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2 Jean-Michel Autebert, Jean Berstel, and Luc Boasson1. IntroductionThis chapter is devoted to context-free languages. Context-free languagesand grammars were designed initially to formalize grammatical properties ofnatural languages [9]. They subsequently appeared to be well adapted to theformal description of the syntax of programming languages. This led to aconsiderable development of the theory.The presentation focuses on two basic tools: context-free grammars andpushdown automata. These are indeed the standard tools to generate and torecognize context-free languages. A contrario, this means also that we do notconsider complexity results at all, neither of recognition by various classes ofsequential or parallel Turing machines nor of \succinctness" (see e.g. [52]),that is a measure of the size of the description of a language.We have chosen to present material which is not available in textbooks[17, 29, 1, 47, 28, 4, 30, 32, 2] (more precisely not available in more than onetextbook) because it is on the borderline between classical stu� and advancedtopics. However, we feel that a succinct exposition of these results may givesome insight in the theory of context-free languages for advanced beginners,and also provide some examples or counter-examples for researchers.This section ends with notation and examples. In Section 2, we presentthe relationship between grammars and systems of equations. As an exampleof the interest of this formalism, we give a short proof of Parikh's theorem.In the next section, three normal forms of context-free grammars are es-tablished. The one with most applications is Greibach's normal form: severalvariants are given and, in Section 4, we present four such applications. The�rst three are closely related to each other.Section 5 is devoted to pushdown automata. We consider carefully theconsequences of various restrictions of the general model. The section endswith two results: one concerning the pushdown store language of a pda, theother the output language of a pushdown down transducer.In the last section, we consider eight important subfamilies of context-free languages. We study in detail linear and quasi-rational languages, andpresent more brie
y the other families.In the bibliography, we have generally tried to retrieve the referencesto the original papers, in order to give some 
avour of the chronologicaldevelopment of the theory.1.1 GrammarsAs general notation, we use " to denote the empty word, and jwj for thelength of the word w.A context-free grammar G = (V; P ) over an alphabet A is composed of a�nite alphabet V of variables or nonterminals disjoint from A, and a �niteset P � V � (V [ A)� of productions or derivation rules. Letters in A arecalled terminal letters.



Context-Free Languages and Pushdown Automata 3Given words u, v 2 (V [A)�, we write u �! v (sometimes subscriptedby G or by P ) whenever there exist factorizations u = xXy, v = x�y, with(X;�) a production. A derivation of length k � 0 from u to v is a sequence(u0; u1; : : : ; uk) of words in (V [A)� such that ui�1 �! ui for i = 1; : : : ; k,and u = u0, v = uk. If this holds, we write u k�! v. The existence of somederivation from u to v is denoted by u ��! v. If there is a proper derivation(i.e. of length � 1), we use the notation u +�! v. The language generated bya variable X in grammar G is the setLG(X) = fw 2 A� j X ��! wgFrequently, grammars are presented with a distinguished nonterminal calledthe axiom and usually denoted by S. The language generated by this variableS in a grammar is then called the language generated by the grammar, forshort, and is denoted L(G). Any word in (V [ A)� that derives from S is asentential form.A language L is called context-free if it is the language generated by somevariable in a context-free grammar. Two grammars G and G0 are equivalentif they generate the same language, i. e. if the distinguished variables S andS0 are such that LG(S) = L0G0(S0).More generally, if x 2 (V [A)�, we setLG(x) = fw 2 A� j x ��! wg :Context-freeness easily implies thatLG(xy) = LG(x)LG(y) :Consider a derivation u = u0 �! u1 �! � � � �! uk = v, with u; v 2(V [A)�. Then there exist productions pi = Xi ! �i and words xi; yi suchthat ui = xiXiyi; ui+1 = xi�iyi (i = 0; : : : ; k� 1)The derivation is leftmost if jxij � jxi+1j for i = 0; : : : ; k � 2, and rightmostif, symmetrically, jyij � jyi+1j for i = 0; : : : ; k � 2. A leftmost (rightmost)derivation is denoted by u ��!̀ v; u ��!r vIt is an interesting fact that any word in a context-free language LG(X) hasthe same number of leftmost and of rightmost derivations. A grammar G =(V; P ) is unambiguous for a variable X if every word in LG(X) has exactlyone leftmost (rightmost) derivation. A language is unambiguous if there isan unambiguous grammar to generate it, otherwise it is called inherentlyambiguous.A grammar G = (V; P ) over A is trim in the variable S if the followingtwo conditions are ful�lled :



4 Jean-Michel Autebert, Jean Berstel, and Luc Boasson(i) for every nonterminal X, the language LG(X) is nonempty;(ii) for every X 2 V , there exist u; v 2 A� such that S ��! uXv.The second condition means that every variable is \accessible", and the�rst that any variable is \co-accessible". It is not di�cult to see that a gram-mar can always be trimmed e�ectively. A variation of condition (i) which issometimes useful is to require that LG(X) is in�nite for every variable X(provided the language generated by the grammar is itself in�nite).A production is terminal if its right side contains no variable. A productionis called an "-rule if its right side is the empty word. At least one "-productionis necessary if the language generated by the grammar contains the emptyword. It is not too di�cult to construct, for every context-free grammarG, anequivalent grammar with no "-production excepted a production S �! " if" 2 L(G). The �nal special kind of grammars we want to mention is the classof proper grammars. A grammar G is proper if it has neither "-productionsnor any production of the form X �! Y , with Y a variable. Again, anequivalent proper grammar can e�ectively be constructed for any grammarG if L(G) 63 ". These constructions are presented in most textbooks. Normalforms are the topic of the next section.1.2 ExamplesThere are several convenient shorthands to describe context-free grammars.Usually, a production (X;�) is written X �! �, and productions with sameleft side are grouped together, the corresponding right sides being separatedby a `+'. Usually, the variables and terminal letters are clear from the context.Subsequently, we make use several times of the following notation. LetA be an alphabet. A copy of A is an alphabet that is disjoint from A andin bijection with A. A copy is frequently denoted �A or A0. This implicitlymeans that the bijection is denoted similarly, namely as the mapping a 7! �aor a 7! a0. The inverse bijection is denoted the same, that is ��a = a (resp.(a0)0 = a), and is extended to a bijection from (A [ �A)� into itself (the samefor `bar' replaced by `prime') by xy = �y �x.The Dyck languages. Let A be an alphabet and let �A be a copy. The Dycklanguage over A is the language D�A generated by S in the grammarS �! TS + " ; T �! aS�a (a 2 A)The notation is justi�ed by the fact thatD�A is indeed a submonoid of (A[ �A)�.It is even a free submonoid, generated by the language DA of Dyck primeswhich is the language generated by the variable T in the grammar above. IfA has n letters, then the notation D�n is frequently used instead of D�A. Ifn = 2, we omit the index.There is an alternative way to de�ne these languages as follows. Considerthe congruence � over A [ �A generated bya�a � " (a 2 A)



Context-Free Languages and Pushdown Automata 5Then D�A = fw 2 (A [ �A)� j w � " mod �gThe class of a word w, that is the set of all words x that are congruent to w,is denoted by [w]�. Of course, D�A = ["]�. We often omit the subscript � inthis notation.The Lukasiewicz language. Let A = fa; bg. The Lukasiewicz language isthe language generated by the grammarS �! aSS + bIt is sometimes denoted by  L. As we shall see below,  L = D�1b.2. Systems of equationsThis section is devoted to an elementary presentation of systems of equa-tions and their relation to context-free languages. Context-free languagesmay indeed be de�ned as the components of the least solution of systemsof polynomial equations, whence the term \algebraic" languages introducedby Chomsky and Sch�utzenberger [10]. The same construction was used byGinsburg and Rice [20]. They preferred to call them ALGOL-like languagesbecause they are \a model for the syntactic classes of the programming lan-guage ALGOL". Indeed, one says \an instruction is: : :" rather than \thesymbol for instructions derives: : :".From the methodological point of view, considering equations rather thangrammars shifts the induction argument used to prove properties of languagesfrom the number of derivations steps to the length of words. This may fre-quently simplify exposition, too.The proofs of the results presented in this section are intentionally fromscratch. In fact, most results can be treated di�erently, in at least two ways:�rst, they hold in a much more general framework, namely for formal powerseries over suitable semirings (see the chapter of Kuich[37]); next, there aregeneral results, such as �xed-point theorems in conveniently ordered sets, thatimply easily the present results. The present style of exposition was chosento show what the minimal requirements are to make the arguments work.The reader should notice that we never assume, in systems of equations,that the right hand sides are �nite, and indeed this appears nowhere to berequired. Even �niteness of the number of equations is not necessary. Next,the reader should check that all results also hold for partially commutativefree monoids (this was observed already by Fliess [15]). Indeed, the argumentused in most proofs is just an induction on length, and thus carries over tosuch monoids.



6 Jean-Michel Autebert, Jean Berstel, and Luc Boasson2.1 SystemsFor the de�nition of equations, we need variables. It will be convenient tonumber variables. Let V = fX1; : : :Xng and A be disjoint alphabets. Asystem of equations over (V;A) is a vector P = (P1; : : : ; Pn) of subsets of(V [A)�, usually written asXi = Pi i = 1; : : : ; n (2:1)Introducing X = (X1; : : : ; Xn), this can be shortened toX = PWe frequently emphasize the dependence of the set V by writing Pi(X) orP (X) instead of Pi and P . An advantage of this is to yield a simple notationfor substitution.Let L = (L1; : : : ; Ln) be a vector of languages over V [A. This de�nes asubstitution as follows.(1) "(L) = f"g(2) a(L) = a a 2 A(3) Xi(L) = Li i = 1; : : : ; n(4) uv(L) = u(L)v(L) u; v 2 (V [A)�(5) Q(L) = Sw2Q w(L) Q � (V [A)�Observe that the last equation implies that Q(L[M ) = Q(L)[Q(M ), whereL[M is componentwise union. A vector L = (L1; : : : ; Ln) of languages overA is a solution if Li = Pi(L) i = 1; : : : ; nthat is if Pi(L) is obtained from Pi(X) by substituting Lj to Xj in any of itsoccurrences. It is sometimes convenient to write L = P (L) instead Li = Pi(L)for all i.Example 2.1. 1) Consider the following system of two equationsX = Y X + "Y = aXbHere, the variables are X;Y and the terminal alphabet is fa; bg. The vector(D�1; D1) is a solution of this system, since indeedD�1 = D1D�1 + "D1 = aD�1b2) The system X = (aXb)�Y = aY �bhas right sides that are rational sets. The vector (D�1; D1) is also a solutionof the second system, as it follows from elementary properties of the Dyckset. A simple formal proof will be given below.



