To each terminal letter @ € A, associate the finite set

®(a) = {Xa € (VUV) | X — aa € P}.

This defines Shamir’s homomorphism & : A* — P((V U V)*). A simple
induction allows to prove that, for any terminal word v € A* and for any
nonterminal word m € V*

X% wm = XO(u)N[m] £ 0
where [m] represents the class of m in the Dyck congruence. This shows, in
particular, that X % wiff X@P(u)N D; # () which is precisely the theorem.

For later use, we state another formulation of the theorem.

Given a context-free grammar G = (V, P) over A in Greibach normal
form generating L, we associate to each terminal letter a € A the set Qg(a) =
$(a)aa. As far as Shamir’s theorem is concerned, nearly nothing is changed:
we use the total alphabet T'= 1V U A instead of V', and the same result holds
with D) instead of D, that is

X%u@ﬂweé(u) : XweD, . (4.1)

4.2 Chomsky-Schiitzenberger’s theorem

We now show how to use Shamir’s theorem 4.1 to prove directly the famous
Chomsky-Schiitzenberger theorem [28, 10], that we recall here :

Theorem 4.2 (Chomsky-Schiitzenberger). A language L over the al-
phabet A s context-free iff there exists an alphabet ', a rational set K over
(TUTY and a morphism ¢ : (T UT)* — A*, such that

L =¥(D; NK).

Proof. We follow again [33]. The “if” part follows from the classical closure
properties of the family of context-free languages. Hence, we just sketch the
proof of the “only if” part. Let G = (V, P) be a grammar over 4 and set
T=VUA.

Define a homomorphism ¥ from (T UT)* into A* by

VX eV u(X)=9¢(X)=1
Va € A, ¢(a) =a and y(a) = 1.

Using morphism @ of the reformulation of Shamir’s theorem, we note that
w € P(u) = P(w) = u. Conversely, if Y(w) = u and w € P(A*), then
w € ¢(u). Thus

Context-Free Languages and Pushdown Automata 27

w € Blu) < p(w) =u for w e P(A*).
Then, the right hand side of equation (4.1) is equivalent to

Jw € B(A*) p(Xw) =u, Xwe D,
Thus, setting K = XQB(A*), which is rational, this can be written

X%u@ﬂw: Y(Xw) =u, Xwée DNK

and the Chomsky-Schutzenberger theorem is proved. [

4.3 The hardest context-free language

We now show how to use Shamir’s theorem 4.1 to get the hardest context-free
language. We begin by some new notions and results.

Given a language L over the alphabet A, we define the nondeterministic
version of L, denoted ND(L), in the following way: first add to the alphabet
A three new letters [, | and +. A word h in ([(A*+)*A*])* can be naturally
decomposed into h = [h1][h2] - - - [hn], each word h; being decomposed itself in
h; = hi,1+hi,2+' . '+hi,k,, hiyj € A*. A choicein his a word hl,jth,jg .- 'hn,jn
obtained by choosing in each [h;] a factor h; ;,. Denote by x(h) the set of
choices in h. Then, the nondeterministic version of L is defined by:

ND(L) = {h | x(h) N L # 0},

Given an alphabet A, we denote by H4 the nondeterministic version of the
Dyck language D). In the particular case of a two letter alphabet A = {a, b},
we skip the index, so that H,4 is denoted H. By definition, H is the hardest
context-free language.

The first important observation is given by:

Fact 4.1. If L is a context-free language, so is its nondeterministic version

ND(L).

This lemma can be easily proved either by using pushdown automata or by
showing that ND(L) is obtained by a rational substitution applied to the
language L. The terminology nondeterministic version of L comes from the
following

Proposition 4.1. The language ND(L) is deterministic context-free iff L is
regular; in this case, ND(L) is regular too.

For a proof, we refer the reader to [3]. We now end this short preparation

by the

Lemma 4.1. Giwven an alphabet A, there exists a morphism X such that

Hy = /_1(H).

28 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

Proof. Let H = Hg with B = {a, b}.
If the alphabet A contains only one letter ¢, just define the morphism A
by A() = [, A(]) =], A(+) =+, A(e) = a and A(¢) = a. '
If A contains n > 3 letters, A will be the usual encoding : A(a;) = ab’a
and A(@;) = @b @ for 1 < i < n. For the three other letters, we define A(D =1
A(]) =] and A(+) = +. "
We now state the

Theorem 4.3 (Greibach). [23] A language L over the alphabet A is con-
text-free iff there exists a morphism ¢ such that $L = o= (H), where $ is a
new letter.

Proof. The “if” part follows directly from the closure properties of the family
of context-free languages and from the fact that H is context-free. Hence,
we turn to the “only if” part, for which we follow once more [33]. Given a
context-free grammar G = (V, P) in Greibach normal form, we associate to
the morphism @ used in Shamir’s theorem a morphism ¢ defined by

pla) =[m1+ma+ - -my] <= &(a) = {my,ma,...,my}

Here, my, mo, ..., m, is some arbitrary but fixed enumeration of the words

in @(a). Moreover, we define ¢($) = [X] if X is the variable in V' generating

L. Set now 0 = x; hence, #(u) will be the set of choices of the word ¢(u).
It is easy to check that

w € O(u) <= w € (u) ie. 6=9.

(Just interpret the word h = ¢(u) as a polynomial representing the set &(u)
and develop this polynomial.)
Consequently, Shamir’s theorem can be rephrased as

XO(u) N Dy # 0 < 0($u) N D, # 0 < $u € o~ (Hy).

Hence, we have $L = ¢~!(Hy). The announced result in theorem 4.3 then
follows from lemma 4.1. L]

Observation. The membership problem is the following: given a language L
and a word u, does u belong to L? The language H 1s called the hardest
context-free language because, by theorem 4.3, from a complexity point of
view, H is the context-free language for which the membership problem is
the most difficult. Any algorithm deciding if a given word belongs to H gives
raise to a general algorithm for the membership problem for context-free
languages; this general algorithm will have the same complexity than the one
given for H.

Context-Free Languages and Pushdown Automata 29

4.4 Wechler’s theorem

We end this section by showing another consequence of the Greibach normal
form. Given a language L over the alphabet A and a letter a € A, recall that
the left quotient of L by a is the language a=*L = {u € A* | au€ L}. An
algebra is a family of languages closed under union and product and contain-
ing the family F'in of finite languages. An algebra F is finitely generated if
there exists a finite family ' such that any language in F is obtained from
languages in F’ under the algebra operations. It is stable if it is closed under
left quotient. We may now state the

Theorem 4.4 (Wechler). [54] A language L is contexl-free if and only if
it belongs to a finitely generated stable algebra.

Proof. Given a context-free language L, it is generated by a grammar in
Greibach normal form. To each variable X is associated the (context-free)
language Lx that it generates. Clearly, the left quotient of such a language
by a terminal letter a can be described as a finite union of product of lan-
guages generated in the grammar. Hence, the algebra generated by all these
languages Lx contains L and is stable.

Conversely, if L belongs to a finitely generated stable algebra, the finite
set of generators give raise to a finite set of variables and the description of
each left quotient as a finite union of product of languages of the generators
gives a grammar in Greibach normal form generating L. m

5. Pushdown machines

In this section, we focus on the accepting device for context-free languages,
namely pushdown automata with the important subclass induced by de-
terminism, in both classical and less classical presentations. We prove here
mainly two beautiful theorems: the first states that the stack language of a
pushdown automaton is a rational language; the second says that the output
language of a pushdown transducer is context-free when the input is precisely
the language recognized by the associated pda.

5.1 Pushdown automata

The classical mechanism of recognition associated to context-free languages
is the pushdown automaton. Most of the material presented in this paragraph
is already in Ginsburg[17].

A pushdown machine over A (a pdm for short) is a triple M = (Q, Z,T)
where () is the set of states, Z is the stack alphabet and T is a finite subset of
(AU{e}) x Q@ x Z x Z* x @, called the set of transition rules. A is the input
alphabet. An element (y,q, z, h,¢') of T is a rule, and if y = ¢, it is an e-rule.

30 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

The first three components are viewed as pre-conditions in the behaviour of a
pdm (and therefore the last two components are viewed as post-conditions),
T is often seen as a function from (AU{e}) x @ x 7 into the subsets of Z* x Q,
and we note (h,q") € T(y,q, z) as an equivalent for (y,q,z,h,¢") € T.

A pushdown machine is realttme if T'1s a finite subset of AXQ X Zx Z* x (@,
i.e. if there is no e-rule. A realtime pdm is simple if there is only one state.
In this case, the state giving no information, it 1s omitted, and 7" is a subset
of Ax Z x 7.

An internal configuration of a pdm M is a couple (¢,h) € Q x Z*, where
q is the current state, and & is the string over Z* composed of the symbols
in the stack, the first letter of A being the bottom-most symbol of the stack.
A configuration is a triple (z, ¢, h) € A* x Q x Z*, where z is the input word
to be read, and (¢, k) is an internal configuration.

The transition relation is a relation over configurations defined in the
following way: let ¢ = (yg,q,wz) and ¢/ = (g, ¢, wh) be two configurations,
where y is in (AU {e}), g is in A*, ¢ and ¢’ are in @, z is in Z, and w and
h are in Z*. There is a transition between ¢ and ¢’, and we note ¢ — ¢’, if
(y,q,2,h,¢") € T.If y = ¢, the transition is called an e-transition, and if y €
A, the transition is said to involve the reading of a letter. A valid computation
is an element of the reflexive and transitive closure of the transition relation,
and we note ¢ F— ¢/ a valid computation starting from ¢ and leading to ¢’.
A convenient notation is to introduce, for any word x € A*, the relation on
internal configurations, denoted E=, and defined by:

(g, w) E= (¢, v) <= (z,q,w) F=(c,q,v).

We clearly have: E= o B = 2L

An internal configuration (¢', w’) is accessible from an internal configura-
tion (¢, w), or equivalently, (¢, w) is co-accessible from (¢, w') if there is some
x € A* such that (¢, w) B= (¢, w").

A rule (y,q,%,h,¢') € T is an increasing rule (respectively a stationary,
respectively a decreasing rule) if |h| > 1 (respectively |h| = 1, respectively
|h] < 1). The use of an increasing rule (respectively a stationary, respectively
a decreasing rule) in a computation increases (respectively leaves unchanged,
respectively decreases) the number of symbols in the stack. A pdm is in
quadratic form if for all rules (y,q, 2, h,¢") € T, we have: |h| < 2.

A pdm is used as a device for recognizing words by specifying starting
configurations and accepting configurations. The convention is that there is
only one starting internal configuration i = (¢, z), where the state ¢ is the
initial state, and the letter z 1s the initial stack symbol. For internal accepting
configurations, many kinds make sense, but the set K of internal accepting
configurations usually is of the form: K = Ugeq{¢} x K, with K, € Rat(Z*).

A pushdown automaton over A (a pda for short) is composed of a push-
down machine (@, Z,T) over A, together with an initial internal configura-

Context-Free Languages and Pushdown Automata 31

tion ¢, and a set K of internal accepting configurations. It is so a b-tuple
A=(Q,7,i,K,T),and (Q, Z,T) is called the pdm associated to A.

For a pda, an internal configuration is accessible if it 1s accessible from
the initial internal configuration, and 1t is co-accessible if it is co-accessible
from an internal accepting configuration.

The sets of internal accepting configurations usually considered are:

the set F'x Z* where I is a subset of), called the set of accepting states.
the set @ x {£}.

the set I x {¢} where F'is a subset of Q.

the set) x Z*Z' where Z’ is a subset of 7.

H 0 DN —

We call each of these cases a mode of acceptance.