Context-Free Languages and Pushdown Automata 7Solutions are compared componentwise: given two vectors L = (L1; : : : ;Ln) and M = (M1; : : : ;Mn), then L = M i� Li = Mi for all i, and L � Mi� Li �Mi for all i.To every context-free grammar over an alphabet A, is canonically as-sociated a polynomial system of equations (i. e. a system where the rightsides are �nite sets). Assume indeed that the grammar is G = (V; P ), withV = fX1; : : : ; Xng. The associated system isXi = Pi (2:2)with Pi = f� 2 (V [A)� j (Xi; �) 2 PgTheorem 2.1. Let G = (V; P ) be a context-free grammar over A with V =fX1; : : : ; Xng. Then the vectorLG = (LG(X1); : : : ; LG(Xn))is the least solution of the associated system.We start with a lemma.Lemma 2.1. Let M = (M1; : : : ;Mn) be a solution of (2:2), and let u; v 2(V [A)� be words. If u �!G v then v(M ) � u(M ).Proof. Indeed, if u �! v, then there exists a production (Xi; �) in G, andtwo words x; y such that u = xXiy; v = x�yThus u(M ) = x(M )Miy(M ); v(M ) = x(M )�(M )y(M )Since � 2 Pi and M is a solution, one has�(M ) � Pi(M ) = Miand consequently v(M ) � u(M ).Proof of the theorem. Clearly, for each i = 1; : : : ; n,LG(Xi) = [�2Pi LG(�)Now, for any word u in (V [A)�,LG(u) = u(LG)so that the equation can be written asLG(Xi) = Pi(LG)



8 Jean-Michel Autebert, Jean Berstel, and Luc Boassonshowing that LG is indeed a solution.Consider next a solution M = (M1; : : : ;Mn). To show the inclusion LG �M , let w 2 LG(Xi), for some i. Then Xi ��! w, and by the lemma (extendedto derivations) w(M ) � Xi(M )Since w 2 A�, one has w(M ) = fwg, and since M is a solution, Xi(M ) = Mi.Consequently w 2Mi, showing that LG(Xi) �Mi.This theorem gives one method for computing the minimal solution of asystem of equations, namely by derivations. There is another method, basedon iteration. This is the �xed point approach.Theorem 2.2. Given a system of equationsXi = Pi i = 1; : : : ; nover V = fX1; : : : ; Xng and A, de�ne a sequence L(h) = (L(h)1 ; : : : ; L(h)n ) ofvectors of subsets of A� byL(0) = (;; : : : ; ;)L(h+1) = (P1(L(h)); : : : ; Pn(L(h))) = P (L(h))and set Li = [h�0L(h)i i = 1; : : : ; nThen the vector L = (L1; : : : ; Ln)is the least solution of the system.Proof. First, Li = [h�0Pi(L(h)) = Pi([h�0L(h)) = Pi(L)showing that L is indeed a solution.Next, if M = (M1; : : : ;Mn) is any solution, then L(h) �M for all h � 0.This is clear for h = 0, and by inductionL(h+1)i = Pi(L(h)) � Pi(M ) = MiLet us remark that the basic ingredient of the proof is that Pi is \continuous"and \monotone" in the lattice P((V [A)�)n, for the order of componentwiseinclusion (see also the chapter by Kuich [37]).A system of equationsXi = Pi i = 1; : : : ; nover V = fX1; : : : ; Xng and A is called� proper if, for all i, one has Pi \ (f"g [ V ) = ;,



Context-Free Languages and Pushdown Automata 9� strict if, for all i, one has Pi � f"g [ (V [A)�A(V [A)�.Thus, in a proper system, every word in the right side of an equation is eithera terminal letter (in A) or has length at least 2. If a context-free grammaris proper, the associated system of equations is proper. In a strict system,every nonempty word in a right side contains at least one terminal letter.A solution L = (L1; : : : ; Ln) is proper if " =2 Li for all i.Theorem 2.3. A proper system has a unique proper solution. A strict sys-tem has a unique solution.Before starting the proof, let us give some examples.Example 2.2. The equation X = XX is proper. Its unique proper solution isthe empty set. However, every submonoid is a solution. Thus a proper systemmay have more than one solution.Example 2.3. The system X = Y X + "Y = aXbis neither proper nor strict. However, replacing Y by aXb in Y X + ", onesees that the �rst component of a solution is also a solution ofX = aXbX + "which is strict. This shows that the system has only one solution.The system X = (aXb)�Y = aY �bis strict, so it has a unique solution. It is easily checked thatX = (aXb)� = aXbX + "and aXb = a(aXb)�bThus the unique solution of this system is equal to the unique solution of the�rst.Example 2.4. We claimed earlier that  L = D�1b. Here is the proof. TheLukasiewicz language  L is the unique solution of the strict equation X =aXX+b, andD�1 is (the unique) solution of the strict equationX = aXbX+".Thus D�1 = aD�1bD�1 + ", and multiplying both sides by b, one gets D�1b =aD�1bD�1b + b, showing that D�1b is a solution of X = aXX + b. Since thisequation has only one solution, the equality follows.



10 Jean-Michel Autebert, Jean Berstel, and Luc BoassonIt is convenient to introduce a notation. For any k � 0, de�ne an equiva-lence relation �k for languages H;H 0 � A� byH �k H 0 () fw 2 H j jwj � kg = fw 2 H 0 j jwj � kgExtend these equivalences to vectors componentwise. Then one has the fol-lowing general lemma:Lemma 2.2. Let L and M be two solutions of a system of equations X = P .If L �0 M (2.3)L �k M ) P (L) �k+1 P (M ) (2.4)then L = M .Proof. Since L = P (L) and M = P (M ), the hypotheses imply that L �k Mfor all k � 0, and thus L = M .Proof of the theorem 2.3. It su�ces to show that the conditions of the lemmaare ful�lled in both cases.Consider �rst the case where L and M are proper solutions of the propersystem X = P . Then by assumption L �0 M . Assume now L �k M , andconsider any � 2 Pi for some i. If � 2 A+, then �(L) = �(M ) = �. Otherwise,there exist non empty words �; 
, such that � = �
. Clearly �(L) �k �(M )and 
(L) �k 
(M ), and since the empty word is not in these languages, onehas �(L)
(L) �k+1 �(M )
(M )Thus Pi(L) �k+1 Pi(M ). This proves (2.4).Consider now the case where L and M are solutions of the strict systemXi = Pi for i = 1; : : : ; n. Since " 2 Li for some i i� " 2 Pi, one has L �0 M .Next, as before assume L �k M , and consider any � 2 Pi for some i. If � 6= ",then � = �a
 for words �; 
 and a letter a 2 A. Again, �(L) �k �(M ) and
(L) �k 
(M ), and since a is a terminal letter, this implies that �(L) �k+1�(M ). This proves (2.4).As we have already seen, a system may have a unique solution even if itis neither proper nor strict. Stronger versions of the above theorem exist. Forinstance, call a system of equationsX = P (X)weakly proper (resp. weakly strict) if there is an integer k such that the systemX = P k(X)is proper (resp. strict).Corollary 2.1. A weakly strict (weakly proper) system has a unique (a uni-que proper) solution.



Context-Free Languages and Pushdown Automata 11Proof. Let indeed L be a solution of X = P (X). Then L = P k(L), showingthat L is solution of X = P k(X). Hence the solution of X = P (X) is unique.Observe that, if L is the solution of X = P k(X), then it is also thesolution of the system X = P (X). This may provide an easy way to computethe solution.Example 2.5. Consider the system X = P (X) given byX = Y X + "Y = aXbReplacing P by P 2, one getsX = aXbY X + aXb+ "Y = aY Xb + abwhich is not proper but strict. Hence the system is weakly strict.2.2 ResolutionOne popular method for resolution of systems of equations is Gaussian elim-ination. Consider sets X = fX1; : : : ; Xng and Y = fY1; : : : ; Ymg of variables.Theorem 2.4. For any system of equationsX = P (X;Y )Y = Q(X;Y ) (2:5)over (X [ Y;A), let L0Y be a solution of the system of equationsY = Q(X;Y )over (Y;A [X), and let LX be a solution of the system of equationsX = P (X;L0Y )over (X;A). Then (LX ; L0Y (LX )) is a solution of (2:5).Proof. Let indeed L0Y = L0Y (X) be a solution of the system Y = Q(X;Y ).For any vector L = (L1; : : : ; Ln) of languages over A, one hasL0Y (L) = Q(L;L0Y (L)) (2:6)by substitution. Next, let LX be a solution ofX = P (X;L0Y (X)) (2:7)and set LY = L0Y (LX ). Then (LX ; LY ) is a solution of (2.5) since LX =P (LX ; LY ) by (2.7) and LY = Q(LX ; LY ) by (2.6).A special case is \lazy" resolution. This means that some variables, oreven some occurrences of variables or factors in the right sides are consideredas \�xed", the obtained system is solved, and the solution is substituted inthe \�xed" part. More precisely,



12 Jean-Michel Autebert, Jean Berstel, and Luc BoassonProposition 2.1. The two systemsX = P (X;Y )Y = Q(X) and X = P (X;Q(X))Y = Q(X)have same sets of solutions.As an example, consider the equation X = aXX + b, that we write asX = Y X + bY = aXThe �rst equation is equivalent to X = Y �b, thus the equations X = aXX+band X = (aX)�b have the same solution.2.3 Linear systemsLeft or right linear systems of equations are canonically associated to �niteautomata. The general methods take here a special form. A system of equa-tions Xi = Pi(X); i = 1; : : : ; nover (V;A) is right linear (resp. left linear) if Pi � A�V [ A� (resp. Pi �V A� [ A�). If furthermore it is strict (resp. proper), then Pi � A+V [ A�(resp. Pi � A+V [A+). A (right) linear system may be written asXi = nXj=1Ri;jXj + Si i = 1; : : : ; n (2:8)where Ri;j � A�, Si � A�. These sets are the coe�cients of the system. Onemay also write X = RX + Sby introducing a matrix R = (Ri;j) and a vector S = (Si).Given a �nite automaton with state set Q = f1; : : : ; ng, denote by Ri;jthe set of labels of edges from state i to state j, and setSi = � f"g if i is a �nal state; otherwiseThen it is easily veri�ed that the least solution of the system (2:8) is the vector(L1; : : : ; Ln), where Li is the set of words recognized with initial state i.Theorem 2.5. The components of the solution of a strict linear system arein the rational closure of the set of coe�cients of the system.



Context-Free Languages and Pushdown Automata 13Proof. There are several proofs of this result. The maybe simplest proof isto consider an alphabet B = fri;j j 1 � i; j � ng [ fsi j 1 � i � ng andto consider the system obtained in replacing each Ri;j by ri;j and similarlyfor the Si. Build an automaton with state set f0; 1; : : : ; ng, having an edgelabeled ri;j from state i to state j for 1 � i; j � n and an edge labeled sifrom state i to the unique �nal state 0. The component Li of the solution ofthe system is the set of label of paths from state i to state 0, and thereforeis a rational set over B. To get the solution of the original system, it su�cesto substitute the sets Ri;j and Si to the corresponding variables.An equivalent formulation is to say that the vectorL = R�Sis the solution, where R� = [m�0Rm :One way to solve the original set of equations is to use Gaussian elimination(also called Arden's lemma in the linear case). One rewrites the last equationof the system as Xn = R�n;n0@n�1Xj=1Rn;jXj + Sj1Aand substitutes this expression in the remaining equations.Another way is to proceed inductively, and to compute the transitiveclosure R� from smaller matrices, using the formula�A BC D�� = � (A +BD�C)� A�B(D + CA�B)�D�C(A +BD�C)� (D + CA�B)� �provided A and D are square matrices.A system (2:8) is called cycle-free if none of the diagonal coe�cients ofthe matrix R+ R2 + � � �+ Rncontains the empty word. The terminology is from graph theory : considerthe graph over f1; : : : ; ng with an edge from i to j i� " 2 Ri;j. Then thisgraph is cycle-free i� the system is. In fact, cycle-free systems are preciselyweakly strict right linear systems. Indeed, the graph is cycle-free i� there isno path of length k for k > n. This is equivalent to say that in the matrixRk, none of the coe�cients contains the empty word. Thus one hasProposition 2.2. A cycle-free (right or left) linear system has a unique so-lution.