A word # € A* is recognized by a pda A = (@, 7,4, K,T) over A with a
specified mode of acceptance if there is k € K such that i == k. Considering
the modes of acceptance defined above, in the first case, the word is said to
be recognized by accepting states F', in the second case the word is said to be
recognized by empty storage, in the third case the word 1s said to be recognized
by empty storage and accepting states F', and in the last case the word is said
to be recognized by topmost stack symbols Z'. The language accepted by a pda
with a given mode of acceptance is the set of all words recognized by this pda
with this mode. For any pda A = (@, Z,4, K, T), we note L(.A) the language
recognized by A, and for any set of internal accepting configurations K’, we
note L(A, K') the language recognized by the pda A’ = (Q, 7,4, K',T).

Note that, with regards to the words recognized, the names of the states
and of the stack symbols are of no importance. Up to a renaming, we can
always choose @ = {q1,¢2, ..., ¢}, and similarly, Z = {z1,22,..., 2, }. Up to
a renaming too, we can always set the initial internal configuration equal to

(fh, Z1)~

Frample 5.1. Let A =(Q, Z,(qo,t), K,T) be the pda over A = {a, b}, where
Q=190,91,92,93}, Z = {z,1} of rules:

(a,q0,t,2t,q1), (a,qo,t, zzt,q2),
(aaQLtaZtaql)a
(a,q2,t,22t,q2), (a, q2,t, 2t, q1),
(e,q1,t,¢,q3), (g,92,1,¢,q3),
(b,q3,2,¢,q3).

In state ¢, each letter a read increases by one the number of symbols z under
the top symbol ¢ in the stack. In state ¢s, each letter a read increases by two
the number of symbols z under the top symbol ¢ in the stack, or increases
it by one and changes the state to q;. The two e-rules remove the top stack
symbol ¢, changing the state to g3, in which the only thing possible to do is
removing one z in the stack for each b read.

Then we have, for example:

32 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

LA, Q x {e}) ={a"b? |0 < n < p < 2n},

LA {gst x Z*) ={a™ |0 < nand 0 < p < 2n},
L(A {g2} x {e}) =0,

LA, Q x Z*z) ={a™® |0 < nand 0 < p < 2n}.

As seen on this example, for a given pda, changing the mode of acceptance
changes the languages recognized. Nevertheless, the family of languages that
are recognized by pda’s, using any of these modes remains the same. This
can be proved easily using a useful, though technical, transformation of a
pda adding it the bottom symbol testing ability. A pda admits bottom testing
if there is a partition of the stack alphabet 7 in B U B’ such that for any
accessible configuration (¢, w), the word w is in BB’*. In other words, in such
an automaton, a symbol at the bottom of the stack always belongs to B and,
conversely, a symbol in the stack which belongs to B is the bottom symbol.
So, if the topmost symbol of the stack happens to be a symbol in B, it is
the only symbol in the stack. Since the only symbol in the stack that may be
tested is the topmost symbol, it is then possible to know if it is the bottom
symbol of the stack. Under these conditions, a valid computation leads to
a configuration with an empty store if and only if the last transition uses
a rule of the form: (y,q¢,z,¢,¢’) € T where z is in B. One construction to
transform a pda A into a pda A" admitting bottom testing is the following.
Let A= (Q,7,i,K,T),let 7/ ={z' | 2 € Z} be a copy of Z, and define T"
by:

(v,¢,2,6,¢) €T < (y,q,2,6,¢) €T Ny, q,7',¢,¢) €T’
and
(Y, q,2, 21025 ...z ¢) € T'A

!
(y’q’z’zlzz'”z’”’”ET@{(y,q,z’,z;zg...z;,q/) €T

Finally, denoting by 7 : (Z U Z')* — Z* the homomorphism that erases the
primes, set

K" ={(¢, 1) [(¢, () € K}

and

A =(Q, 207 i, K' T .

Proposition 5.1. The pda A’ admits bottom testing and recognizes the same
language as A, for any mode of acceptance.

Hence there is a common family of languages recognized by pda’s using
any mode of acceptance which is the family of context-free languages:

Theorem 5.1. The family of languages recognized by pda’s by empty storage
and accepting states ts exactly the family of context-free languages.

Proof. Let A =(Q, 7,1, K,T) be a pda. We denote [p,w, q], for w € Z1, the
language

[pw.ql={r €A™ | (p,w) = (g,9)},

Context-Free Languages and Pushdown Automata 33

and set

[p,E,q]:{w ifp#q

e ifp=yg
We then have, for w,w’ € 7*:

by we gl = | T w0, w, gl

reQ

We can derive from T that the languages [q, z, ¢], for z € Z, satisfy the
set of equations:
pzd= |J uld bl (5.1)

(y,p,2,h,q')ET

Hence the languages [q, z, ¢] are all context-free, and so is the language:

U [q1, 21, 4]

qEF, i=(q1,21)

which is exactly the language recognized by A = (@, 7,1, K,T) with K =
{e} x F (i.e. by empty storage and accepting states F').

Conversely, if G = (V, P) is a context-free grammar over A such that
PCVx(AU{e})V*, one can construct from P a pdm M = (V,T) over A
without states, where T C (AU{e})x V x V* is defined by: (y, X, m) € T <—
X — ym. The language Lg(X) is then recognized by the pda associated to
M with initial stack symbol X by empty storage. [

Remark 5.1. Tf the system of equations (5.1) is replaced by the associated
context-free grammar, there is a one to one correspondence between valid
computations of the pda and leftmost derivations in the grammar. Hence the
number of different valid computations leading to recognize a word z gives
the number of different leftmost derivations for .

For pushdown automata, the mode of acceptance is generally chosen
to give the simplest proofs for one’s purpose. Other modes of acceptance
than the ones quoted above have been investigated. For instance, a result of
Sakarovitch [46] shows that if K = Uzeq{q} x L, with L, context-free, then
the language recognized remains context-free.

The characterization of context-free languages in terms of languages rec-
ognized by pda’s allows much simpler proofs of certain properties of context-
free languages.

Frample 5.2. In order to show that the family of context-free languages is
closed under intersection with rational languages, consider a context-free lan-
guage L given by a pda A, and a rational language K given by a finite au-
tomaton B. Then a pda recognizing L N K can effectively be constructed,
using the Cartesian product of the states of 4 and of the states of B.

34 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

A pushdown automaton is realtime (resp. simple) if the associated pdm
is realtime (resp. simple).

The fact that any proper context-free language can be generated by a
context-free grammar in Greibach normal form implies that realtime pda’s,
(and even simple pda’s), recognize exactly proper context-free languages.

The realtime feature is the key to formulate Shamir’s and Greibach’s
theorems (theorems 4.1 and 4.3), and that we rephrase here in an automata-
theoretic framework.

In any pdm M = (@, Z,T), the set T can be written as a function T
from (AU {e}) into the subsets of @ x Z x Z* x @. In the case of a realtime
pdm, it is a function from A into the subsets of Q@ X Z x Z* x Q. Let Z be a
copy of Z and Q a copy of Q as well, we can conveniently denote the element
(¢,z,h,¢)in Q@ x Z x Z* x @ by the word §.Z.h.¢" over the Dyck alphabet
QU ZUZUQ. Recall that we denote DZ?UZ the Dyck set over this alphabet.
The Shamir function @ from A into the subsets of (QU ZU ZUQ)* is defined
by X

®(a) = {7zhq" | (1,2, h,¢') € T(a)}.
Then extend it in the natural way to a morphism from A* into the subsets of
(QUZUZUQ)*. Thus, Shamir’s theorem states that @(x) Nz1q1 DGy, F # 0
iff # is recognized by the realtime pda A = (Q, Z,i, F x {¢},T) by empty
storage and accepting states F.

The Shamir function ¢ gives raise to a function from 4 into ({[,],+} U
QU ZU?U@)*, extended to an homomorphism ¢, that we call the Greibach
homomorphism, by setting:

ple)=[mi+ma+...+mp] <= &(x) = {my,ma,...,mp}.

Let Hguz be the Hardest context-free language over QU Z. It follows that
[z1q1)¢(2)F € Hyy iff © is recognized by the realtime pda A =(Q, Z,¢, K, T)
by empty storage and accepting states F'. This is theorem 4.3.

The presence of the Dyck set in Shamir’s theorem is due to the fact that
this language fully describes the behaviour of the stack in a pdm: a letter
that is unmarked is pushed on the top of the stack, while a marked letter
erases the corresponding letter provided it is the topmost symbol in the stack.
Recognition by empty storage means that the stack must be empty at the
end of the computation, and D* is precisely the class of the empty word ¢
for the Dyck congruence.

5.2 Deterministic pda

We now focus on determinism.
A pdm M =(Q,Z,T) over A is deterministic if the set T of transitions
satisfies the following conditions for all (y,¢,2) € (AU {e}) x Q@ x Z:

Card(T'(y, ¢,2)) <1
T(e,q,2) # 0 = T(a,q,2) = 0, (a € A).

Context-Free Languages and Pushdown Automata 35

A deterministic pda (dpda for short) is a pda with a deterministic associ-
ated pdm. The transformation of a pda into a pda admitting bottom testing
described above, when applied to a deterministic pda, gives raise to a de-
terministic pda. Hence, it is possible to prove that the family of languages
recognized by dpda’s by empty storage 1s the same as the family of languages
recognized by dpda’s by empty storage and accepting states, and that this
family is included in the family of languages recognized by dpda’s by accept-
ing states. On the other hand, it is easy to verify that a language recognized
by empty storage by a dpda is prefix, ¢.e. no proper prefix of a word of this
language belongs to this language. So, we are left with two families of lan-
guages: the family of languages recognized by accepting states, called the
family of deterministic languages, and the family of languages recognized by
empty storage and accepting states, called the family of deterministic-prefiz
languages. 1t 1s easy to check the following

Fact 5.1. The family of deterministic-prefiz languages is exactly the family
of deterministic languages that are prefiz languages.

The two families are distinct. As an example, the language L1 = {a™bP |
p >n > 0} is deterministic but not prefix. To avoid these problems, a usual
trick is to consider languages with an end marker: indeed, L# is a prefix
language which is deterministic if and only if L is deterministic.

One awkward feature about dpda’s i1s that, due to possible e-transitions
that may occur after the input of the last letter of the word, there may
be several valid computations for a fixed input word (being the beginning
of one each other). This inconvenient can be avoided by a rather technical
construction (see e. g. [2]) that transforms a dpda into an other dpda such
that an accepting state is reached only if the computation is maximal.

Proposition 5.2. For any dpda, it is possible to construct a dpda recognizing
the same language such that an accepting state cannot be on the left side of
an e-rule.

Consequently, in such a dpda, for any recognized word, there is only one
successful computation. This proves the following

Proposition 5.3. Deterministic languages are unambiguous.

To see that the inclusion is strict, consider the language Lo = {a™b" |
n > 0} U{a"b*" | n > 0}. It is unambiguous, and it is not a deterministic
language. Indeed, looking carefully at the valid computation used to recognize
a word a™b”, it is not too difficult to prove that it is possible to find a word
a"tFpntE for some k > 0 such that the internal configuration reached is the
same than for the former word. Now, the valid computation for a” " should
be the beginning of the valid computation for the word a”6?*. Hence the
automaton must recognize the word a”t¥6?"+% which is not in Ls.

By the way, the technical construction invoked in Proposition 5.2 is also
the key to prove the following

36 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

Theorem 5.2. The family of deterministic languages is closed under com-
plementation.

This property is not true for the family of context-free languages: the
language {a™bPc?! | n # p or p # q} is a context-free language, and its
complement, intersected by the rational language a*b*c*, is the language
{a"bPe? | n = p and p = ¢} which is not context-free.

Proposition 5.4. For any dpda, it is possible to construct a dpda recognizing
the same language such that any e-rule is decreasing.

This proposition is quoted as an exercise in [28] and [30]. However, no
proof has appeared in the standard textbooks. A proof is given below.

The proof is in two steps of independent interest: first, we get rid of
nondecreasing e-rules for dpdas recognizing by topmost stack symbols and
accepting states. In a second step, we show that such a dpda recognizes a de-
terministic language. This is achieved by constructing an equivalent ordinary
dpda, but without introducing any nondecreasing e-rule.

Proposition 5.5. Given a dpda A recognizing by topmost stack symbols and
accepting states, it is possible to construct a dpda A’ recognizing the same
language with the same mode of acceptance, and such that any e-rule 1s de-
creasing.

Proof. Let A = (Q, 7,4, K,T) be a dpda over A. Observe first that we may
always saturate the set K of accepting configurations by adding all configu-
rations (¢, h) € Q x ZT such that (¢,2) E=k for k € K.

Claim. The number of consecutive nondecreasing e-transitions in a compu-
tation may be assumed to be uniformly bounded.

The proof of the claim is simple, and appears for instance in [17].

Claim. One may assume that there are never two consecutive nondecreasing
e-transitions in a computation.

The idea is to glue together, in a single rule, any maximal (bounded in
view of the first claim!) sequence of consecutive nondecreasing e-transitions
appearing in a computation. If such a sequence contains an accepting config-
uration then, due to the saturation of K, its initial configuration is accepting,
too.

Claim. One may assume that, in any computation, there is never a nonde-
creasing e-transition followed by a decreasing e-transition.

Again, the idea 1s to glue together a nondecreasing e-rule followed by
a decreasing e-rule into one e-rule. This decreases the total number of e-
rules. Therefore, the process stops after a finite number of steps. Accepting
configurations are handled in the same way than above.

Context-Free Languages and Pushdown Automata 37

From now on, we may assume, in view of these claims, that any nonde-
creasing e-transition either ends the computation or is not followed by an
e-transition.

We now finish the proof. Let A’ = (@, Z,4, K, T') be the automaton where
T" is constructed as follows. 7" contains all decreasing e-rules of T'. Next,

- If T'(e,q,2) =0, then T"(a,q,2z) = T(a, q, z) for a € A.

- If T(e,q,2) = (r,m), with m # e, then T'(a,q,z) = (p,h), where
(a,r,m) — (g,p, h).

It is immediate to check that A’ is equivalent to .A. By construction, it has

only decreasing e-rules. L]

We now turn to the second step.

Proposition 5.6. Given a dpda A recognizing by topmost stack symbols and
accepting states, and having only decreasing e-rules, it is possible to construct
a dpda B recognizing the same language by accepting states, and such that any
e-rule is decreasing.

Proof. Let A = (Q,7,i,K,T) be a dpda over A. We construct B =
(@, Z,i, K',T") as follows: @' = QU P, where P = {q, | (¢,2) € K}. Next,
K’ = P. The set of rules T” first contains T"(¢,q,z) = (¢4,¢) for (¢,2) € K.
Furthermore,

- If T(a,q,z) # 0 for some letter a € A, then T'(a,q,z) = (¢’,m) for some
q¢' € Q and m € Z*. In this case,

T'(a,q:,2") = (¢',2'm) for all 2’ € Z .

- If T(¢,q,2) # 0, then, since the rule is decreasing, T(¢,q,z) = (¢, &) for
some ¢’ € Q. In this case,

Ty, q.,2)=T(y,¢,2") forally e AU{e} and ' € 7.

By construction, the dpda B has only decreasing e-rules. Clearly, B is equiv-

alent to A. n
Proof of proposition 5.4. A successive application of propositions 5.5 and 5.6
proves the statement.]

Remark 5.2. The proposition 5.6, but without reference to e-rules, is proved
in a simpler way in [2]. However, his construction does not apply to the proof
of proposition 5.4.

Proposition 5.4 shows that, for deterministic automata, nondecreasing e-
rules are not necessary. On the contrary, decreasing ¢-rules cannot be avoided.

38 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

Frample 5.3. The language
Ly = {a"tPeca” | p,n > 0} U {a"bdb’ | p,n > 0}
is deterministic, and recognized by the dpda with rules:

(a,q1, 21,2122, 1), (@, qu, 22, 2222, q1), (b, q1, 22, 23, q2),
(b, q2, 23, 2323, 42), (¢, q2,23,¢,q3), (d,q2, 23, 23,45),
(E,Q3,Z3,€,QS), (G,Q3,22,E,QS), (G,Q3,Z1,€,Q4)
(b,Q5,Z3,€,Q5), (E,Q5,22,22,Q6)~

by accepting states, with accepting states g4 and gs.

However, Lz cannot be recognized by any realtime deterministic pda.
Indeed, a word starts with a™b, and it is necessary, while reading the factor 7,
to push on the stack an unbounded number of symbols that will be matched
when the word ends with db?, and all these symbols have to be erased when
the word ends with ca”.

This example shows that, contrarily to the general case, the realtime con-
dition induces an effective restriction on the family of recognized languages.

Let R be the family of languages recognized by deterministic realtime
automata by empty storage. There is a Shamir theorem for languages in R,
that we state now.

Let @ be the Shamir function from A* into the subsets of (QUZUZUQ)*.
Since the automaton is deterministic, for all (¢,2z) € @ x Z, there is at
most one element beginning by .7 in each image ®(a) of a € A. Such an
homomorphism is called a “controlled” homomorphism. Shamir’s theorem
can be rephrased as follows. A language L is in R if and only if there exists
a controlled homomorphism @ from A* into the subsets of (Q U Z U ZU @)*
such that @(z)N 211Dy, " F #0 <— z € L.

We define a rational set R by: w € R iff w = [wy + ws + -+ + w,], wg €
QZ7*Q and for all (¢,2) € Q x Z, there is at most one wy, beginning with
qz.

Considering the Greibach homomorphism ¢ from A* into the monoid
{LL,+UQUZUZUQ)*, then p(a) € R, for all a in A. Tt follows that
[21q1]e(2) € HouzNR* if and only if « is recognized by the realtime dpda A =
(Q,Z,i, K, T) over A by empty storage. (Recall that Hguz is the Hardest
context-free language over QUZ.) By the way, we can remark that Houz N R*
is itself a language in R.

The additional condition of being a simple (realtime) dpda induces also
an effective restriction:

Fact 5.2. The language Ly = {a™ba™ | n > 0} is realtime deterministic, but
not simple.

Proof. L4 1s recognized by empty storage and accepting states by the realtime
dpda -’4 = (QaZa Tala[{aT) Where Q = {qlaQZaQE}}a Z = {B,Z}, t= (qlaB)a
K ={(gs3,¢)} and T is the set of rules:

Context-Free Languages and Pushdown Automata 39

(aaQ1aBaBzaq1)a (aaqlazazzaql)a (baqlaZaEaQZ)a
(aaQ2aza€aq2)a (aaQZaBaan3)~

Hence, L4 is a realtime deterministic language. However, it cannot be rec-
ognized by a deterministic simple automata, since it is necessary to know
whether an input letter a belongs to the first or to the second factor a”. m

Given two families of languages C and D, the equivalence problem for C
and D, denoted FEq(C, D), is the following decision problem:
Instance: A language L in C, and a language M in D.
Question: Is L equal to M7

The equivalence problem for C, denoted Eq(C), is the problem Eq(C,C). Tt
is well known that Fq(Alg) is undecidable for the family Alg of context-free
languages, and up to now it is unknown whether Eq(Det) is decidable or
not, where Det denotes the family of deterministic languages. So there has
been a huge amount of works solving Fq(C, D) for various subfamilies of Det.
We only quote here a few among the results published in the literature, in
the positive case. The equivalence problem is decidable for parenthesis lan-
guages (see paragraph 6.6 below)[39], for simple languages (see paragraph
6.7 below)[36], for finite-turn languages (see paragraph 6.4 below)[53], re-
altime languages[42] ,(pre-)NTS languages[49]. A result of Sénizergues[50]
shows that if C is an effective cylinder (i. e. a family of languages effectively
closed under inverse homomorphism and intersection with rational sets) con-
taining the family Rat of rational sets for which the equivalence problem is
decidable, then so is Eq(C, Det).

In order to recognize the whole family of deterministic languages by real-
time automata, we have to modify the standard model of pdm. We already
noticed that, in a dpda, only decreasing e-rules are necessary. They are nec-
essary because, as seen for the language L3 defined above, it happens that
some unbounded amount of information pushed on the stack has to be erased
at the same time. So, if we want to have a realtime device, this leads to use
some mechanism that erases an unbounded number of topmost stack sym-
bols in one step. Several such mechanisms have been introduced and stud-
ied in the literature (see e.g. Cole[11], Courcelle[12], Greibach[26], Nivat[41],
Schiitzenberger[48]). We present now one such accepting device.

A jump pdm over Ais a 4-tuple A = (Q, Z,J,T), where @ and 7 have the
same meaning as in a pdm, and J 1s a new alphabet in bijection with Z, the
elements of which are called jump stack symbols, or simply jump symbols,
and T, the set of transitions, is a finite subset of A x Q@ X 7 x (Z* U J) x Q.
We denote A the bijection between J and Z. Observe that, by definition,
a jump pdm is a realtime device. A jump pdm is deterministic if for all
(a,¢,2) € A x Q x Z, there is at most one (h, ¢) such that (a,q,2,h,q) € T.

Configurations of a jump pdm are just the same as configurations of a
pdm, but the transition relation is modified: let ¢ = (ag,q,wz) and ¢ =
(9,¢',w'), where aisin A, g isin A* ¢ and ¢’ are in @, zis in 7, and w and
w’ are in Z*. There is a transition between ¢ and ¢’, and we write ¢ — ¢/,

40 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

if either (a,q¢,2z,h,¢') € T with h € 7* and w’' = wh, just as for pda’s, or
(a,q4,2,4,9") € T with j € J if w = w'zws and z = A(j) has no occurrence in
ws; in such a transition, an unbounded number of symbols (namely |zwa]|) is
erased.

A wvalid computation is an element of the reflexive and transitive closure
of the transition relation, and we note ¢ = ¢’ a valid computation starting
from ¢ and leading to ¢’.

A jump pda 1s to a jump pdm what a pda i1s to a pdm: 1t is a 6-tuple
A=(Q,7,7J,i, K,T), where (Q, Z,J, T) is a jump pdm, and ¢ and K have the
same significance than in a pda. Observe that jump pda’s generalize pda’s: a
pda is a jump pda with no jump rules. A jump pda i1s a deterministic jump
pda (jump dpda for short) if the associated jump pdm is deterministic.

Since, in a jump pda, it is possible to erase an unbounded number of stack
symbols in one move, the standard accepting mode is by empty storage. This
is the mode considered when we do not specify an other one.

As an example, consider again the deterministic language

Ly = {a"tPeca” | p,n > 0} U {a"bdb’ | p,n > 0}

over {a,b,c,d}. Tt is recognized by empty storage and accepting states by
the jump pda A = (Q, 7, J,i, K,T), where @ = {q1,...,¢5}, K = {(¢, 1)},
Z ={2,A,B}, J=1j.,ja,js} and T is the set:

(aaQ1azaZAaq1)a (aaqlaAaAAaql)a (baqlaAaABaQZ)a (baQZaBaBBaQZ)a
(daQZaBaanE})a (baq3aBa€aq3)a (baq3aAajzaQ4)a
(C, QZaBajAaQ5)a (aaq5aAa€aq5)a (aaq5aza€aq4)~

Indeed a word of L3 begins with a”b”. The first four rules just push on the
stack A" BP over the bottom symbol z. Now, if the word ends with db?,
the three next rules are used to recognize the word: the first two to pop all
symbols B while reading db?~1, and the third (with jump symbol j,) to erase
the remaining symbols of the stack, i.e. zA”. Last, if the word ends with ca”,
the last three rules are used to recognize the word: the first one (with jump
symbol j4) to erase all the top factor ABP in the stack, the second to pop all
symbols A while reading a”~!, and the third to erase the remaining symbol
z at the reading of the last a.