14 Jean-Michel Autebert, Jean Berstel, and Luc Boasson2.4 Parikh's theoremIn this section, we prove Parikh's theorem [43]. Our presentation follow [44].A more general result is given in Kuich's chapter [37]. As already mentioned,all results concerning systems of equations, provided they make sense (e.g.Greibach normal form makes no sense in free commutative monoids) holdalso for free partially commutative monoids, since the only argument used isinduction on length. Two special cases of partially commutative free monoidsare the free monoid and the free commutative monoid. Context-free sets inthe latter case are described by Parikh's theorem:Theorem 2.6. Any context-free set in the free commutative monoid is ra-tional.An equivalent formulation is that the set of Parikh vectors of a context-free language is semi-linear. Indeed, let A be an alphabet, and denote byA� the free commutative monoid over A. There is a canonical mapping �from A� onto A� that associates, to a word w, the element �a2Aajwja in A�,where jwja is the number of occurrences of the letter a in A.Rational sets are de�ned in A� as they are in any monoid: they constitutethe smallest family of languages containing the empty set, singletons, andclosed under union, product and star. Here, product is the product in A� ofcourse. Because of commutativity, there are special relations, namely(X [ Y )� = X�Y �; (X�Y )� = f"g [X�Y �YUsing these, on gets easily the followingProposition 2.3. In the free commutative monoid A�, every rational sethas star-height at most 1.Proof of the theorem. Consider �rst the case of a single (strict) equationX = P (X)where P (X) is any rational subset of (A[X)�. This equation may be rewrit-ten as X = R(X)X + Swhere S = P (X) \A�, and R(X) is a rational subset of (A [X)�. The setG = R(S) is rational, and we show that G�S is the (rational) solution of theequation.Consider indeed two subsets K;M of A�, and set P = K�M . For everyw 2 (A [X)� containing at least one occurrence of X, one has the equalityw(P ) = w(M )K�because the set K� can be \moved" to the end of the expression by commu-tativity, and K�K� = K�. As a consequence, for every word w 2 (A [X)�,one gets w(P )P = w(M )P . Thus in particular for P = G�S,



Context-Free Languages and Pushdown Automata 15S + R(P )P = S + R(S)P = S + GG�S = G�SIf the system has more than one equation, then it is solved by Gaussianelimination.Example 2.6. Consider the equationX = aXX + bThe set R(X) of the proof reduces to aX, and the solution is (ab)�b =fanbn+1 j n � 0g.3. Normal formsIn this section, we present three normal forms of context-free grammars. Thetwo �rst ones are the Chomsky normal form and the Greibach normal form.They are often used to get easier proofs of results about context-free lan-guages. The third normal form is the operator normal form. It is an exampleof a normal form that has been used in the syntactical analysis.3.1 Chomsky normal formA context-free grammar G = (V; P ) over the terminal alphabet A is in weakChomsky normal form if each nonterminal rule has a right member in V ? andeach terminal rule has a right member in A [ f"g. It is in Chomsky normalform if it is in Chomsky normal form and each right member of a nonterminalrule has length 2.Theorem 3.1. [28, 9] Given a context-free grammar, an equivalent context-free grammar in Chomsky normal form can e�ectively be constructed.Proof. The construction is divided into three steps. In the �rst step, theoriginal grammar is transformed into a new equivalent grammar in weakChomsky normal form. In the second step, we transform the grammar justobtained so that the length of a right member of a rule is at most 2. In thelast step, we get rid of the nonterminal rules with a right member of length1 (that is to say in V ).Step 1 : To each terminal letter a 2 A, we associate a new variable Xa. Inall the right members of the rules of the original grammar, we replace eachoccurrence of the terminal letters a by the new variable Xa. Finally, we addto the grammar so obtained the set of rules Xa �! a. Clearly, the resultinggrammar so constructed is in weak Chomsky normal form and is equivalentto the original one.Step 2 : We now introduce a new set of variables designed to represent theproduct of two old variables. More precisely, to each pair (X;Y ) 2 V �V , we



16 Jean-Michel Autebert, Jean Berstel, and Luc Boassonassociate a new variable hXY i. We then construct a new grammar by replac-ing any product of three or more old variables XY Z � � �T by hXY iZ � � �T .Then we add all the rules hXY i �! XY . This reduces the maximal lengthof nonterminal rules by 1. This process is repeated until the maximum lengthof any right member is 2.Step 3 : We �nally get rid of nonterminal rules with a right member inV . This is achieved in the same usual way than the one used to get a propergrammar from a general one.3.2 Greibach normal formsA context-free grammar G = (V; P ) over the terminal alphabet A is in Grei-bach normal form i� each rule of the grammar rewrites a variable into a wordin AV ?. In particular, the grammar is proper and each terminal rule rewritesa variable in a terminal letter.It is in quadratic Greibach normal form i� it is in Greibach normal formand each right member of a rule of G contains at most 2 variables.It is in double Greibach normal form i� each right member of the rulesof G are in AV ?A [A. In particular, a terminal rule rewrites a variable in aletter or in a word of length 2.It is in cubic double Greibach normal form (resp. in quadratic double Grei-bach normal form i� it is in double Greibach normal form and each rightmember of a rule contains at most 3 variables (resp. at most 2 variables).The fact that any proper context-free grammar G can be transformed inan equivalent grammar G0 in Greibach normal form is a classical result [28].However, the fact that the same result holds with G0 in quadratic Greibachnormal form is more rarely presented. Nearly never proved is the same resultwithG0 in quadratic double normal form. Hence, we show how such equivalentgrammars can e�ectively be constructed.Theorem 3.2. Given a proper context-free grammar G, an equivalent con-text free grammar in quadratic Greibach normal form can e�ectively be con-structed from G.A weaker similar result has originally been proved by Greibach [24]: sheshowed that, given a proper context-free grammar, an equivalent context-free grammar in Greibach normal form can e�ectively be constructed. Theadditional statement stating that this grammar can be in quadratic Greibachnormal form was proved later by Rosenkrantz [45]. We sketch here the proofhe gave; we will see below an alternative proof.Sketch of the construction:We may assume that the grammar is proper and in Chomsky normalform, that is that each right-hand side is in A [ V 2. Consider the associatedsystem of equations Xi = Pi i = 1; : : : ; n



Context-Free Languages and Pushdown Automata 17This may be written as X = XR + Swhere Si = Pi \Aand Rj;i = X�1j PiUsing lazy evaluation, this system is equivalent toX = SR�and since R� = RR� + Ione has X = SYY = RY + Iwhere Y = (Yj;i) is a new set of n2 variables. Observe that each Rj;i is asubset of V . Thus, using the system X = SY , each Rj;i can be replaced bythe set R̂j;i = XX`2Rj;i(SY )`and the whole system is equivalent toX = SYY = R̂Y + Iwhere R̂ = (R̂j;i). In order to get the quadratic Greibach normal form, itsu�ces to eliminate the "-rules. This is done in the usual way.Theorem 3.3. Given a proper context-free grammar G, an equivalent con-text free grammar in quadratic double Greibach normal form can e�ectivelybe constructed from G.This result has been proved by Hotz [31]. We follow his proof. It shouldbe noted that the same technique allows to give an alternative proof of theprevious theorem 3.2.The proof of theorem 3.3 turns out to be a complement to the proof ofTheorem 3.4. Given a proper context-free grammar G, an equivalent con-text free grammar in cubic double Greibach normal form can e�ectively beconstructed from G.



18 Jean-Michel Autebert, Jean Berstel, and Luc BoassonThe construction of the desired grammar is decomposed into four steps.The two �rst ones will lead to an equivalent grammar in quadratic Greibachnormal form. The last two ones complete the construction of an equivalentgrammar in quadratic double Greibach normal form.Let G = (V; P ) be a proper context-free grammar in weak Chomskynormal form over the terminal alphabet A.Step 1 (construction of the set of new variables needed):To each variable X 2 V , we associate the setsL(X) = fam 2 AV ? j X ?�!̀ � �! am � 2 V �gR(X) = fma 2 V ?A j X ?�!r � �! ma � 2 V �gThe idea is to construct a new grammar including rules the X �! am foreach am 2 L(X). The di�culty comes from the fact that the sets L(X) arein�nite. This di�culty can be overcome using the fact these sets are rational.The sets R(X) will only be used to get the double Greibach normal form.Formally, to each variable X 2 V and to each terminal letter a 2 A, weassociate the setsL(a;X) = a�1L(X) = fm 2 V ? j X ?�!̀ � �! am � 2 V �gR(X; a) = R(X)a�1 = fm 2 V ? j X ?�!r � �! ma � 2 V �gClearly, each L(a;X) and each R(X; a) is a rational language over V sinceL(X) and R(X) are rational: to get a word in L(X), we look at leftmostderivations in the original grammar. Then, such a derivation can be decom-posed in a �rst part where the obtained words all lie in V ?. The second partconsists in the last step where the leftmost variable is derived in a terminalletter a. In this process, we then always derive the leftmost variable of thesentential forms. So, this derivation is obtained by using the grammar as ifit were left linear. Hence, the set of words so obtained forms a rational set.It then follows immediately that each L(a;X) is rational too.A similar proof using right linear grammars shows that each R(X; a) isrational.Next, de�ne two families L and R of languages byL = fL(a;X) j a 2 A;X 2 V g; R = fR(X; a) j a 2 A;X 2 V g:We then de�ne H as the closure of LSR under the right and left quotientsby a letter of V . Since each language in LSR is rational, this gives raise toa �nite number of new regular languages over V . Thus, the familyH is �nite.The idea is now to use the languages in H as variables in the grammar tobe constructed. The set of new variables will be denoted like this family oflanguages, that is, an element L 2 H will denote both the language and thenew variable.



Context-Free Languages and Pushdown Automata 19Example 3.1. Let G = (V; P ) be the following grammar in weak Chomskynormal form : S �! SXSS + bX �! aWe can now look for the family L. SinceL(a; S) = ; L(b; S) = (XSS)? = L0 L(a;X) = f"g = E L(b;X) = ;L is formed of the three languages f;; L0; Eg.Similarly, R = f;; L1; Eg becauseR(S; a) = ; R(S; b) = (SXS)? = L1 R(X; a) = f"g = E:Thus, LSR = f;; L0; L1; Eg. From this family, we derive the family H byclosing LSR under left and right quotient by a letter in V . Here are thenew languages that appear :X�1L0 = SS(XSS)? = L2 L0S�1 = (XSS)?XS = L3S�1L1 = XS(SXS)? = L3 L1S�1 = (SXS)?SX = L4S�1L2 = S(XSS)? = L5 L2S�1 = S(SXS)? = L6X�1L3 = (SSX)?S = L6 L3S�1 = (XSS)?X = L7S�1L4 = (XSS)?X = L7 L4X�1 = S(XSS)? = L5S�1L5 = (XSS)? = L0 L5S�1 = (SXS)? = L1S�1L6 = (SXS)? = L1 L6S�1 = (SSX)? = L8X�1L7 = (SSX)? = L8 L7X�1 = (XSS)? = L0S�1L8 = SX(SSX)? = L4 L8X�1 = (SSX)?SS = L2Hence, the family H contains 11 languages: the languages L0; : : : ; L8, thelanguage E = f"g and the empty set ;. (In the above computations, wehave omitted all empty quotients.) Among these languages, E;L0; L1 and L8contain the empty word.Step 2 (Construction of an equivalent grammar in quadratic Greibach nor-mal form)The new grammar has the set of variables V [H, and the following rules:(i) Each terminal rule of the original grammar is a terminal rule of the newgrammar.(ii) To each variable X 2 V of the original grammar is associated the (�nite)set of rules X �! aL for each a 2 A, with L = L(a;X) 2 H. The rulesso created have all their right members in AH.(iii) Each new variable L 2 H gives raise to the �nite set of rules L �! XL0for X 2 V with L0 = X�1L 2 H and to the rule L �! " if " 2 L. Eachsuch rule has its right member in VH[ f"g.(iv) In each new non "-rule added just above, the leftmost variable in V isreplaced by the right members generated in step (ii); since these rightmembers are in AH, the rules so obtained have all their right membersin AHH.



20 Jean-Michel Autebert, Jean Berstel, and Luc BoassonHence, the grammar so obtained is almost in quadratic Greibach normalform: each right member is in AHH [A [ f"g.To obtain such a normal form, it su�ces to complete a �nal operationeliminating the "-rules. We do this in the usual way, that is we replace anyoccurrence of a variable L giving the empty word by (L [ f"g) in the rightmembers and erase the "-rules.The fact that the new grammar is equivalent to the original one is imme-diate: it su�ces to look at the two grammars as systems of equations. So far,we have proved Theorem 3.2.Example 3.2. (continued) The rules S �! SXSS + b give raise to the newrules S �! bL0 + bE. The last rule X �! a gives raise to X �! aE.The new set of variables gives raise toL0 �! XL2 + " L1 �! SL3 + "L2 �! SL5 L3 �! XL6L4 �! SL7 L5 �! SL0L6 �! SL1 L7 �! XL8L8 �! SL4 + " E �! "Replacing X by aE and S by bE + bL0, the new grammar becomesS �! bL0 + bE X �! aEL0 �! aEL2 + " L1 �! bEL3 + bL0L3 + "L2 �! bEL5 + bL0L5 L3 �! aEL6L4 �! bEL7 + bL0L7 L5 �! bEL0 + bL0L0L6 �! bEL1 + bL0L1 L7 �! aEL8L8 �! bEL4 + bL0L4 + " E �! "This is the desired intermediate grammar obtained after step (iv). To obtainthe quadratic Greibach normal form, we replace everywhere E;L0; L1 andL8 by themselves plus the empty word in the right members and suppressthe "-rules. Then we get the following grammar (to be compared to the oneobtained with Rosenkrantz's method):S �! bL0 + b X �! aL0 �! aL2 L1 �! bL3 + bL0L3L2 �! bL5 + bL0L5 L3 �! aL6L4 �! bL7 + bL0L7 + bL7 L5 �! bL0 + bL0L0 + bL6 �! bL1 + bL0L1 + bL0 + b L7 �! aL8 + aL8 �! bL4 + bL0L4Note that this grammar is not reduced. The only useful variables are S; L0; L2and L5. The seemingly useless variables and rules will appear to be usefullater. Note too that E disappeared because, when " is removed from thelanguage, E becomes empty.



Context-Free Languages and Pushdown Automata 21The next two steps will be devoted to the proof of theorem 3.3.Step 3 (Construction of an equivalent grammar in cubic double Greibachnormal form)We work on the grammar just obtained above. Each nonterminal rule ofthis grammar ends with a variable in H. A variable now generates a languagethat is proper. Thus, the language is not necessarily in H (considered as afamily of languages) because the empty word may be missing. However, theset H (considered as a set of variables) remains the same. Each variable nowgenerates the associated language of H up to the empty word.We �rst proceed to the same operations as in step 2, using right quotientsinstead of left ones. This operation is presented below in a slightly di�erentway than we did in step 2. Precisely,(i) For each language L 2 H, the set LX�1 is now a language of the familyH up to the empty word. So, each L in H can be described as the unionof L0X for each X 2 V with L0 = LX�1, completed by X as soon as L0contains the empty word. We do this for each L.Each language generated by a variable X 2 V is proper. Hence, in theexpression above, X can be replaced by the union of all the Ra for eacha 2 A, with R the variable associated to the language R(X; a). Again,this union has to be completed by a as soon as the language R(X; a)contains the empty word.This gives a system of equations where each L 2 H is a sum of terms inHHA [HA [A.(ii) We now go back to the grammar in quadratic normal form resulting fromstep 2, and replace each rightmost variable of the nonterminal rules inthe grammar by the expression in the system obtained in step (i). Wethus obtain an equivalent grammar where the nonterminal rules havea terminal letter as rightmost symbol. It should be noted that, in theresulting grammar, the number of variables is increased by at most one ineach rule, so that the grammar is cubic. Hence, the so obtained grammaris in cubic double Greibach normal form.Example 3.3. (continued) The �rst identities are directly derived from theright quotients computed before. They areL0 = L3S L1 = L4SL2 = L6S L3 = L7SL4 = L5X L5 = L1S + SL6 = L8S + S L7 = L0X + XL8 = L2X + XReplacing now each S by L1b+ b and each X by a, we obtain



22 Jean-Michel Autebert, Jean Berstel, and Luc BoassonL0 �! L3L1b+ L3b L1 �! L4L1b+ L4bL2 �! L6L1b+ L6b L3 �! L7L1b+ L7bL4 �! L5a L5 �! L1L1b+ L1bL6 �! L8L1b+ L8b+ b L7 �! L0a + aL8 �! L2a+ aGoing back to the grammar obtained at the end of step 2, we replace in iteach rightmost variable by the �nite sum so obtained, giving raise to :S �! bL3L1b+ bL3b+ bX �! aL0 �! aL6L1b+ aL6bL1 �! bL7L1b+ bL7b+ bL0L7L1b+ bL0L7bL2 �! bL1L1b+ bL1b+ bb+ bL0L1L1b+ bL0L1b+ bL0bL3 �! aL8L1b+ aL8b+ aL1b+ abL4 �! bL0a+ ba+ bL0L0aL5 �! bL3L1b+ bL3b+ bL0L3L1b+ bL0L3b+ bL6 �! bL4L1b+ bL4b+ bL0L4L1b+ bL0L4bL7 �! aL2a+ aa+ aL8 �! bL5a+ bL0L5aThe steps 1, 2 and 3 allow thus to transform any context-free grammarin weak Chomsky normal form in an equivalent grammar in cubic doubleGreibach normal form, which proves Theorem 3.4.Step 4 (Construction of an equivalent grammar in quadratic double Greibachnormal form)We use here essentially the same technique of grouping variables that waspreviously used to derive Chomsky normal form from weak Chomsky normalform. It should be also noted that this technique can be used to transform agrammar in Greibach normal form into quadratic Greibach normal form.In the grammar obtained in the previous step, no variable of V appears inthe right member of a rule. Moreover, any variable of H represents, up to theempty word, the corresponding language. In particular, a language L 2 Hcan be described by- a left quotient description given by the rules of the grammar in quadraticGreibach normal form obtained in step 2.- a right quotient description obtained in the same way. It is the intermediatedescription used in step 3 just before transforming the grammar in anequivalent one in double Greibach normal form.We now enlarge the family H by adding the family HH . To this newfamily of languages is associated a new set of variables W . It should be notedthat, each Y 2 W represents a product L � L0 2 HH. Hence, replacing Lby its left quotient description, and L0 by its right quotient description, weget a description of each Y 2 W as a �nite union of terms in AHHHHA [AHHHA [AHHA [AHA [AA.



Context-Free Languages and Pushdown Automata 23Each product of four elements of H can be replaced by a product of twoelements of W ; similarly, any product of three elements of H can be replacedby the product of an element in W by an element of H (or just the contraryas well).Then using this transformation in the right members of the rules of thegrammar in cubic double Greibach normal form and adding the new rulesinduced by the representation of variables in W just obtained, we get anequivalent grammar which is now in quadratic double Greibach normal form.Example 3.4. (end) The family W is formed of elements denoted hLL0i forL;L0 2 H. We �rst make quadratic the rules of the above obtained grammarby introducing, when necessary, some of our new variables.S �! bL3L1b+ bL3b+ bX �! aL6L1b+ aL6b+ aL1 �! bL7L1b+ bL7b+ bhL0L7iL1b+ bL0L7bL2 �! bL1L1b+ bL1b+ bb+ bhL0L1iL1b+ bL0L1b+ bL0bL3 �! aL8L1b+ aL8b+ aL1b+ abL4 �! bL0a+ ba+ bL0L0aL5 �! bL3L1b+ bL3b+ bhL0L3iL1b+ bL0L3b+ bL6 �! bL4L1b+ bL4b+ bhL0L4iL1b+ bL0L4bL7 �! aL2a+ aa+ aL8 �! bL5a+ bL0L5aDoing this, we have introduced the four new variables hL0L1i, hL0L3i,hL0L4i and hL0L7i. Rather than computing the descriptions of all the ele-ments hLiLji, we will compute those needed as soon as they appear.So we begin by computing the description of hL0L1i: for this we useL0 = aL2 L1 = L4L1b+ L4bwhich gives raise to the ruleshL0L1i �! ahL2L4iL1b+ aL2L4bGoing on this way, we get the (huge) equivalent grammar in quadratic doubleGreibach normal form:



24 Jean-Michel Autebert, Jean Berstel, and Luc BoassonS �! bL3L1b+ bL3b+ bX �! aL0 �! aL6L1b+ aL6b+ aL1 �! bL7L1b+ bL7b+ bhL0L7iL1b+ bL0L7bL2 �! bL1L1b+ bL1b+ bb+ bhL0L1iL1b+ bL0L1b+ bL0bL3 �! aL8L1b+ aL8b+ aL1b+ abL4 �! bL0a+ ba+ bL0L0aL5 �! bL3L1b+ bL3b+ bhL0L3iL1b+ bL0L3b+ bL6 �! bL4L1b+ bL4b+ bhL0L4iL1b+ bL0L4bL7 �! aL2a+ aa+ ahL0L1i �! ahL2L4iL1b+ aL2L4bhL0L3i �! ahL2L7iL1b+ aL2L7bhL0L4i �! aL2L5ahL0L7i �! aL2L0a+ ahL2L4i �! bhL0L5iL5a+ bL5L5ahL2L7i �! bhL0L5iL0a+ bL0L5a + bL5L0a+ bL5ahL0L5i �! ahL2L1iL1b+ aL2L1b + aL2bhL2L1i �! bhL0L5ihL4L1ib+ bhL0L5iL4b+ bL5hL4L1ib+ bL5L4bhL4L1i �! abhL0L7ihL4L1ib+ bhL0L7iL4b + bL7hL4L1ib+ bL7L3bRemark 3.1. The only useless variable is now X.3.3 Operator normal formWe present here another classical normal form, namely the operator normalform. A context-free grammar G over the terminal alphabet A is in operatornormal form if no right member of a rule contains two consecutive variables.This normal form has been introduced for purposes from syntactical analysis.For these grammars, an operator precedence can be de�ned which is inspiredof the classical precedence relations of usual arithmetic operators. From ageneral point of view, the following holds :Theorem 3.5. [28, 16] Given a context-free language, an equivalent context-free grammar in operator normal form can e�ectively be constructed.Proof. It is very easy. Given a grammar G in Chomsky normal form, to eachpair of a terminal letter a and of a variable X is attached a new variableXa designed to generate the set of words u such that X generates ua, thatis to say Xa = Xa�1. So, each language LG(X) is exactly the sum over Aof all the languages LXaa, sum completed by f"g as soon as LX contains ".Identifying LX and X, this can be written:X = ([a2AXaa) [ (f"g \X) (3:1)In the right members of the original grammar, we now replace each occurrenceof the variables X by the right hand side of equation (3:1). This gives raise to