It is easy to construct from a (deterministic) jump pdm, a (deterministic)
pdm (which will not be in general realtime) that acts in the same way: first,
a rule (a,q,z,j,p) is replaced by the rule (a,q,z,z,p;), where p; is a new
state. This replacement does not change determinism. Then, the following
set of rules is added:

{(e,p,2,,05) [AG) # 2} U{(e, . 2,6,p | M) = =2}

Remark that these new rules do not enter in conflict with the older ones, since
the states involved are new states, nor with one another. So, determinism is
preserved by this construction.

Consequently, in the nondeterministic case, we have the following

Context-Free Languages and Pushdown Automata 41

Proposition 5.7. The family of languages recognized by jump pda’s is ex-
actly the family of context-free languages.

A similar statement holds for deterministic languages.

Proposition 5.8. The family of languages recognized by deterministic jump
pda’s is exactly the family of deterministic languages.

In view of the preceding construction, and of the remark concerning the
deterministic case, it only remains to prove that a deterministic language can
be recognized by a jump dpda. The proof is very technical and lengthy, so
we refer the interested reader either to Greibach[25], or to Cole[11].

An other model considered allows to erase rational segments of the stack
word. This is clearly a generalization of jump pdm, since in a jump pdm, the
erased factors have the form zh with h € (Z—{z})*. Observe that this rational
set is recognized by the finite automaton obtained from the rules added in the
construction above, (rules of the form: (¢, p;, z,€,p;) or (¢,p;, z,¢,p)) when
skipping first and fourth components (those equal to ¢). It is an easy exercise
to change the sets of rules added so that the erased factors belong to any
rational set. If the rational sets are chosen to be prefix, as it is the case for
jump pdm, determinism is still preserved. Hence, this model is equivalent to
jump pdm.

Just as the behaviour of the stack in a pdm is described by the Dyck
set, the behaviour of the stack in a jump pdm is described by a new set Fy,
which is a generalization of the Dyck set, defined as follows. £z is the class
of the empty word for the congruence generated by

{m=elzenJ=zil-ez 200 #aUli=elz €2 AG) =2}

We name F,, this set if m = Card(Z) = Card(J).

It is a result of Greibach[26] that each language E,, cannot be recognized
by a deterministic jump pda with m — 1 jump symbols. Hence, the number
of jump symbols induces a hierarchy.

Again, it is possible to state a Shamir-Greibach like theorem for determi-
nistic languages, using jump dpda: let A = (@, Z, J, ¢, K, T) be a deterministic
jump pda over A. This time, the Shamir function @ is a function from A*
into the subsets of (QU ZUT UZ UQ)*, and the Greibach homomorphism
¢ is a function from A* into ({[,],+}UQU ZUT U Z U Q)*. We define a
rational set R’ by: w € R/ iff w = [wy + wa + -+ w,], wr € QZ(Z* UT)Q
and for all (¢, z) € @ x Z, there is at most one wy, beginning with gz.

We have that for all @ in A, ¢(a) is in R'. If ND(Equz) is the nonde-
terministic version of Fquyz (see section 3.3), it follows that [z1¢1]¢(x) €
ND(Equz)NR'™ if and only if « is recognized by the deterministic jump pda
A=(Q,2,J,i,K,T).

Again, we can remark that ND(Eguz) N R™ is itself recognized by a
deterministic jump pda.

42 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

5.3 Pushdown store languages

In this paragraph, we show that the language composed of the strings that
may occur in the pushdown store is rational.

Let A=(Q, 7,1, K,T) be a pda over A. We call pushdown store language
of A the language P(A) over Z of all words u such that there exists some
state ¢ for which the internal configuration (¢,) is both accessible and co-
accessible. Formally, P(A) is defined by:

PA)={ueZz |,y A", Jg€Q, IkEK : iE=(q,u) =k}

Theorem 5.3. Given a pda and some mode of acceptance, the pushdown
store language of this pda is rational.

For any state ¢ € @, we define the two sets:

Acc(q) ={u € Z* | Ir € A* : i E=(q,u)},
Co-Ace(q) ={ue z* | ye A", Tk e K : (q,u) E=k}.

Clearly:

P(A) = | J (Ace(g) N Co-Acc(q)) (5.2)
q€Q

We now show that the languages Acc(q) and Co-Ace(g) are rational.
Lemma 5.1. The set Ace(q) is rational.

Proof. We first consider the particular case of a pda A = (@, 7,{, K,T) in
quadratic form, i.e. such that for any rule (a,q¢,z,h,¢) € T, |h| < 2.

Let w = t1---tp41, where ¢, € Z. A valid computation (z,qo,y1)
F— (¢, q,u) can be decomposed into several steps such that, at the last move
of each of these steps, one letter of u 1s definitively set in the stack. Formally,
the whole computation is decomposed into:

(2, qo,y1) F= (21, q1, 21) b= (2, ¢4, taya) H= (2, g2, 1125) F— (25, ¢5, talays)
F— o (e, g tilo b1 2)) = (2, g tats - - b yeg) (€, ¢,),
where y1,..., %41 and %1,...,%,41 are in Z. Define now the context-free
grammar G, with terminal alphabet 7, nonterminal alphabet @ x 7, and
rules:

(p,2) — (¢, 2') if Jx € A* : (p,2) E= (¢,)

(p,z) —t(p,2)if Jae AU{e} : (a,p,z,t,p)ET

(p,z) — ¢ if 3z e A* 1 (p,2) E= (q,¢)
(¢,2) — =

A straightforward proof by induction on the length of a derivation shows that
if there is a derivation (p, z) . win G4, then there is a valid computation

(p,2) = (¢,u) in A.

Context-Free Languages and Pushdown Automata 43

Conversely, if there is a valid computation (z,qo,y1) F— (¢, ¢, u) in A,
then the decomposition described above of this valid computation gives the
rules to be applied to form a derivation (qo, y1) . win Gy.

Thus we have:

La,((q1,21)) = Acc(q),

and since (4 is a right linear grammar, Ace(q) is rational.
Note that the grammar G4 can be effectively computed since the condition

Jx e A* : (p2) E=(p,)

is an instance of the emptiness problem for a context-free language.
Considering now the general case, the proof goes along the same lines.
However, we have to modify the grammar G, in order to skip the condition
that for any rule (a,p,z, h,p') € T, |h| < 2.
Indeed, when symbols are definitively set in the stack at a time (there
may be more than one), several symbols may be pushed that will have to be
erased. The whole computation is now decomposed into:

(z,q0,y1) F— (21, q1,21) — (2, ¢}, tiyn) F— (22, q2,t125) — (24, gb, titays)

*

_ - |L (xraQTatltZ"'tr—IZ;) — (l;iaQLatlt?"'tTyr-l—l) |_*_ (EaQaU)a

where y1, ..., 9,41 and ¢1,...,{,41 are now nonempty words over 7.
Define now the context-free grammar Gy, with terminal alphabet 7, non-
terminal alphabet @ x Z, and rules:

(p,z) — (p/,2") if Jw e A* (p,z)lé(p’,z’)

(p,z) —t(p/,2)if Jae AU{eht,ye ZT z e A" p" €@ :
(a,p,z,ty,p") € T and (p",y) == (¢, ¥')

(p,z) — ¢ if 3z e A* 1 (p,2) E= (q,¢)

(¢,2) — =

The same proof than before ensures that Lg ((q1,21)) = Acc(q), and since
(4 is a right-linear grammar, we get that Acc(g) is rational. m

We now turn to the proof of
Lemma 5.2. The set Co-Acc(q) is rational.

Proof. We first consider the case of the mode of acceptance by empty storage
and accepting states. Let F' be the set of accepting states.

Consider a valid computation (z,q,u) F— (g, ¢,) with ¢ € F and u =
t1---tpqp1, where 11, ... ¢, 41 are in Z. It can be decomposed into:

*

(2, q,u) K= (20, prytite - tp) K -
T |L ($2ap2at1t2) |L (xlaplatl) |L (an/aE)'

Define now a context-free grammar H over terminal alphabet 7, with non-
terminal alphabet @, and rules:

44 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

p—pzifIee A (pz2)E= (V,¢)
p—c ifperF.

Again, the grammar H can be effectively computed.

A straightforward proof by induction on the length of a derivation shows
that if there is a derivation p ~. uin H, then there 1s a valid computation
(z,p,u) = (g,¢',u) with ¢’ € F in A.

Conversely, if there is a valid computation (z, ¢, u) F— (g, ¢’,€) in A, then
the decomposition described above of this valid computation gives the rules
to be applied to form a derivation ¢ —— u in H.

Thus we have:

Lu(q) = Co-Acc(q),

and since H is a left linear grammar, Co-Acc(q) is rational.

It remains to explain how to generalize the result for any mode of accep-
tance, 1.e. how to modify the grammar H in accordance with the mode of
acceptance chosen.

Suppose that u is in Co-Acc(q), i.e. there exists # € A*, and (¢',v') € K
such that (z, ¢, u) K (¢, ¢, u). If u’ is not empty, there is a longest left factor
v of u such that the symbols of v are not involved in this valid computation.
This computation can be divided into two subsets: in the first one all but
one of the symbols of u above v are deleted, the second one being the rest
of the computation. If at the end of the first part, the internal configuration
is (p,vz) for some pushdown symbol z, setting v = vzw, we then have two
valid computations: (z1, ¢, w) F— (¢, p, €) and (x4, p, 2) F— (¢, ¢',u') with z =
1X2.

Hence, this leads to the (left linear) grammar H over terminal alphabet
Z, with nonterminal alphabet @ U {c}, and rules:

g —q'z if 3z €A« (q,2) F=(d,¢)

xr

p— oz if3zed : (p2)E= (¢)
c— o0z + cforall z € 2
q/ — € if (q’,E) e K.

Again we have Ly (q) = Co-Acc(q), hence we get that Co-Ace(q) is rational.
"

Note that, also in the general case, the grammars G, and H can be effec-
tively computed.

From equation (5.2) and lemmas 1 and 2, we get that P(A) is rational,
hence the proof of the theorem is complete. [

5.4 Pushdown transducers

A pda to which is adjoint an output is a pushdown transducer. In this para-
graph, we show that the output language of a pushdown transducer is a

Context-Free Languages and Pushdown Automata 45

context-free language when the given input is precisely the language recog-
nized by the associated pda.

A pushdown machine with output over A is a 4-tuple § = (Q, 7, B, %)
where B 1s an alphabet called the output alphabet, v is a finite subset of
(AU{e}) x Q x Z x Z* x @ x B*, and if T' is the projection of 4 onto
(AU{e x Q@ x Z x Z7* xQ, (@, Z,T) is a pushdown machine, called the pdm
associated to §.

We note (h,¢',u) € y(y,q, z) as an equivalent for (y, ¢, z, h, ¢',u) € 7.

An internal configuration of a pushdown machine with output & is an
internal configuration of the associated pdm. A configuration i1s a 4-tuple
(x,q,h,g9) € A* x Q x Z* x B*, where x is the input word to be read, g is
the word already output, and (g, k) is an internal configuration.

The transition relation is a relation over configurations defined the fol-
lowing way: there is a transition between ¢ = (yz,q,wz,¢9) and ¢ =
(z,q,wh, gu), where y is in (AU {e}), g is in A*, ¢ and ¢’ are in Q, z is
in Z, w and h are in Z*, and ¢ and w are in B*, and we note ¢ — ¢/, if
(y,q,2,h,¢',u) € y. A valid computation is an element of the reflexive and
transitive closure of the transition relation, and we note ¢ -— ¢ a valid com-
putation starting from ¢ and leading to ¢’.

Besides T', we can derive from 7 an other function from A* x ¢ x Z* into
the subsets of B*, named the output function of S, denoted p, and defined
as follows:

plz, g, h)={g9eB* |3{ €Q.N ez : (x,q,he)F(e,¢, I, 9)}.