Context-Free Languages and Pushdown Automata 25a set of rules say P1. Finally, we add the rules Xa �! � for X �! �a 2 P1.This gives raise to a new grammar which is equivalent to the original oneand is in operator normal form. Note that this new grammar may be neitherproper nor reduced.Example 3.5. Consider the grammar given by the two rulesS �! aSS + b:We introduce two new variables Sa and Sb. The set of rules in P1 isS �! aSaaSaa+ aSaaSbb+ aSbbSaa+ aSbbSbb + b:We then add the rulesSa �! aSaaSa + aSbbSa Sb �! aSaaSb + aSbbSb + ":and get the desired grammar.If we reduce the grammar, we note that the variable Sa is useless. So, weget the grammar S �! aSbbSbb+ b Sb �! aSbbSb + ":If we need a proper grammar in operator normal form, we just apply theusual algorithm to make it proper.Remark 3.2. The theory of grammar forms [13] develops a general frameworkfor de�ning various similar normal forms. These are de�ned through patternslike VAV + A indicating that the right members have to lie in VAV [ A.From this point of view, the various normal forms presented above appear asparticular instances of a very general situation (see [5]).4. Applications of the Greibach normal form4.1 Shamir's theoremWe present a �rst application of Greibach normal form. The presentationgiven here follows [33]. Recall that, given an alphabet V containing n letters,we denote by D ?V the Dyck set over the alphabet (V [ V ). Given a wordm 2 (V [ V )?, we denote em the reversal of m. We denote P((V [ V )?) thefamily of subsets of (V [ V )?. We now state Shamir's theorem [51]:Theorem 4.1 (Shamir). For any context-free language L over A, there ex-ists an alphabet V , a letter X 2 V and a monoid homomorphism � : A? !P((V [ V )?) such that u 2 L() X�(u) \D?V 6= ;:



26 Jean-Michel Autebert, Jean Berstel, and Luc BoassonProof. Let G = (V; P ) be a context-free grammar in Greibach normal formover A generating L. To each terminal letter a 2 A, associate the �nite set�(a) = fXe� 2 (V [ V )? j X �! a� 2 Pg:This de�nes Shamir's homomorphism � : A? �! P((V [ V )?). A simpleinduction allows to prove that, for any terminal word u 2 A? and for anynonterminal word m 2 V ?X ?�!̀ um () X�(u) \ [ em] 6= ;where [ em] represents the class of em in the Dyck congruence. This shows, inparticular, that X ?�!̀ u i� X�(u) \D?V 6= ; which is precisely the theorem.For later use, we state another formulation of the theorem.Given a context-free grammar G = (V; P ) over A in Greibach normalform generating L, we associate to each terminal letter a 2 A the set �̂(a) =�(a)aa. As far as Shamir's theorem is concerned, nearly nothing is changed:we use the total alphabet T = V [A instead of V , and the same result holdswith D?T instead of D?V , that isX ?�!̀u() 9w 2 �̂(u) : Xw 2 D?T : (4:1)4.2 Chomsky-Sch�utzenberger's theoremWe now show how to use Shamir's theorem 4.1 to prove directly the famousChomsky-Sch�utzenberger theorem [28, 10], that we recall here :Theorem 4.2 (Chomsky-Sch�utzenberger). A language L over the al-phabet A is context-free i� there exists an alphabet T , a rational set K over(T [ T )? and a morphism  : (T [ T )? �! A?, such thatL =  (D?T \K):Proof. We follow again [33]. The \if" part follows from the classical closureproperties of the family of context-free languages. Hence, we just sketch theproof of the \only if" part. Let G = (V; P ) be a grammar over A and setT = V [A.De�ne a homomorphism  from (T [ T )? into A? by8X 2 V;  (X) =  (X) = 18a 2 A;  (a) = a and  (a) = 1:Using morphism �̂ of the reformulation of Shamir's theorem, we note thatw 2 �̂(u) =)  (w) = u. Conversely, if  (w) = u and w 2 �̂(A?), thenw 2 �̂(u). Thus



Context-Free Languages and Pushdown Automata 27w 2 �̂(u) ()  (w) = u for w 2 �̂(A?):Then, the right hand side of equation (4:1) is equivalent to9w 2 �̂(A?) :  (Xw) = u; Xw 2 D?T :Thus, setting K = X�̂(A?), which is rational, this can be writtenX ?�!̀u() 9w :  (Xw) = u; Xw 2 D?T \Kand the Chomsky-Sch�utzenberger theorem is proved.4.3 The hardest context-free languageWe now show how to use Shamir's theorem 4.1 to get the hardest context-freelanguage. We begin by some new notions and results.Given a language L over the alphabet A, we de�ne the nondeterministicversion of L, denoted ND(L), in the following way: �rst add to the alphabetA three new letters [; ] and +. A word h in ([(A?+)?A?])? can be naturallydecomposed into h = [h1][h2] � � � [hn], each word hi being decomposed itself inhi = hi;1+hi;2+� � �+hi;ki ; hi;j 2 A?. A choice in h is a word h1;j1h2;j2 � � �hn;jnobtained by choosing in each [hi] a factor hi;ji. Denote by �(h) the set ofchoices in h. Then, the nondeterministic version of L is de�ned by:ND(L) = fh j �(h) \ L 6= ;g:Given an alphabet A, we denote by HA the nondeterministic version of theDyck language D?A . In the particular case of a two letter alphabet A = fa; bg,we skip the index, so that HA is denoted H. By de�nition, H is the hardestcontext-free language.The �rst important observation is given by:Fact 4.1. If L is a context-free language, so is its nondeterministic versionND(L).This lemma can be easily proved either by using pushdown automata or byshowing that ND(L) is obtained by a rational substitution applied to thelanguage L. The terminology nondeterministic version of L comes from thefollowingProposition 4.1. The language ND(L) is deterministic context-free i� L isregular; in this case, ND(L) is regular too.For a proof, we refer the reader to [3]. We now end this short preparationby theLemma 4.1. Given an alphabet A, there exists a morphism � such thatHA = ��1(H).



28 Jean-Michel Autebert, Jean Berstel, and Luc BoassonProof. Let H = HB with B = fa; bg.If the alphabet A contains only one letter c, just de�ne the morphism �by �([) = [, �(]) =], �(+) = +, �(c) = a and �(c) = a.If A contains n � 3 letters, � will be the usual encoding : �(ai) = abiaand �(ai) = abia for 1 � i � n. For the three other letters, we de�ne �([) = [,�(]) =] and �(+) = +.We now state theTheorem 4.3 (Greibach). [23] A language L over the alphabet A is con-text-free i� there exists a morphism ' such that $L = '�1(H), where $ is anew letter.Proof. The \if" part follows directly from the closure properties of the familyof context-free languages and from the fact that H is context-free. Hence,we turn to the \only if" part, for which we follow once more [33]. Given acontext-free grammar G = (V; P ) in Greibach normal form, we associate tothe morphism � used in Shamir's theorem a morphism ' de�ned by'(a) = [m1 + m2 + � � �mn] () �(a) = fm1;m2; : : : ;mngHere, m1;m2; : : : ;mn is some arbitrary but �xed enumeration of the wordsin �(a). Moreover, we de�ne '($) = [X] if X is the variable in V generatingL. Set now � = �'; hence, �(u) will be the set of choices of the word '(u).It is easy to check thatw 2 �(u) () w 2 �(u) i:e: � = �:(Just interpret the word h = '(u) as a polynomial representing the set �(u)and develop this polynomial.)Consequently, Shamir's theorem can be rephrased asX�(u) \D?V 6= ; () �($u) \D?V 6= ; () $u 2 '�1(HV ).Hence, we have $L = '�1(HV ). The announced result in theorem 4.3 thenfollows from lemma 4.1.Observation. The membership problem is the following: given a language Land a word u, does u belong to L? The language H is called the hardestcontext-free language because, by theorem 4.3, from a complexity point ofview, H is the context-free language for which the membership problem isthe most di�cult. Any algorithm deciding if a given word belongs to H givesraise to a general algorithm for the membership problem for context-freelanguages; this general algorithm will have the same complexity than the onegiven for H.



Context-Free Languages and Pushdown Automata 294.4 Wechler's theoremWe end this section by showing another consequence of the Greibach normalform. Given a language L over the alphabet A and a letter a 2 A, recall thatthe left quotient of L by a is the language a�1L = fu 2 A? j au2Lg. Analgebra is a family of languages closed under union and product and contain-ing the family Fin of �nite languages. An algebra F is �nitely generated ifthere exists a �nite family F 0 such that any language in F is obtained fromlanguages in F 0 under the algebra operations. It is stable if it is closed underleft quotient. We may now state theTheorem 4.4 (Wechler). [54] A language L is context-free if and only ifit belongs to a �nitely generated stable algebra.Proof. Given a context-free language L, it is generated by a grammar inGreibach normal form. To each variable X is associated the (context-free)language LX that it generates. Clearly, the left quotient of such a languageby a terminal letter a can be described as a �nite union of product of lan-guages generated in the grammar. Hence, the algebra generated by all theselanguages LX contains L and is stable.Conversely, if L belongs to a �nitely generated stable algebra, the �niteset of generators give raise to a �nite set of variables and the description ofeach left quotient as a �nite union of product of languages of the generatorsgives a grammar in Greibach normal form generating L.5. Pushdown machinesIn this section, we focus on the accepting device for context-free languages,namely pushdown automata with the important subclass induced by de-terminism, in both classical and less classical presentations. We prove heremainly two beautiful theorems: the �rst states that the stack language of apushdown automaton is a rational language; the second says that the outputlanguage of a pushdown transducer is context-free when the input is preciselythe language recognized by the associated pda.5.1 Pushdown automataThe classical mechanism of recognition associated to context-free languagesis the pushdown automaton. Most of the material presented in this paragraphis already in Ginsburg[17].A pushdown machine over A (a pdm for short) is a triple M = (Q;Z; T )where Q is the set of states, Z is the stack alphabet and T is a �nite subset of(A[ f"g)�Q�Z � Z� �Q, called the set of transition rules. A is the inputalphabet. An element (y; q; z; h; q0) of T is a rule, and if y = ", it is an "-rule.