It follows that, for z € A*, y € AU{e}, ¢ €@, 2 € Z and w e Z*:

plyz, ¢, wz) = UJ up(z,q', wh).
(y,4,2,h,¢' w)ET

A pushdown transducer is to a pushdown machine with output what a pda
is to a pdm, i.e. it is a pushdown machine with output with specified initial
and accepting configurations.

A pushdown transducer over A (pdt for short in the rest of the text) is a
6-tuple 7 = (@, Z, B, i, K,v) where (@, Z, B,v) is a pushdown machine with
output, ¢ is the internal starting configuration, and K = F x {¢} where F is
a subset of (), the accepting states.

If T'is the projection of v onto (AU {e}) x Q@ x Z X Z* x @, then A =
(@, 7,1, K,T) is a pushdown automaton, called the pda associated to 7. By
convention, the output of 7 in the initial configuration is the empty word.

The existence of a set K of accepting configurations leads to define a
function similar to the function g, but taking accepting configurations in
account:

M(z,q,hy={9€ B* | 3({,V)e K : (x,q,h,¢) (M (e, ¢ 0, g9)}.

46 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

Finally, the transduction realized by T is the function @ from A* into the
subsets of B* defined by

Ve e A, O(x) = M(x,q1,721) .

Proposition 5.9. The image through @ of a rational language is context-
free.

We don’t prove this proposition.
Consider now the following example: 7 = (@, Z, B, i, K,y) with A= B =
{Cl, ba C}, 7= {ZlaX}a Q = {Q1a q2, 43, Q4}’ K= {(Ea (J4)} and Y Composed Of

(aaQIazlalea Q1aa)a (aaqlaXaXXa qlaa)a (baqlaXaXa q2ab)a
(baQZaXaXaQZab)a (caQZaXaanE}ac)a (caq3aXa€aq3ac)a
(C, q3,%1,¢, 44, C) .

It is easy to see that, due to the fact that the language recognized by the
associated pda is {a’b/ ¢! |, 5 > 0},

o) = {aibia+1 if # = a't/ ¢+t with 5,5 > 0
0 otherwise.
So, if L = {a'bic! | i,j > 0}, then O(L) = {a’bici*t? | i > 0}. Hence

Fact 5.3. The image through © of a contexi-free language ts not always
contert-free.

Nevertheless,

Theorem 5.4 (Evey). [14] Given a pushdown transducer T, if L is the
context-free language recognized by the associated pda, the image O(L) is a
contert-free language.

Proof. Let T = (Q, 7, B,1, K,7) be a pdt over A. Define a new alphabet
H={(y,u) | 3¢,2,h,q" : (y,0,2,h,¢",u) €7}

We can define a set of transitions 7'in H X @) X Z x Z* x) by:
(yu), g2,k ¢) ET <= (y, 4,2, h,q',u) € 7.

Setting A = (@, 7,4, K,T), we get a (realtime) pda over H recognizing a
context-free language N over H. Finally, we consider the two morphisms 7
and & from H* into A* and B* respectively, defined by:

Y{y,u) € H, 7({y,u)) = y and £({y, u)) = u.

Tt is then clear that m(N) is the language L recognized by the associated pda,
and £(N) is equal to O(L).]

Context-Free Languages and Pushdown Automata 47

6. Subfamilies

We present here some subfamilies among the very numerous ones that have
been studied in the literature. We will begin with the probably most classical
one, namely

1. the family Lin of linear languages.

We then turn to some families derived from it

2. the family @rt of quasi-rational languages
3. the family S¢rt of strong quasi-rational languages
4. the family Fturn of finite-turn languages.

We then present other subfamilies, namely

5. the families Ocl of one-counter languages and I¢l of iterated counter lan-
guages

6. the family of parenthetic languages

the family of simple languages

8. the families of LL and LR languages.

=

6.1 Linear languages

The simplest way to define the family of linear languages is by grammars: a
context-free grammar is linear if each right member of the rules contain at
most one variable. A context-free language is linear if there exists a linear
grammar generating it [10, 4].

We denote by Lin the family of linear languages. Naturally, the first
question that arises is whether Lin is a proper subfamily of the family of
context-free languages. This 1s easily seen to be true. Many proofs are possi-
ble. Here is an example of a context-free language which is not linear: let A
be the linear language {a™b™ | n > 0}; the language AA is context-free but
not linear. The direct proof naturally leads to a specific iteration theorem:

Theorem 6.1. Given a linear language L, there exists an integer Ny such
that any word w in L of length at least No admits a factorization w = ruyvz
satisfying

(1) zu"y"ze€L VYneN

(2) uv#1

(3) Jruvz| < Ny

The proof of this iteration theorem 1s very similar to the proof of the
classical iteration theorem of Bar-Hillel, Perles and Shamir; it uses derivation
trees in a grammar generating L. In the usual version, the third condition
states that the length of uyv is at most Ny; here, due to the fact the grammar
is linear, we may select in the derivation tree the topmost repetition instead
of the lowest one. (Note that in a non linear grammar, the notion of topmost

48 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

repetition does not make sense.) We leave to the reader the proof of the above
theorem as well as its use to prove that {a"b” | n > 0}{a™b™ | m > 0} is not
linear.

The linear languages can be defined in many various ways. We briefly
describe here the most important ones.

6.1.1 Pushdown automata characterization. We begin by some defini-
tions. Given a computation of a pda A, a turn in the computation is a move
that decreases the height of the pushdown store and is preceded by a move
that did not decreased it.

A pda A is said to be one-turn if in any computation, there is at most
one turn.

Fact 6.1. A language s linear if and only of it 1s recognized by a one-turn
pda.

The proof of this fact is easy: the construction of a pda from a grammar
presented in the previous section on pda’s gives raise to one-turn pda from
a linear grammar; similarly, the construction of a grammar from a pda gives
raise to a nearly linear grammar from one-turn pda: in the right member of
any rule, there is at most one variable generating an infinite language. Such
a grammar can easily be transformed in a linear one.

This characterization may help to prove that some languages are linear;
it may be easier to describe a one-turn pda than a linear grammar for a given
language. This is the case, for example, for the language over A = {a, b}

L={a""ba"b---a" | k>2, F,j, 1<i<j<k;n #n;}

The one-turn pda recognizing L can roughly be described as follows: the
machine reads an arbitrary number of blocks a”b, then it counts up the
number of letters a in a block; it then reads again an arbitrary number of
blocks a™b, then it counts down the number of letters a checking it is not
equal to the previous number of a’s. Clearly, this nondeterministic machine
is one-turn and recognized L, hence L is linear.

This characterization also naturally leads to consider the following ques-
tion: say that a language is in the family DetLin if it is recognized by a
deterministic one-turn pda (a one-turn dpda). Clearly, DetLin C Det N Lin.
The question raises whether this inclusion 1is strict or not. The answer is yes.
Here is a example : let A = {a, b} and consider the language

L={d"b"a’b? |n=morp=q n,mp,q>1}.

It is easy to check that L is linear and deterministic:
On one hand, the language L is generated by the linear grammar GG given
by
S =T+ X T —al +al" T — b7 +bT"
™ —al"b+ab X = Xb+X'b X' — X'a+ X"a
X" — aX"b+ ab

Context-Free Languages and Pushdown Automata 49

On the other hand, the language L is recognized by the following dpda: count
up the letters in the first block of a’s; when entering the first block of &’s,
check if the number of b’s is equal to the number of a’s; if these two numbers
are equal, read the second block of a’s and of #’s and accept; if they are not
equal, restart the counting of letters @ and b in the second block. This shows
that L € DetNLin. However, L ¢ DetLin ; there is no deterministic one-turn
pda recognizing L. Intuitively, in any deterministic pda recognizing L, the
machine has to count in the stack the number of a’s in the first block and
then to check if the number of &’s following these 1s the same. Hence, after
reading the first block in a*b*, we already got at least one turn. If, at this
moment, the number of a’s and the number of #’s happen to be different, the
computation will have to count up the number of a’s and to count down the
number of b’s in the second block, giving raise to a new turn. Hence, any
deterministic pda recognizing L will be at least two-turn. It follows that

Proposition 6.1. The family of deterministic and linear languages strictly
contains the family of languages recognized by deterministic one-turn pda (or
equivalently, the family of languages simultaneously deterministic and linear).

The same linear language can be used to prove other results such as:

— L cannot be generated by a linear grammar in Greibach normal form.
— L is unambiguous but cannot be generated by an unambiguous linear gram-
mar (showing that the inclusion UnAmbLin C UnAmb N Lin is strict).

6.1.2 Algebraic characterization. Given an alphabet A, the rational sub-
sets of A*x A* are defined as usual: they are the elements of the least family of
subsets of A* x A* containing the finite ones and closed under union, product
and star (i.e. generated submonoid). This family is denoted Rat(A* x A*).
To any subset R of A* x A*, we associate the language Lg over A defined
by Lr = {uv | (u,v) € R}, where ¥ denotes the reversal of v. We may then
characterize the family of linear languages by the following

Proposition 6.2. A language L over A is linear if and only if there exists
a rational subset R of A* x A* such that L = Lg.

Proof. Given a linear grammar GG = (V| P) generating L, we consider the
finite alphabet

B={{u,v) |IX,Y eV : X —uYve P}U{{u,e) |IX €V : X —ue P}

We then construct a new grammar over B as follows: to each terminal rule
X — u of the original grammar is associated the rule X — {(u, <) in the
new grammar; to each nonterminal (linear) rule X — uYv of the original
grammar is associated the rule X — (u,7)Y. This grammar is right lin-
ear and generates a rational language K over B. Using the homomorphism
transforming each letter (u, @) of B in the corresponding element (u,?) of
A* x A*, we get an homomorphic image R of K. So, R is rational. Then, it
is immediate to prove that L = Lg.

50 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

Conversely, using the same homomorphism, given a rational subset R of
A* x A* we can construct a right linear grammar generating R; the rules will
be of the form X — (u,v)Y or X — (u,v) for some u,v € A*. To such
rules we associate X — uY v and X — uv respectively. The new grammar
obtained is linear and generates Lg. m

As the rational subsets of A* x A* are exactly the rational transductions
from A* into A*, this characterization strongly connects linear languages to
the theory of rational transductions and of rational cones [4].

6.1.3 Operator characterization. The above characterization can be re-
formulated in a slightly different way. Given a rational subset R of A* x A*
and a language L over A, we define the binary operation bracket of R by L,
denoted [R, L], by

[R,L] = {um¥ | (u,v) € R, m € L}.

A family of languages F is said to be closed under bracket if, given a language
L in the family F and any rational set R in A* x A* [R, L] is in F. We may
then state

Proposition 6.3. The family Lin of linear languages is the smallest family
of languages containing the finite sets and closed under bracket.

Proof. Denote by Fin the family of finite languages and let M = {[R, F] |
R € Rat(A* x A*), F € Fin}. Since [K,[R, F]] = [K R, F], M is closed under
bracket and is the smallest family of languages containing the finite sets and
closed under bracket. Next, let L be a linear language. By Proposition 6.2,
there exists a rational set R of A* x A* such that L = Lg; this can now be
reformulated L = [R, {1}] showing that L is in M. Hence, we have Lin C M.
As we know that the family Lin contains the finite languages and is closed
under bracket, we have the reverse inclusion. [

We shall see later that this characterization leads naturally to define some
new subfamilies of the family of context-free languages.

6.2 Quasi-rational languages

One of the oldest families of languages derived from the family Lin is the
family @Qrt of quasi-rational languages. Again, this family can be defined in
various ways, that we present now.

Definition 6.1. The family Qrt of quasi-rational languages is the substitu-
tion closure of the family Lin of linear languages.