30 Jean-Michel Autebert, Jean Berstel, and Luc BoassonThe �rst three components are viewed as pre-conditions in the behaviour of apdm (and therefore the last two components are viewed as post-conditions),T is often seen as a function from (A[f"g)�Q�Z into the subsets of Z��Q,and we note (h; q0) 2 T (y; q; z) as an equivalent for (y; q; z; h; q0) 2 T .A pushdown machine is realtime if T is a �nite subset ofA�Q�Z�Z��Q,i.e. if there is no "-rule. A realtime pdm is simple if there is only one state.In this case, the state giving no information, it is omitted, and T is a subsetof A� Z � Z�.An internal con�guration of a pdm M is a couple (q; h) 2 Q�Z�, whereq is the current state, and h is the string over Z� composed of the symbolsin the stack, the �rst letter of h being the bottom-most symbol of the stack.A con�guration is a triple (x; q; h) 2 A� �Q�Z�, where x is the input wordto be read, and (q; h) is an internal con�guration.The transition relation is a relation over con�gurations de�ned in thefollowing way: let c = (yg; q; wz) and c0 = (g; q0; wh) be two con�gurations,where y is in (A [ f"g), g is in A�, q and q0 are in Q, z is in Z, and w andh are in Z�. There is a transition between c and c0, and we note c j�� c0, if(y; q; z; h; q0) 2 T . If y = ", the transition is called an "-transition, and if y 2A, the transition is said to involve the reading of a letter. A valid computationis an element of the re
exive and transitive closure of the transition relation,and we note c �j�� c0 a valid computation starting from c and leading to c0.A convenient notation is to introduce, for any word x 2 A�, the relation oninternal con�gurations, denoted xj==, and de�ned by:(q; w) xj== (q0; w0) () (x; q; w) �j�� ("; q0; w0):We clearly have: xj== � yj== = xyj==.An internal con�guration (q0; w0) is accessible from an internal con�gura-tion (q; w), or equivalently, (q; w) is co-accessible from (q0; w0) if there is somex 2 A� such that (q; w) xj== (q0; w0).A rule (y; q; z; h; q0) 2 T is an increasing rule (respectively a stationary,respectively a decreasing rule) if jhj > 1 (respectively jhj = 1, respectivelyjhj < 1). The use of an increasing rule (respectively a stationary, respectivelya decreasing rule) in a computation increases (respectively leaves unchanged,respectively decreases) the number of symbols in the stack. A pdm is inquadratic form if for all rules (y; q; z; h; q0) 2 T , we have: jhj � 2.A pdm is used as a device for recognizing words by specifying startingcon�gurations and accepting con�gurations. The convention is that there isonly one starting internal con�guration i = (q; z), where the state q is theinitial state, and the letter z is the initial stack symbol. For internal acceptingcon�gurations, many kinds make sense, but the set K of internal acceptingcon�gurations usually is of the form:K = [q2Qfqg�Kq with Kq 2 Rat(Z�).A pushdown automaton over A (a pda for short) is composed of a push-down machine (Q;Z; T ) over A, together with an initial internal con�gura-



Context-Free Languages and Pushdown Automata 31tion i, and a set K of internal accepting con�gurations. It is so a 5-tupleA= (Q;Z; i;K; T ), and (Q;Z; T ) is called the pdm associated to A.For a pda, an internal con�guration is accessible if it is accessible fromthe initial internal con�guration, and it is co-accessible if it is co-accessiblefrom an internal accepting con�guration.The sets of internal accepting con�gurations usually considered are:1. the set F �Z� where F is a subset of Q, called the set of accepting states.2. the set Q� f"g.3. the set F � f"g where F is a subset of Q.4. the set Q� Z�Z 0 where Z 0 is a subset of Z.We call each of these cases a mode of acceptance.A word x 2 A� is recognized by a pda A = (Q;Z; i;K; T ) over A with aspeci�ed mode of acceptance if there is k 2 K such that i xj== k. Consideringthe modes of acceptance de�ned above, in the �rst case, the word is said tobe recognized by accepting states F , in the second case the word is said to berecognized by empty storage, in the third case the word is said to be recognizedby empty storage and accepting states F , and in the last case the word is saidto be recognized by topmost stack symbols Z 0. The language accepted by a pdawith a given mode of acceptance is the set of all words recognized by this pdawith this mode. For any pda A = (Q;Z; i;K; T ), we note L(A) the languagerecognized by A, and for any set of internal accepting con�gurations K 0, wenote L(A;K 0) the language recognized by the pda A0 = (Q;Z; i;K 0; T ).Note that, with regards to the words recognized, the names of the statesand of the stack symbols are of no importance. Up to a renaming, we canalways choose Q = fq1; q2; : : : ; qpg, and similarly, Z = fz1; z2; : : : ; zng. Up toa renaming too, we can always set the initial internal con�guration equal to(q1; z1).Example 5.1. Let A = (Q;Z; (q0; t);K; T ) be the pda over A = fa; bg, whereQ = fq0; q1; q2; q3g, Z = fz; tg of rules:(a; q0; t; zt; q1); (a; q0; t; zzt; q2);(a; q1; t; zt; q1);(a; q2; t; zzt; q2); (a; q2; t; zt; q1);("; q1; t; "; q3); ("; q2; t; "; q3);(b; q3; z; "; q3):In state q1, each letter a read increases by one the number of symbols z underthe top symbol t in the stack. In state q2, each letter a read increases by twothe number of symbols z under the top symbol t in the stack, or increasesit by one and changes the state to q1. The two "-rules remove the top stacksymbol t, changing the state to q3, in which the only thing possible to do isremoving one z in the stack for each b read.Then we have, for example:



32 Jean-Michel Autebert, Jean Berstel, and Luc BoassonL(A; Q� f"g) = fanbp j 0 < n � p � 2ng;L(A; fq3g � Z�) = fanbp j 0 < n and 0 � p � 2ng;L(A; fq2g � f"g) = ;;L(A; Q� Z�z) = fanbp j 0 < n and 0 � p < 2ng:As seen on this example, for a given pda, changing the mode of acceptancechanges the languages recognized. Nevertheless, the family of languages thatare recognized by pda's, using any of these modes remains the same. Thiscan be proved easily using a useful, though technical, transformation of apda adding it the bottom symbol testing ability. A pda admits bottom testingif there is a partition of the stack alphabet Z in B [ B0 such that for anyaccessible con�guration (q; w), the word w is in BB0�. In other words, in suchan automaton, a symbol at the bottom of the stack always belongs to B and,conversely, a symbol in the stack which belongs to B is the bottom symbol.So, if the topmost symbol of the stack happens to be a symbol in B, it isthe only symbol in the stack. Since the only symbol in the stack that may betested is the topmost symbol, it is then possible to know if it is the bottomsymbol of the stack. Under these conditions, a valid computation leads toa con�guration with an empty store if and only if the last transition usesa rule of the form: (y; q; z; "; q0) 2 T where z is in B. One construction totransform a pda A into a pda A0 admitting bottom testing is the following.Let A = (Q;Z; i;K; T ), let Z 0 = fz0 j z 2 Zg be a copy of Z, and de�ne T 0by: (y; q; z; "; q0) 2 T , (y; q; z; "; q0) 2 T 0 ^ (y; q; z0; "; q0) 2 T 0and (y; q; z; z1z2 : : : zr; q0) 2 T , � (y; q; z; z1z02 : : : z0r ; q0) 2 T 0^(y; q; z0; z01z02 : : : z0r; q0) 2 T 0:Finally, denoting by � : (Z [ Z 0)� ! Z� the homomorphism that erases theprimes, set K0 = f(q; h0) j (q; �(h0)) 2 Kgand A0 = (Q;Z [ Z 0; i;K 0; T 0) :Proposition 5.1. The pda A0 admits bottom testing and recognizes the samelanguage as A, for any mode of acceptance.Hence there is a common family of languages recognized by pda's usingany mode of acceptance which is the family of context-free languages:Theorem 5.1. The family of languages recognized by pda's by empty storageand accepting states is exactly the family of context-free languages.Proof. Let A = (Q;Z; i;K; T ) be a pda. We denote [p; w; q], for w 2 Z+, thelanguage [p; w; q] = fx 2 A� j (p; w) xj== (q; ")g;



Context-Free Languages and Pushdown Automata 33and set [p; "; q] = � ; if p 6= q" if p = qWe then have, for w;w0 2 Z�:[p; ww0; q] = [r2Q [p; w0; r][r; w; q]:We can derive from T that the languages [q; z; q0], for z 2 Z, satisfy theset of equations: [p; z; q] = [(y;p;z;h;q0)2T y[q0; h; q]: (5:1)Hence the languages [q; z; q0] are all context-free, and so is the language:[q2F; i=(q1;z1) [q1; z1; q]which is exactly the language recognized by A = (Q;Z; i;K; T ) with K =f"g � F (i.e. by empty storage and accepting states F ).Conversely, if G = (V; P ) is a context-free grammar over A such thatP � V � (A [ f"g)V �, one can construct from P a pdm M = (V; T ) over Awithout states, where T � (A[f"g)�V �V � is de�ned by: (y;X;m) 2 T ()X ! y em. The language LG(X) is then recognized by the pda associated toM with initial stack symbol X by empty storage.Remark 5.1. If the system of equations (5:1) is replaced by the associatedcontext-free grammar, there is a one to one correspondence between validcomputations of the pda and leftmost derivations in the grammar. Hence thenumber of di�erent valid computations leading to recognize a word x givesthe number of di�erent leftmost derivations for x.For pushdown automata, the mode of acceptance is generally chosento give the simplest proofs for one's purpose. Other modes of acceptancethan the ones quoted above have been investigated. For instance, a result ofSakarovitch [46] shows that if K = [q2Qfqg � Lq with Lq context-free, thenthe language recognized remains context-free.The characterization of context-free languages in terms of languages rec-ognized by pda's allows much simpler proofs of certain properties of context-free languages.Example 5.2. In order to show that the family of context-free languages isclosed under intersection with rational languages, consider a context-free lan-guage L given by a pda A, and a rational language K given by a �nite au-tomaton B. Then a pda recognizing L \ K can e�ectively be constructed,using the Cartesian product of the states of A and of the states of B.



34 Jean-Michel Autebert, Jean Berstel, and Luc BoassonA pushdown automaton is realtime (resp. simple) if the associated pdmis realtime (resp. simple).The fact that any proper context-free language can be generated by acontext-free grammar in Greibach normal form implies that realtime pda's,(and even simple pda's), recognize exactly proper context-free languages.The realtime feature is the key to formulate Shamir's and Greibach'stheorems (theorems 4.1 and 4.3), and that we rephrase here in an automata-theoretic framework.In any pdm M = (Q;Z; T ), the set T can be written as a function T̂from (A [ f"g) into the subsets of Q� Z � Z� �Q. In the case of a realtimepdm, it is a function from A into the subsets of Q�Z � Z� �Q. Let Z be acopy of Z and Q a copy of Q as well, we can conveniently denote the element(q; z; h; q0) in Q � Z � Z� � Q by the word q:z:h:q0 over the Dyck alphabetQ[Z [Z [Q. Recall that we denote D?Q[Z the Dyck set over this alphabet.The Shamir function � from A into the subsets of (Q[Z[Z[Q)� is de�nedby �(a) = fqzhq0 j (q; z; h; q0) 2 T̂ (a)g :Then extend it in the natural way to a morphism from A� into the subsets of(Q[Z [Z [Q)�. Thus, Shamir's theorem states that �(x)\z1q1D?Q[ZF 6= ;i� x is recognized by the realtime pda A = (Q;Z; i; F � f"g; T ) by emptystorage and accepting states F .The Shamir function � gives raise to a function from A into (f[; ];+g [Q[Z [Z [Q)�, extended to an homomorphism', that we call the Greibachhomomorphism, by setting:'(x) = [m1 +m2 + : : :+mk] () �(x) = fm1;m2; : : : ;mkg:Let HQ[Z be the Hardest context-free language over Q[Z. It follows that[z1q1]'(x)F 2 Hm i� x is recognized by the realtime pda A = (Q;Z; i;K; T )by empty storage and accepting states F . This is theorem 4.3.The presence of the Dyck set in Shamir's theorem is due to the fact thatthis language fully describes the behaviour of the stack in a pdm: a letterthat is unmarked is pushed on the top of the stack, while a marked lettererases the corresponding letter provided it is the topmost symbol in the stack.Recognition by empty storage means that the stack must be empty at theend of the computation, and D� is precisely the class of the empty word "for the Dyck congruence.5.2 Deterministic pdaWe now focus on determinism.A pdm M = (Q;Z; T ) over A is deterministic if the set T of transitionssatis�es the following conditions for all (y; q; z) 2 (A [ f"g) �Q� Z:Card(T (y; q; z)) � 1T ("; q; z) 6= ; =) T (a; q; z) = ;; (a 2 A):