This definition can be made more precise: we define, for £ in N | the family
Qrt(k) by Qrt(0) = Rat, and Qrt(k + 1) = Lin O Qrt(k), where Rat is the
family of rational languages and, for two families of languages £ and M, the
family £ O M is the family obtained by substituting languages in M into
languages in L. Clearly,

Context-Free Languages and Pushdown Automata 51

Qrt = Qri(k).
keN
It follows that @rt(1) is exactly the family Lin. It should be noted that,
due to closure properties of the family Lin, one has Lin O Rat = Lin. On
the contrary, the inclusion Rat O Lin D Lin is strict.

Fzample 6.1. Over the alphabet A = {a,b}, we consider the linear lan-
guage L = {a"b" | n > 0}. We then substitute to the letter a the linear
language L, = {2y | n > 0} and to the letter b the finite language
Ly = {z}. This gives raise to a quasi-rational language in Qr¢(2), namely
M = {xhy gy R k> 0n >0, i=1,..., k).

One of the first question solved was: does there exist a context-free lan-
guage which is not in the family @Qrt? The answer i1s yes, and the first
proofs were direct; they proved this and two related results. The first one
states that Qrt(k) is strictly included in Qrt(k + 1). The second one states
that, similarly to the case of Lin = Qrt(1), we have, for each integer k,
Qrt(k) O Rat = Qrt(k) and Rat O Qrt(k) C Qrt(k + 1). We will denote
QRT(k) the family Rat O Qrt(k). These results can be summarized in the
following chain of inclusions

Rat = Qrt(0) ¢ Lin = Qrt(1) QRT(1) €Qrt(2) ¢
CQrt(k) CQRT (k) €Qri(k+1) ¢

Before explaining how these results have been proved, we turn to some char-
acterizations of languages in Jrt used in these proofs and which are of inde-
pendent interest.

Given a context-free grammar G = (V, P) over A and, for each a € A,
a context-free grammar Gy = (Wy, Q4) over B in which the axiom is a, we
construct a new grammar H over B called the direct sum of the grammars
G and G, for a € A as follows. The set of variables of H is the disjoint union
of V' and of the sets W, for a € A; the set of rules of H is the union of the
sets of rules of G and of all the rules of the grammars G.

Using the results of the section considering grammars as equations, it is
easy to see that, for each variable X € V| the language generated by X
in the grammar H is obtained from Lg(X) by substituting to each letter a
the language L, generated by the grammar G,. We then may repeat such
an operation giving raise to an iterated sum of grammars. It then follows
immediately that

Proposition 6.4. [40] A language L is quasi-rational iff there exists a gram-
mar generating L that ts an tterated sum of linear grammars.

Frample 6.2. (continued) Consider the language L generated by the linear
grammar S — aSb + ab and the languages L, generated by the linear

52 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

grammar ¢ — zay + ¢y and L generated by the linear grammar b — z.
The direct sum of these grammars is:

S—aSb+ab a— zay+zy b—z
and generates the language M of the previous example.

This characterization leads to the following new approach of quasi-rational
languages. A variable S in a context-free grammar G is expansive if there
exists a derivation S —— uSvSw for some words u, v, w. A grammar which
contains no expansive variable is said to be nonezpansive. A language is
nonezpansive if there exists a nonexpansive grammar generating it. Then,

Proposition 6.5. A language is quasi-rational iff it is nonexpansive.

This proposition explains that some authors use the term nonexpansive
instead of quasi-rational. Proving that any quasi-rational language of order &
is generated by a nonexpansive grammar is straightforward by induction on k:
for k = 1, we have a linear language, thus generated by a linear grammar; such
a grammar is obviously nonexpansive. Given now a language L in Qrt(k+1),
by definition, it is obtained by substituting to each letter a a linear language
L, in a language M € Qrt(k). By induction hypothesis, M is generated
by a non-expansive grammar (; each language L, is generated by a linear
grammar. The direct sum of G and of the GG, is clearly nonexpansive.

The converse goes roughly this way: first, given a grammar G, define a
preorder relation < on the variables by setting X < Y if there exists two
words u,v and a derivation such that X ——uYv. As usual, this preorder
induces an equivalence relation X = YV iff X <Y and Y < X. Verify then
that, if (G is nonexpansive, in the right member of a rule X — «, there
i1s at most one occurrence of a variable Y equivalent to X. Conclude then,
using the order relation attached to the preorder <, that the grammar can be
described as an iterated direct sum of linear grammars, so that the generated
language is quasi-rational.

Proposition 6.5 is the result that has been used to prove directly that
there exists a context-free language which is not quasi-rational (see [40, 55] for
example). One of the first languages considered was the Lukasiewicz language
generated by the grammar G

S — aSS +b.

The proofs showed that any grammar generating this language had to be
expansive; the proofs were refined to exhibit, for each integer k, a language
in Qrt(k+1) not in Qrt(k). They used the following grammars clearly related
to G :

Context-Free Languages and Pushdown Automata 53

Sy — aSESk—1
Sy — aS;S;i—1

Sl — a5150
So — aSpb +b.

These results are now proved as a consequence of a very powerful lemma
(the syntactic lemma) which will not be presented here (see [4]).

It should be noted that, contrarily to the situation for linear languages,
any quasi-rational language can be generated by a nonexpansive grammar
in Greibach normal form. This follows from the construction of Rosenkrantz
which preserves the nonexpansivity. On the other hand, it is an open problem
to know if any unambiguous quasi-rational language can always be generated
by an unambiguous nonexpansive grammar (i.e. do we have NonAmbQrt =
NonAmb N Qrt?). A possibly related open problem is the following: given
two quasi-rational languages, is it true that their intersection either is quasi-
rational or is not context-free?

Proposition 6.5 leads to consider a new notion: the wndex of a derivation
i1s the maximum number of occurrences of variables in the sentential forms
composing it. A terminal word u has index k if, among all the derivations
generating u, the one of minimum index is of index k. The grammar G is of
finite indez if the index of any generated word is bounded by a fixed integer
k. Otherwise, it is of infinite index. It can be proved

Proposition 6.6. A language is quasi-rational iff it is generated by a gram-
mar of finite inder.

This result can be made even more precise: the family Qrt(k) is exactly
the family of languages generated by grammars of index k. We refer the
reader to [22, 27, 47, 4] for a proof of this proposition.

6.3 Strong quasi-rational languages

We present now a less usual family of languages. It is derived from the bracket
operation defined above. Recall that Lin is the smallest family closed under
bracket containing the finite sets. Recall also that Rat O Lin denotes the
rational closure of Lin, and denote SQRT(1) this family of languages. (This
family was denoted QRT(1) just above.) We then define Sqr¢(2) as the small-
est family of languages containing SQRT' (1) and closed under bracket. More
generally, for each integer k, we define the families SQRT(k) as the ratio-
nal closure of S¢rt(k), and Sqrt(k + 1) as the smallest family of languages
containing SQRT (k) closed under bracket. Hence, we may write

SQRT (k) = Rat O Sqrt(k) , Sqrt(k+1)=[SQRT(k)],

54 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

where [£] denotes the bracket closure of the family £. Finally, we denote by
Sqrt, the infinite union of the families S¢rt(k). This is the family strong quasi-
rational languages [7]. Clearly, for each k, Sqrt(k) ¢ Qrt(k). The following

more precise fact holds
Fact 6.2. There exists a language in Qrt(2) which is not in Sqrt.
Such a language is the language M of the example above:

M = {a™y™ gy R > 0,0 >0, i=1,... k}.

Tt is in @rt(2). We want to show that it does not lie in Sqrt.

First, we show that if F is any family of languages such that the language
M belongs to Rat O F, then M is a finite union of products of languages
in F. This follows immediately from the fact that M does not contain any
infinite regular set. Hence, if M € SQRT (k), M is a finite union of product of
languages in Sqrt(k —1). Trying to split M into a finite product of languages
immediately leads to note that there is exactly one factor in the product very
similar to the language M itself. Thus, if M € SQRT(k), then M belongs to
the family Sqrt(k).

Next, we check that if M = [R, L], then R is a finite subset of {z,y, z}* x
{,y, z}*. This implies that, if M belongs to the family Sqrt(k), it is a finite
union of products of languages lying in SQRT(k — 1). Again, there is one
factor in this union of products very similar to M leading to the conclusion
that M should lie in SQRT(k — 1).

Hence, we may conclude that, if M belongs to Sg¢rit, it belongs to
Sqrt(1l) = Lin. As M is not linear, the fact is proved.

Similarly to the situation for quasi-rational languages, we have

Proposition 6.7. For each k, the family Sqrt(k) is a strict subfamily of
Sqrt(k +1).

6.4 Finite-turn languages

The characterization of linear languages by one-turn pda naturally leads to
define finite-turn pda’s and languages. A pda is k-turn if any computation
admits at most & turns. Naturally, a language will be said to belong to the
family F'turn(k) if it is recognized by a k-turn pda. Then a finite-turn pda
is a pda which is k-turn for some integer k. A language 1s finite-turn if it is
recognized by a finite-turn pda [21]. Tt is easy to prove that O-turn languages
are rational.

The family of finite-turn languages can be described using the bracket
operation too. This definition is similar to the one of strong quasi-rational
languages where the rational closure is replaced by the closure under union
and product. More precisely, let Fturn; be the family Lin and set, for each
integer k,

Context-Free Languages and Pushdown Automata 55

FTURNy = Fin O Fturng , Flurngy, = [FTURNg] ,

so that FFTURN, 1s the closure of Fturn; under union and product and that
Fturngy1 is the closure of FTURN} under bracket. Finally, we denote by
Fturn the infinite union over k in N the families Fturny [21]:

Fturn = U Fturng, = U FTURN,.
k k

It should be noted that the two families Fturng and Fturn(k) are not
equal. For instance, let A = {a"b” | n > 1} and consider the language
L = A*. Tt is easily seen that Lisin FTURN;. (So it belongs to Fturns also.)
Besides, L does not belong to Fturn(k—1). So, FTURN is not contained in
Fturn(k). However, the infinite union of the families Fiturny and the infinite
union of the families Fturn(k) coincide:

Fact 6.3. The family Fturn is exactly the family of finite-turn languages.

Proof. Tt consists in showing that

(1) if L is a finite-turn language, so is [R, L]

(2) the family of finite-turn languages is closed under union and prod-

uct.

This implies that Fturn is contained in the family of finite-turn languages.
Conversely, given a k-turn language, we decompose the computations of the
k-turn pda recognizing it to get a description of the language through union,
product and the bracket operation of (k — 1)-turn languages, showing then
the reverse inclusion. L]

Remark 6.1. The second part of the above proof shows in fact that, for each
k, we have the inclusion F'turn(k) ¢ Fturng.

The given characterization of finite-turn languages obviously shows that
they are all strong quasi-rational languages. Here again, we get a proper
subfamily :

Fact 6.4. There exists a language in Sqrt(1) which is not finite-turn.

Such a language is, for instance, A* = {a”b"” | n > 1}*. As for the above
families, we have chains of strict inclusions:

Proposition 6.8. For cach k, the family Fturng is a strict subfamily of
Fturngyy, and the family Fturn(k) is a strict subfamily of Fturn(k + 1).

6.5 Counter languages

We first present in this section the family of one-counter languages. It is

defined through pda’s.

56 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

Definition 6.2. A pda ts one-counter if the stack alphabet contains only one
letter. A context-free language is a one-counter language if it is recognized by
a one-counter pda by empty storage and accepting states.

We denote by Ocl this family of languages. The terminology used here
comes from the fact that, as soon as the stack alphabet is reduced to a single
letter, the stack can be viewed a counter.

Fzample 6.3. Over the alphabet A = {a,b}, we consider the Lukasiewicz
language generated by the grammar S — aSS + b. It is a one-counter
language: each letter a increases the height of the stack by 1, each letter b
decreases it by 1. The word 1s accepted iff it empties the stack.

As in the case of linear languages, the first question is whether Ocl is a
proper subfamily of the family of context-free languages. The proof that this
holds is more technical than in the case of linear languages. The idea is to
prove an iteration lemma for one-counter languages and to use it to get the
desired strict inclusion [6]. We will give later on such counter-examples, but
we will not state this lemma which is too technical and beyond the scope of
this presentation.