Context-Free Languages and Pushdown Automata 35A deterministic pda (dpda for short) is a pda with a deterministic associ-ated pdm. The transformation of a pda into a pda admitting bottom testingdescribed above, when applied to a deterministic pda, gives raise to a de-terministic pda. Hence, it is possible to prove that the family of languagesrecognized by dpda's by empty storage is the same as the family of languagesrecognized by dpda's by empty storage and accepting states, and that thisfamily is included in the family of languages recognized by dpda's by accept-ing states. On the other hand, it is easy to verify that a language recognizedby empty storage by a dpda is pre�x, i:e: no proper pre�x of a word of thislanguage belongs to this language. So, we are left with two families of lan-guages: the family of languages recognized by accepting states, called thefamily of deterministic languages, and the family of languages recognized byempty storage and accepting states, called the family of deterministic-pre�xlanguages. It is easy to check the followingFact 5.1. The family of deterministic-pre�x languages is exactly the familyof deterministic languages that are pre�x languages.The two families are distinct. As an example, the language L1 = fanbp jp > n > 0g is deterministic but not pre�x. To avoid these problems, a usualtrick is to consider languages with an end marker: indeed, L# is a pre�xlanguage which is deterministic if and only if L is deterministic.One awkward feature about dpda's is that, due to possible "-transitionsthat may occur after the input of the last letter of the word, there maybe several valid computations for a �xed input word (being the beginningof one each other). This inconvenient can be avoided by a rather technicalconstruction (see e. g. [2]) that transforms a dpda into an other dpda suchthat an accepting state is reached only if the computation is maximal.Proposition 5.2. For any dpda, it is possible to construct a dpda recognizingthe same language such that an accepting state cannot be on the left side ofan "-rule.Consequently, in such a dpda, for any recognized word, there is only onesuccessful computation. This proves the followingProposition 5.3. Deterministic languages are unambiguous.To see that the inclusion is strict, consider the language L2 = fanbn jn > 0g [ fanb2n j n > 0g. It is unambiguous, and it is not a deterministiclanguage. Indeed, looking carefully at the valid computation used to recognizea word anbn, it is not too di�cult to prove that it is possible to �nd a wordan+kbn+k for some k > 0 such that the internal con�guration reached is thesame than for the former word. Now, the valid computation for anbn shouldbe the beginning of the valid computation for the word anb2n. Hence theautomaton must recognize the word an+kb2n+k, which is not in L2.By the way, the technical construction invoked in Proposition 5.2 is alsothe key to prove the following



36 Jean-Michel Autebert, Jean Berstel, and Luc BoassonTheorem 5.2. The family of deterministic languages is closed under com-plementation.This property is not true for the family of context-free languages: thelanguage fanbpcq j n 6= p or p 6= qg is a context-free language, and itscomplement, intersected by the rational language a�b�c�, is the languagefanbpcq j n = p and p = qg which is not context-free.Proposition 5.4. For any dpda, it is possible to construct a dpda recognizingthe same language such that any "-rule is decreasing.This proposition is quoted as an exercise in [28] and [30]. However, noproof has appeared in the standard textbooks. A proof is given below.The proof is in two steps of independent interest: �rst, we get rid ofnondecreasing "-rules for dpdas recognizing by topmost stack symbols andaccepting states. In a second step, we show that such a dpda recognizes a de-terministic language. This is achieved by constructing an equivalent ordinarydpda, but without introducing any nondecreasing "-rule.Proposition 5.5. Given a dpda A recognizing by topmost stack symbols andaccepting states, it is possible to construct a dpda A0 recognizing the samelanguage with the same mode of acceptance, and such that any "-rule is de-creasing.Proof. Let A = (Q;Z; i;K; T ) be a dpda over A. Observe �rst that we mayalways saturate the set K of accepting con�gurations by adding all con�gu-rations (q; h) 2 Q� Z+ such that (q; z) "j== k for k 2 K.Claim. The number of consecutive nondecreasing "-transitions in a compu-tation may be assumed to be uniformly bounded.The proof of the claim is simple, and appears for instance in [17].Claim. One may assume that there are never two consecutive nondecreasing"-transitions in a computation.The idea is to glue together, in a single rule, any maximal (bounded inview of the �rst claim!) sequence of consecutive nondecreasing "-transitionsappearing in a computation. If such a sequence contains an accepting con�g-uration then, due to the saturation of K, its initial con�guration is accepting,too.Claim. One may assume that, in any computation, there is never a nonde-creasing "-transition followed by a decreasing "-transition.Again, the idea is to glue together a nondecreasing "-rule followed bya decreasing "-rule into one "-rule. This decreases the total number of "-rules. Therefore, the process stops after a �nite number of steps. Acceptingcon�gurations are handled in the same way than above.



Context-Free Languages and Pushdown Automata 37From now on, we may assume, in view of these claims, that any nonde-creasing "-transition either ends the computation or is not followed by an"-transition.We now �nish the proof. Let A0 = (Q;Z; i;K; T 0) be the automaton whereT 0 is constructed as follows. T 0 contains all decreasing "-rules of T . Next,{ If T ("; q; z) = ;, then T 0(a; q; z) = T (a; q; z) for a 2 A.{ If T ("; q; z) = (r;m), with m 6= ", then T 0(a; q; z) = (p; h), where(a; r;m) j�� ("; p; h).It is immediate to check that A0 is equivalent to A. By construction, it hasonly decreasing "-rules.We now turn to the second step.Proposition 5.6. Given a dpda A recognizing by topmost stack symbols andaccepting states, and having only decreasing "-rules, it is possible to constructa dpda B recognizing the same language by accepting states, and such that any"-rule is decreasing.Proof. Let A = (Q;Z; i;K; T ) be a dpda over A. We construct B =(Q0; Z; i;K 0; T 0) as follows: Q0 = Q [ P , where P = fqz j (q; z) 2 Kg. Next,K0 = P . The set of rules T 0 �rst contains T 0("; q; z) = (qz; ") for (q; z) 2 K.Furthermore,{ If T (a; q; z) 6= ; for some letter a 2 A, then T (a; q; z) = (q0;m) for someq0 2 Q and m 2 Z�. In this case,T 0(a; qz; z0) = (q0; z0m) for all z0 2 Z :{ If T ("; q; z) 6= ;, then, since the rule is decreasing, T ("; q; z) = (q0; ") forsome q0 2 Q. In this case,T 0(y; qz; z0) = T (y; q0; z0) for all y 2 A [ f"g and z0 2 Z :By construction, the dpda B has only decreasing "-rules. Clearly, B is equiv-alent to A.Proof of proposition 5.4. A successive application of propositions 5.5 and 5.6proves the statement.Remark 5.2. The proposition 5.6, but without reference to "-rules, is provedin a simpler way in [2]. However, his construction does not apply to the proofof proposition 5.4.Proposition 5.4 shows that, for deterministic automata, nondecreasing "-rules are not necessary. On the contrary, decreasing "-rules cannot be avoided.



38 Jean-Michel Autebert, Jean Berstel, and Luc BoassonExample 5.3. The languageL3 = fanbpcan j p; n > 0g [ fanbpdbp j p; n > 0gis deterministic, and recognized by the dpda with rules:(a; q1; z1; z1z2; q1); (a; q1; z2; z2z2; q1); (b; q1; z2; z3; q2);(b; q2; z3; z3z3; q2); (c; q2; z3; "; q3); (d; q2; z3; z3; q5);("; q3; z3; "; q3); (a; q3; z2; "; q3); (a; q3; z1; "; q4)(b; q5; z3; "; q5); ("; q5; z2; z2; q6):by accepting states, with accepting states q4 and q6.However, L3 cannot be recognized by any realtime deterministic pda.Indeed, a word starts with anb, and it is necessary, while reading the factor bp,to push on the stack an unbounded number of symbols that will be matchedwhen the word ends with dbp, and all these symbols have to be erased whenthe word ends with can.This example shows that, contrarily to the general case, the realtime con-dition induces an e�ective restriction on the family of recognized languages.Let R be the family of languages recognized by deterministic realtimeautomata by empty storage. There is a Shamir theorem for languages in R,that we state now.Let � be the Shamir function from A� into the subsets of (Q[Z[Z[Q)�.Since the automaton is deterministic, for all (q; z) 2 Q � Z, there is atmost one element beginning by q:z in each image �(a) of a 2 A. Such anhomomorphism is called a \controlled" homomorphism. Shamir's theoremcan be rephrased as follows. A language L is in R if and only if there existsa controlled homomorphism � from A� into the subsets of (Q [Z [Z [Q)�such that �(x) \ z1q1Dm�F 6= ; () x 2 L.We de�ne a rational set R by: w 2 R i� w = [w1 + w2 + � � �+ wr]; wk 2QZZ�Q and for all (q; z) 2 Q � Z, there is at most one wk beginning withqz. Considering the Greibach homomorphism ' from A� into the monoid(f[; ];+g [ Q [ Z [ Z [ Q)�, then '(a) 2 R, for all a in A. It follows that[z1q1]'(x) 2 HQ[Z\R� if and only if x is recognized by the realtime dpda A =(Q;Z; i;K; T ) over A by empty storage. (Recall that HQ[Z is the Hardestcontext-free language over Q[Z.) By the way, we can remark that HQ[Z\R�is itself a language in R.The additional condition of being a simple (realtime) dpda induces alsoan e�ective restriction:Fact 5.2. The language L4 = fanban j n > 0g is realtime deterministic, butnot simple.Proof. L4 is recognized by empty storage and accepting states by the realtimedpda A = (Q;Z; T; i;K; T ) where Q = fq1; q2; q3g, Z = fB; zg, i = (q1; B),K = f(q3; ")g and T is the set of rules:



Context-Free Languages and Pushdown Automata 39(a; q1; B;Bz; q1); (a; q1; z; zz; q1); (b; q1; z; "; q2);(a; q2; z; "; q2); (a; q2; B; "; q3):Hence, L4 is a realtime deterministic language. However, it cannot be rec-ognized by a deterministic simple automata, since it is necessary to knowwhether an input letter a belongs to the �rst or to the second factor an.Given two families of languages C and D, the equivalence problem for Cand D, denoted Eq(C;D), is the following decision problem:Instance: A language L in C, and a language M in D.Question: Is L equal to M?The equivalence problem for C, denoted Eq(C), is the problem Eq(C; C). Itis well known that Eq(Alg) is undecidable for the family Alg of context-freelanguages, and up to now it is unknown whether Eq(Det) is decidable ornot, where Det denotes the family of deterministic languages. So there hasbeen a huge amount of works solving Eq(C;D) for various subfamilies of Det.We only quote here a few among the results published in the literature, inthe positive case. The equivalence problem is decidable for parenthesis lan-guages (see paragraph 6.6 below)[39], for simple languages (see paragraph6.7 below)[36], for �nite-turn languages (see paragraph 6.4 below)[53], re-altime languages[42] ,(pre-)NTS languages[49]. A result of S�enizergues[50]shows that if C is an e�ective cylinder (i. e. a family of languages e�ectivelyclosed under inverse homomorphism and intersection with rational sets) con-taining the family Rat of rational sets for which the equivalence problem isdecidable, then so is Eq(C; Det).In order to recognize the whole family of deterministic languages by real-time automata, we have to modify the standard model of pdm. We alreadynoticed that, in a dpda, only decreasing "-rules are necessary. They are nec-essary because, as seen for the language L3 de�ned above, it happens thatsome unbounded amount of information pushed on the stack has to be erasedat the same time. So, if we want to have a realtime device, this leads to usesome mechanism that erases an unbounded number of topmost stack sym-bols in one step. Several such mechanisms have been introduced and stud-ied in the literature (see e.g. Cole[11], Courcelle[12], Greibach[26], Nivat[41],Sch�utzenberger[48]). We present now one such accepting device.A jump pdm over A is a 4-tuple A = (Q;Z; J; T ), where Q and Z have thesame meaning as in a pdm, and J is a new alphabet in bijection with Z, theelements of which are called jump stack symbols, or simply jump symbols,and T , the set of transitions, is a �nite subset of A�Q� Z � (Z� [ J)�Q.We denote � the bijection between J and Z. Observe that, by de�nition,a jump pdm is a realtime device. A jump pdm is deterministic if for all(a; q; z) 2 A� Q� Z, there is at most one (h; q) such that (a; q; z; h; q) 2 T .Con�gurations of a jump pdm are just the same as con�gurations of apdm, but the transition relation is modi�ed: let c = (ag; q; wz) and c0 =(g; q0; w0), where a is in A, g is in A�, q and q0 are in Q, z is in Z, and w andw0 are in Z�. There is a transition between c and c0, and we write c j�� c0,