As in the case of linear languages, the definition of one-counter languages
through pda’s naturally leads to define the family DetOcl as the family of
languages recognized by a deterministic one-counter pda. Clearly, DetOcl C
Det N Ocl. As in the linear case, the inclusion is strict :

Proposition 6.9. The family of deterministic and one-counter languages
strictly contains the family of languages recognized by a deterministic one-
counter pda (or, equivalently, the family of languages simultaneously deter-
ministic and one-counter).

Proof. Over the alphabet A = {a,b, #}, consider the language L = {w#uw’ |
w,w € {a,b}* w' # @}. We will show that L is in Det N Ocl and is not in
DetOcl.

It is deterministic: clearly the language {w#w | w € {a, b}*} is determinis-
tic. So, its complement C' is deterministic, too. The language L is exactly the
intersection of the language C' and of the rational language {a, b}*#{a, b}*.
It follows that L is deterministic.

It is one-counter: the language L can be described as the (non disjoint)
union of the two languages

Ly = {w#w' | lwl £ 1w’}
Ly = {ucv#u'dv’ | e,d € {a,b},c# d,lul = IV'|}.

Clearly, L, and L, are one-counter languages. Thus, L = L1 U Ls is a one-
counter language.

To see that L is not in DetOcl, the idea is to observe that, after reading
an input w, the length of the stack is polynomially bounded in the length
of the input. Since there 1s only one stack symbol, there exist two distinct

Context-Free Languages and Pushdown Automata 57

words w and z of the same length that lead to the same (unique due to
determinism) configuration. Hence, since w#7 is accepted, so is ##, which
1s impossible. [

Remark 6.2. The last argument of the above proof can be also used to show
that the linear language {w#w | w € {a,b}*} is not one-counter; it needs
to prove that a one-counter pda may always be supposed to be realtime (see
[18]). This shows, in particular, that the family Oel is a strict subfamily of
the family of context-free languages.

As in the case of linear languages, it can be seen that Oc/ O Rat = Ocl
whence the inclusion Rat O Ocl C Oecl is strict. This new larger family,
denoted here OCL, is exactly the family of languages recognized by a one-
counter pda which admits bottom testing. Again as in the case of linear lan-
guages, we may define the family Icl of iterated counter languages as the
substitution closure of the family Ocl.

Similarly to what happened for the quasi-rational languages, this defini-
tion can be made more precise: we may define, for each t in I, the family
Ocl(k) by Ocl(0) = Rat, and Ocl(k+1) = Ocl(k) O Ocl. Then, the family Iel
is the infinite union over k in N of the families Ocl(k). Using such definitions,
Ocl(1) = Ocl.

The study of the families Ocl(k) leads naturally to prove that Ocl(k) O
Rat = Ocl(k), whence Rat O Ocl(k) ¢ Ocl(k). This last family will naturally
be denoted OCL(k) and we get the following chain of strict inclusions

Rat = Ocl(0) €Ocl(1) OCL(1) €Ocl(2) ¢
GOcl(k) ¢ OCL.(.]C.) GOcl(k+1) ¢

(To be compared to the similar chain of inclusions concerning the families
Qrt(k) and QRT(k).)

The languages in Icl can be characterized as languages recognized by
pda’s such that the stack language lies in the bounded set 2 - - - z}.

Up to now, we may remark that the situation here is very similar to
the situation we had when dealing with linear and quasi-rational languages.
However, it is worth noticing that, contrarily to the case of linear languages,
one-counter languages do not enjoy other characterizations through gram-
mars or operators as linear languages did. This explains that we will not get
here subfamilies similar to the strong quasi-rational languages, etc...

If we compare the families Lin and Ocl with respect to inclusion, we see
that these two families are incomparable. Even more,

Proposition 6.10. There is a language in Ocl which is not in Qri. There is
a language in Lin which s not in Icl

58 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

The Lukasiewicz language given above as an example of one-counter lan-
guage is precisely the language proved not to be quasi-rational (see previous
subsection). The second inclusion can be proved using the linear language
L = {w#w | w € {a,b}*} (see the previous remark).

Such a result leads to consider the two following problems: is it possible
to characterize the languages in Lin N Ocl on one hand, and, to describe any
context-free language by substituting linear and one-counter languages on
the other hand.

The first question is still open (see [8] for results on this theme). The sec-
ond question has a negative answer: defining the family of Greibach languages
as the substitution closure of linear and one-counter languages, we get a large
strict subfamily of the family of context-free languages: it does not contain
the language D*, the Dyck language over {a,b,@,b} (see [4]).

6.6 Parenthetic languages

We now turn to another subfamily of the family of context-free languages.
Consider an alphabet A containing two particular letters a and @. A context-
free grammar over the terminal alphabet A is parenthetic if each rule of the
grammar has the following form X — aa@ with « containing neither the
letter @ nor the letter @. As usual, a language is said to be parenthetic if it is
generated by some parenthetic grammar.

This family of languages has been introduced by McNaughton [39]. In
the particular case where the alphabet A does not contain any other letters
than the two special ones a and @, we speak of pure parenthetic grammar or
language.

Fzample 6.4. Over the alphabet A = {a,a} U {2}, the grammar G given by
S — aSSa+ azxa
is parenthetic.

Clearly, any pure parenthetic language over A = {a,a} is included in the
Dyck language D). . The following characterization due to Knuth [35] shows,
in particular, that I is not (purely) parenthetic. A word u over the alphabet
A ={a,a} U B is balanced if it satisfies |u|, = |u|z and, for any prefix v of u,
|v]s > |v|z. It should be noted that a word w is in D iff it is balanced.

Given a word u over the alphabet A = {a,a} U B and an occurrence of
the letter a in u, we factorize u in u = vaw. An occurrence of a letter b € A
in w is an associate of a iff v = vaxby with b balanced.

Ezample 6.5. Let u = ababaabaa. The first a and the first b are associates.
The first @ and the first @ are associates too.

Context-Free Languages and Pushdown Automata 59

A language L over the alphabet A = {a,a} U B, is balanced iff any word
u € L 1s balanced. It is said to have bounded associates if there exists an
integer k such that any occurrence of a letter ¢ in v € L admits at most &
associates. We may then characterize parenthetic languages as follows:

Proposition 6.11. A contezi-free language L is parenthetic if and only if it
s balanced and has bounded associates.

The proof of the “only if” part is immediate. The “if” part consists in a
careful study of the structure of any grammar generating a language which
is balanced and have bounded associates. This study shows that the rules of
the grammar may be ‘recentered’ to fulfill the parenthetic conditions.

Fzample 6.6. Consider the grammar G over A = {a,a}U{b,¢,d, e} given by
the set of rules

S— XY X —aabaXa+ad Y — aYacaa -+ ea.

Clearly, this grammar is not parenthetic. However, the generated language is
balanced and has bounded associates. Hence, it 1s a parenthetic language.

This characterization can be used to see that the Dyck set D is not paren-
thetic: 1t 1s balanced but it has unbounded associates. This characterization
allows also to prove the following

Proposition 6.12. If a language L is nonexpansive and parenthetic, there
exrists a parenthetic nonexpansive grammar generating it.

This fact contrasts with the Proposition 6.1.

Besides this characterization, parenthetic languages enjoy some other nice
properties. In particular, any such language is deterministic. Moreover, the
equivalence problem for parenthetic grammars is decidable [35], solving in
this particular case the equivalence problem of deterministic languages.

This family of languages can be related to the whole family of context-
free languages in the following way. Given a context-free grammar G = (V, P)
over B, we associate to it a parenthetic grammar Par((G) as follows : enlarge
the terminal alphabet B into the terminal alphabet A = B U {a,@} where
a and @ are two new letters; to each rule X — « of (¢, associate the rule
of Par(G) given by X — aoa. It is easy to check that to each leftmost
derivation in Par((G) generating a word w, corresponds a leftmost derivation
in G generating the word u obtained from w by erasing the new letters a
and @. This correspondence is a bijection between derivations. Hence, the
degree of ambiguity of a word w in the grammar (G 1s the number of words w
generated in Par(() that map to v when the letters a and @ are erased.

Frample 6.7. Consider the grammar H given by S — SS + z. The corre-
sponding parenthetic grammar Par(H) is S — aSSa + aza. The word zxx
is the 1mage of the two words aaztearaaraaa and caaraazraaazraa corre-
sponding to the two (leftmost) derivations in H

60 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

S— S5 — 25 — 255 — zxS — zxx

and

S— S5 — 855 — 255 — xS — xrxzx.

A very similar family of languages has been introduced by Ginsburg [19].
Let k£ > 1. Given an alphabet A = {ay,...,ag}, we associate to it the copy
A=1{a,...,a} and the alphabet 7 = AUA. A grammar over Z U B with k
rules is completely parenthetic if the i** rule has the form X — a;a@; with
« containing no letters in Z. As usual, a language is completely parenthetic
if there exists a completely parenthetic grammar generating it.

Clearly, if we consider the morphism from Z onto {a, @} erasing the in-
dices, we get from any completely parenthetic language a parenthetic lan-
guage. Such languages often appear in the study of languages attached to
trees.

Frample 6.8. Given the completely parenthetic grammar G’ given by S —
a155ay + asxasz. The corresponding parenthetic grammar is the grammar G
of the above example.

6.7 Simple languages

A context-free grammar G = (V, P) over A is simple if it is in Greibach
normal form and if, for each pair (X,a) € V x A, there is at most one rule
of the form X — am. As usual, a language is simple if it can be generated
by a simple grammar [28, 36]. It is easy to check that any simple language
is deterministic. (It is even LL(1).) Tt is easy too to check that there does
exist deterministic (even LL(1)) languages which are not simple. The simple
languages are exactly the languages recognized by simple deterministic pda’s
as defined in the previous section. Moreover, this family of languages enjoys
nice properties :

1. Any simple language is prefix (i.e. if the two words « and wv are in L
then v is the empty word).

2. The equivalence problem for simple grammars is decidable [36], solving
again in a particular case the equivalence problem of deterministic lan-
guages.

3. The family of simple languages generates a free monoid.

Similarly to parenthetic and completely parenthetic languages, simple lan-
guages give raise to a family, namely the family of very simple languages. A
grammar is very simple if 1t is simple and such that for any terminal letter
a there is at most one rule of the form S — am. (Here, a appears as first
letter of one rule at most; in the case of simple grammars, it could appear as
first letter of various rules, provided they have not the same left member.)

Context-Free Languages and Pushdown Automata 61

Clearly, any very simple language is simple. The converse is not true: for
instance L = {a™¢b™a™c | n > 1 m > 0} is simple but not very simple. Tt is
simple because it 1s generated by

S—aS'XT 8 —aS'X+¢e T—alT+¢ X —0b.

To prove that L is not very simple, we show that any grammar in Greibach
normal form generating L admits at least two rules whose right member
begins with the letter a. Using for instance Ogden’s iteration lemma on the
word a”cb”a”c where the n first letters a are marked, we get that there is a
derivation

SEdl Xbahe X-ZsdbXbP X-Zoab bt

bl

from this we derive that there i1s a rule of the form X — a«. Marking now
the n last letters a, we get that there is a derivation

S*a"eb"a' Yal'e Y 2a"Ya" YLah”;
from this we derive that there is a rule of the form Y — ag.

Clearly the two variables X and Y have to be different: if X = Y, we
may derive from X = Y the word aka™" b* which is not a factor of L. Thus,
we have two different rules with a right member beginning by «a, hence, the
grammar cannot be very simple.

Any context-free language is an homomorphic image of a very simple
language. Indeed, a context-free grammar in Chomsky normal form can be
transformed in a very simple grammar by adding new terminal letters. The
homomorphism erasing these new letters will reconstruct the original one.
Let us mention along the same lines that, to any completely parenthetic
grammar is naturally associated a very simple grammar obtained by erasing
all the barred letters. Hence, any very simple language is an homomorphic
image of a completely parenthetic language.

6.8 LL and LR languages

We end this survey of various classical subfamilies of the family of context-
free languages by briefly presenting the two most usual subfamilies appearing
in syntactical analysis. Given a word w over the alphabet A, define First;(w)
as the prefix of length k of w; if |w| < k, First;(w) is equal to w. We may
now define LL-grammars

Definition 6.3. [1,38] A context-free grammar G = (V, P) over the terminal
alphabet A is a LL(k)-grammar if

* *
S—uXm — uaom— uv

l l

* *
S—£—> uXm' — ua'm' ——uv’

£

62 Jean-Michel Autebert, Jean Berstel, and Luc Boasson

(with u,v,v' € A* and X € V) and
Firsty(v) = Firsty(v')
mmply o = o',

A language is a LL(k)-language if it can be generated by a LL(k)-
grammar. It is a LL-language if it is a LL(k)-language for some k. The idea
is that given a terminal word uv and a leftmost derivation from S into um,
the first k& letters of v allow to determine what is the next rule to be used in
the derivation. We will not develop here this syntactical analysis technique.
However, it follows clearly from this remark that any LL-language is determi-
nistic. More precisely, the families of LL(k)-languages form a hierarchy. Their
infinite union is a strict subfamily of the family of deterministic languages.

For instance, the language L = {a"cb” | n > 1} U {a"db?" | n > 1} is
clearly deterministic. It is not a LL-language: an unbounded number of letters
a has to be read before it can be decided which rule to apply in an early stage
of the leftmost derivation, because it depends on whether the word contains
a letter ¢ or a letter d.

Using rightmost derivations instead of leftmost derivations leads to define
the LR-grammars:

Definition 6.4. [28, 34] A context-free grammar G = (V, P) over the termi-
nal alphabet A is a LR(k)-grammar if,

S%mXu — mau = pv
S%m’X'u' — m'a’u’ = pv’
(with u,u’ € A%, pe (VUAPV) and
Firsty(v) = Firsty(v')

mmply X = X' and o = o',

Again, a language is a LR(k)-language if it is generated by a LR(k)-
grammar. It is a LR-language if it is a LR(k)-language for some k.

The 1dea is the following: given a sentential form pv where v is the longest
terminal suffix, the first k letters of v allows to determine the rule that has
been applied just before getting the sentential form pv. Here again, this re-

mark that we will not develop here, implies that any LR(k)-language is deter-
ministic. However, the situation is now very different from the LI situation.

Proposition 6.13. The family of LR(1)-languages is exactly the family of
deterministic languages.

So, from the families of languages point of view, the LR(k)-condition does
not give raise to an infinite hierarchy. It should be noted that, in terms of
grammars, it 1s indeed an infinite hierarchy. It should be noted also that a
grammar which is not LR may generate a language which is indeed LR. It
may even be rational: the grammar S — aSa , S — a is not LR and it
generates the rational language a¥t.

Context-Free Languages and Pushdown Automata 63

References

1. A.V. Aho and J.D. Ullman. The Theory of Parsing, Translation and Compiling.,
volume 1. Prentice-Hall, 1973.

2. J.-M. Autebert. Théorie des langages et des automates. Masson, 1994.

3. J.-M. Autebert, L. Boasson, and [.H. Sudborough. Some observations on hardest

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

context-free languages. Technical Report 81-25, Rapport LITP, April 1981.
J. Berstel. Transductions and Contest-Free Languages. Teubner Verlag, 1979.

. M. Blattner and S. Ginsburg. Canonical forms of context-free grammars and

position restricted grammar forms. In Karpinski, editor, Fundamentals of Com-
puting Theory, volume 56 of Lect. Notes Comp. Sci., 1977.

. L. Boasson. Two iteration theorems for some families of languages. J. Comput.

System Sci., 7(6):583-596, December 1973,
L. Boasson, J.P. Crestin, and M. Nivat. Familles de langages translatables et
fermées par crochet. Acta Inform., 2:383-393, 1973.

. F.J. Brandenburg. On the intersection of stacks and queues. Theoret. Comput.

Sci., 23:69-82, 1983.

. N. Chomsky. On certain formal properties of grammars. Inform. and Control,

2:137-167, 1959.

N. Chomsky and M.P. Schitzenberger. The algebraic theory of context-free
languages. In P. Bradford and D. Hirschberg, editors, Computer programming
and formal systems, pages 118-161. North-Holland (Amsterdam), 1963.

S.V. Cole. Deterministic pushdown store machines and realtime computation.
J. Assoc. Comput. Mach., 18:306-328, 1971.

B. Courcelle. On jump deterministic pushdown automata. Math. Systems
Theory, 11:87-109, 1977.

A. Cremers and S. Ginsburg. Context-free grammar forms. J. Comput. System
Sei., 11:86-117, 1975.

R.J. Evey. The theory and application of pushdown store machines. In Math-
ematical Linguistics and Automatic Translation, NSF-10, pages 217-255. Har-
vard University, May 1963.

M. Fliess. Transductions de séries formelles. Discrete Math., 10:57-74, 1974.
R.W. Floyd. Syntactic analysis and operator precedence. J. Assoc. Comput.
Mach., 10:313-333, 1963.

S. Ginsburg. The Mathematical Theory of Context-Free Languages. McGraw-
Hill, 1966.

S. Ginsburg, J. Goldstine, and S. Greibach. Some uniformely erasable families
of languages. Theoret. Comput. Sci., 2:29-44, 1976.

S. Ginsburg and M.A. Harrison. Bracketed context-free languages. J. Comput.
System Sci., 1:1-23, 1967.

S. Ginsburg and H. G. Rice. Two families of languages related to ALGOL. J.
Assoc. Comput. Mach., 9:350-371, 1962.

S. Ginsburg and E. Spanier. Finite-turn pushdown automata. SIAM J. Control,
4:429-453, 1966.

S. Ginsburg and E. Spanier. Derivation-bounded languages. J. Comput. System
Sei., 2:228-250, 1968.

S. Greibach. The hardest context-free language. SIAM J. Comput., 2:304-310,
1973.

S. A. Greibach. A new normal form theorem for context-free phrase structure
grammars. J. Assoc. Comput. Mach., 12(1):42-52, 1965.

64

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Jean-Michel Autebert, Jean Berstel, and Luc Boasson

S.A. Greibach. Jump pda’s, deterministic context-free languages, principal
afdl’s and polynomial time recognition. In Proc. 5th Annual ACM Conf. Theory
of Computing, pages 2028, 1973.

S.A. Greibach. Jump pda’s and hierarchies of deterministic cf languages. SIAM
J. Comput., 3:111-127, 1974.

J. Gruska. A few remarks on the index of context-free grammars and languages.
Inform. and Control, 19:216-223, 1971.

M.A. Harrison. Introduction to Formal Language Theory. Addison-Wesley,
1978.

J. E. Hopcroft and J. D. Ullman. Formal Languages and Their Relation to
Automata. Addison-Wesley, 1969.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979.

G. Hotz. Normal form transformations of context-free grammars. Acta Cyber-
netica, 4(1):65-84, 1978.

G. Hotz and K. Estenfeld. Formale Sprachen. B.1.-Wissenschaftsverlag, 1981.
G. Hotz and T. Kretschmer. The power of the Greibach normal form. FElektron.
Informationsverarb. Kybernet., 25(10):507-512, 1989.

D.E. Knuth. On the translation of languages from left to right. Inform. and
Control, 8:607-639, 1965.

D.E. Knuth. A characterization of parenthesis languages. Inform. and Control,
11:269-289, 1967.

A.J. Korenjack and J.E. Hopcroft. Simple deterministic languages. In Con-
ference record of seventh annual symposium on switching and automata theory,
pages 36—46, Berkeley, 1966.

W. Kuich. Formal power series, chapter 9. This volume.

P.M. Lewis and R.E. Stearns. Syntax-directed transduction. J. Assoc. Comput.
Mach., 15(3):465-488, 1968.

R. McNaughton. Parenthesis grammars. J. Assoc. Comput. Mach., 14(3):490-
500, 1967.

M. Nivat. Transductions des langages de Chomsky, Ch. VI, miméographié.
PhD thesis, Université de Paris, 1967.

M. Nivat. Transductions des langages de Chomsky. Annales de ’Institut
Fourier, 18:339-456, 1968.

M. Oyamaguchi. The equivalence problem for realtime dpda’s. J. Assoc. Com-
put. Mach., 34:731-760, 1987.

R. J. Parikh. On context-free languages. J. Assoc. Comput. Mach., 13:570-581,
1966.

D. L. Pilling. Commutative regular equations and Parikh’s theorem. J. London
Math. Soc., 6:663-666, 1973.

D.J. Rosenkrantz. Matrix equations and normal forms for context-free gram-
mars. J. Assoc. Comput. Mach., 14:501-507, 1967.

Jacques Sakarovitch. Pushdown automata with terminal languages. In Lan-
guages and Automata Symposium, number 421 in Publication RIMS, Kyoto
University, pages 15-29, 1981.

A. Salomaa. Formal Languages. Academic Press, 1973.

M. P. Schiitzenberger. On context-free languages and pushdown automata.
Inform. and Control, 6:217-255, 1963.

G. Sénizergues. The equivalence and inclusion problems for NTS languages. J.
Comput. System Sci., 31:303-331, 1985.

G. Sénizergues. Church-Rosser controlled rewriting systems and equivalence
problems for deterministic context-free languages. Inform. Comput., 81:265—
279, 1989.

Context-Free Languages and Pushdown Automata 65

51. E. Shamir. A representation theorem for algebraic and context-free power series
in noncommuting variables. Inform. Comput., 11:39-254, 1967.

52. S. Sippu and E. Soisalon-Soininen. Parsing Theory, Vol I. EATCS Monographs
on Theoretical Computer Science. Springer-Verlag, 1988.

53. L. Valiant. The equivalence problem for deterministic finite turn pushdown
automata. Inform. and Control, 25:123-133, 1974.

54. H. Wechler. Characterization of rational and algebraic power series. RAIRO
Inform. Théor., 17:3-11, 1983.

55. M.K. Yntema. Inclusion relations among families of context-free languages.
Inform. and Control, 10:572-597, 1967.

Index

e-rule, 3
bracket operation, 49

Chomsky normal form, 15
Chomsky-Schitzenberger’s theorem, 25
context-free grammar, 2

— (un)ambiguous, 3

— proper, 3

derivation, 2

— leftmost, 2

— rightmost, 2
deterministic pda, 34
Dyck language, 3, 33

grammar
— (non)expansive, 51

- LL, 61

- LR, 61

— finite index, 52

— linear, 46

— parenthetic, 57

— simple, 59

Greibach normal form, 15
— double, 15

— quadratic, 15
Greibach’s theorem, 27

hardest context-free language, 26
jump pdm, 39

language

— finite-turn, 54

— linear, 46

— one-counter, 55

— parenthetic, 57

— quasi-rational, 50

— simple, 59

— strong quasi-rational, 53

linear language, 46
Lukasiewicz language, 4, 57

nondeterministic version of a language,
26
nonterminals, 2

operator normal form, 23

Parikh’s theorem, 13

pushdown machine, automaton, 29, 30
— (co)accessible configuration, 29
— configuration, 29

— deterministic, 34

— finite-turn, 54

— iterated counter, 56

— jump, 39

— one-counter, 55

— one-turn, 47

— realtime, 29, 33

— simple, 29, 33

pushdown store language, 41

quasi-rational language, 50
— strong, 53

sentential form, 2
Shamir’s theorem, 25
system of equations

— left, right linear, 11
— proper, 8

— strict, 8

transducer
— pushdown, 44

Wechler’s theorem, 28