40 Jean-Michel Autebert, Jean Berstel, and Luc Boassonif either (a; q; z; h; q0) 2 T with h 2 Z� and w0 = wh, just as for pda's, or(a; q; z; j; q0) 2 T with j 2 J if w = w0zw2 and z = �(j) has no occurrence inw2; in such a transition, an unbounded number of symbols (namely jzw2j) iserased.A valid computation is an element of the re
exive and transitive closureof the transition relation, and we note c �j�� c0 a valid computation startingfrom c and leading to c0.A jump pda is to a jump pdm what a pda is to a pdm: it is a 6-tupleA= (Q;Z; J; i;K; T ), where (Q;Z; J; T ) is a jump pdm, and i and K have thesame signi�cance than in a pda. Observe that jump pda's generalize pda's: apda is a jump pda with no jump rules. A jump pda is a deterministic jumppda (jump dpda for short) if the associated jump pdm is deterministic.Since, in a jump pda, it is possible to erase an unbounded number of stacksymbols in one move, the standard accepting mode is by empty storage. Thisis the mode considered when we do not specify an other one.As an example, consider again the deterministic languageL3 = fanbpcan j p; n > 0g [ fanbpdbp j p; n > 0gover fa; b; c; dg. It is recognized by empty storage and accepting states bythe jump pda A = (Q;Z; J; i;K; T ), where Q = fq1; : : : ; q5g, K = f("; q4)g,Z = fz; A;Bg, J = fjz; jA; jBg and T is the set:(a; q1; z; zA; q1); (a; q1; A;AA; q1); (b; q1; A;AB; q2); (b; q2; B;BB; q2);(d; q2; B; "; q3); (b; q3; B; "; q3); (b; q3; A; jz; q4);(c; q2; B; jA; q5); (a; q5; A; "; q5); (a; q5; z; "; q4):Indeed a word of L3 begins with anbp. The �rst four rules just push on thestack AnBp over the bottom symbol z. Now, if the word ends with dbp,the three next rules are used to recognize the word: the �rst two to pop allsymbols B while reading dbp�1, and the third (with jump symbol jz) to erasethe remaining symbols of the stack, i.e. zAn. Last, if the word ends with can,the last three rules are used to recognize the word: the �rst one (with jumpsymbol jA) to erase all the top factor ABp in the stack, the second to pop allsymbols A while reading an�1, and the third to erase the remaining symbolz at the reading of the last a.It is easy to construct from a (deterministic) jump pdm, a (deterministic)pdm (which will not be in general realtime) that acts in the same way: �rst,a rule (a; q; z; j; p) is replaced by the rule (a; q; z; z; pj), where pj is a newstate. This replacement does not change determinism. Then, the followingset of rules is added:f("; pj; z; "; pj) j �(j) 6= zg [ f("; pj; z; "; p j �(j) = zg :Remark that these new rules do not enter in con
ict with the older ones, sincethe states involved are new states, nor with one another. So, determinism ispreserved by this construction.Consequently, in the nondeterministic case, we have the following



Context-Free Languages and Pushdown Automata 41Proposition 5.7. The family of languages recognized by jump pda's is ex-actly the family of context-free languages.A similar statement holds for deterministic languages.Proposition 5.8. The family of languages recognized by deterministic jumppda's is exactly the family of deterministic languages.In view of the preceding construction, and of the remark concerning thedeterministic case, it only remains to prove that a deterministic language canbe recognized by a jump dpda. The proof is very technical and lengthy, sowe refer the interested reader either to Greibach[25], or to Cole[11].An other model considered allows to erase rational segments of the stackword. This is clearly a generalization of jump pdm, since in a jump pdm, theerased factors have the form zh with h 2 (Z�fzg)� . Observe that this rationalset is recognized by the �nite automaton obtained from the rules added in theconstruction above, (rules of the form: ("; pj; z; "; pj) or ("; pj ; z; "; p)) whenskipping �rst and fourth components (those equal to "). It is an easy exerciseto change the sets of rules added so that the erased factors belong to anyrational set. If the rational sets are chosen to be pre�x, as it is the case forjump pdm, determinism is still preserved. Hence, this model is equivalent tojump pdm.Just as the behaviour of the stack in a pdm is described by the Dyckset, the behaviour of the stack in a jump pdm is described by a new set EZ,which is a generalization of the Dyck set, de�ned as follows. EZ is the classof the empty word for the congruence generated byfzz �= " j z 2 Zg[fzj �= j j z 2 Z; �(j) 6= zg[fzj �= " j z 2 Z; �(j) = zg :We name Em this set if m = Card(Z) = Card(J).It is a result of Greibach[26] that each language Em cannot be recognizedby a deterministic jump pda with m � 1 jump symbols. Hence, the numberof jump symbols induces a hierarchy.Again, it is possible to state a Shamir-Greibach like theorem for determi-nistic languages, using jump dpda: let A = (Q;Z; J; i;K; T ) be a deterministicjump pda over A. This time, the Shamir function � is a function from A�into the subsets of (Q [ Z [ T [ Z [ Q)�, and the Greibach homomorphism' is a function from A� into (f[; ];+g [ Q [ Z [ T [ Z [ Q)�. We de�ne arational set R0 by: w 2 R0 i� w = [w1 +w2 + � � �+ wr]; wk 2 QZ(Z� [ T )Qand for all (q; z) 2 Q� Z, there is at most one wk beginning with qz.We have that for all a in A, '(a) is in R0. If ND(EQ[Z ) is the nonde-terministic version of EQ[Z (see section 3.3), it follows that [z1q1]'(x) 2ND(EQ[Z)\R0� if and only if x is recognized by the deterministic jump pdaA = (Q;Z; J; i;K; T ).Again, we can remark that ND(EQ[Z) \ R0� is itself recognized by adeterministic jump pda.



42 Jean-Michel Autebert, Jean Berstel, and Luc Boasson5.3 Pushdown store languagesIn this paragraph, we show that the language composed of the strings thatmay occur in the pushdown store is rational.Let A = (Q;Z; i;K; T ) be a pda over A. We call pushdown store languageof A the language P (A) over Z of all words u such that there exists somestate q for which the internal con�guration (q; u) is both accessible and co-accessible. Formally, P (A) is de�ned by:P (A) = fu 2 Z� j 9x; y 2 A�; 9q 2 Q; 9k 2 K : i xj== (q; u) yj== kg:Theorem 5.3. Given a pda and some mode of acceptance, the pushdownstore language of this pda is rational.For any state q 2 Q, we de�ne the two sets:Acc(q) = fu 2 Z� j 9x 2 A� : i xj== (q; u)g;Co-Acc(q) = fu 2 Z� j 9y 2 A�; 9k 2 K : (q; u) yj== kg :Clearly: P (A) = [q2Q(Acc(q) \Co-Acc(q)) (5:2)We now show that the languages Acc(q) and Co-Acc(q) are rational.Lemma 5.1. The set Acc(q) is rational.Proof. We �rst consider the particular case of a pda A = (Q;Z; i;K; T ) inquadratic form, i.e. such that for any rule (a; q; z; h; q0) 2 T , jhj � 2.Let u = t1 � � � tr+1, where ti 2 Z. A valid computation (x; q0; y1)�j�� ("; q; u) can be decomposed into several steps such that, at the last moveof each of these steps, one letter of u is de�nitively set in the stack. Formally,the whole computation is decomposed into:(x; q0; y1) �j�� (x1; q1; z01) j�� (x01; q01; t1y2) �j�� (x2; q2; t1z02) j�� (x02; q02; t1t2y3)�j�� � � � �j�� (xr; qr; t1t2 � � � tr�1z0r) j�� (x0r; q0r; t1t2 � � � tryr+1) �j�� ("; q; u);where y1; : : : ; yr+1 and t1; : : : ; tr+1 are in Z. De�ne now the context-freegrammar Gq with terminal alphabet Z, nonterminal alphabet Q � Z, andrules: (p; z) �! (p0; z0) if 9x 2 A� : (p; z) xj== (p0; z0)(p; z) �! t(p0; z0) if 9a 2 A [ f"g : (a; p; z; tz0; p0) 2 T(p; z) �! " if 9x 2 A� : (p; z) xj== (q; ")(q; z) �! zA straightforward proof by induction on the length of a derivation shows thatif there is a derivation (p; z) ?�! u in Gq, then there is a valid computation(p; z) xj== (q; u) in A.



Context-Free Languages and Pushdown Automata 43Conversely, if there is a valid computation (x; q0; y1) �j�� ("; q; u) in A,then the decomposition described above of this valid computation gives therules to be applied to form a derivation (q0; y1) ?�! u in Gq.Thus we have: LGq ((q1; z1)) = Acc(q);and since Gq is a right linear grammar, Acc(q) is rational.Note that the grammarGq can be e�ectively computed since the condition9x 2 A� : (p; z) xj== (p0; z0)is an instance of the emptiness problem for a context-free language.Considering now the general case, the proof goes along the same lines.However, we have to modify the grammar Gq in order to skip the conditionthat for any rule (a; p; z; h; p0) 2 T , jhj � 2.Indeed, when symbols are de�nitively set in the stack at a time (theremay be more than one), several symbols may be pushed that will have to beerased. The whole computation is now decomposed into:(x; q0; y1) �j�� (x1; q1; z01) j�� (x01; q01; t1y2) �j�� (x2; q2; t1z02) j�� (x02; q02; t1t2y3)�j�� � � � �j�� (xr; qr; t1t2 � � � tr�1z0r) j�� (x0r; q0r; t1t2 � � � tryr+1) �j�� ("; q; u);where y1; : : : ; yr+1 and t1; : : : ; tr+1 are now nonempty words over Z.De�ne now the context-free grammar Gq with terminal alphabet Z, non-terminal alphabet Q� Z, and rules:(p; z) �! (p0; z0) if 9x 2 A� : (p; z) xj== (p0; z0)(p; z) �! t(p0; z0) if 9a 2 A [ f"g; t; y 2 Z+; x 2 A�; p00 2 Q :(a; p; z; ty; p00) 2 T and (p00; y) xj== (p0; z0)(p; z) �! " if 9x 2 A� : (p; z) xj== (q; ")(q; z) �! zThe same proof than before ensures that LGq ((q1; z1)) = Acc(q), and sinceGq is a right-linear grammar, we get that Acc(q) is rational.We now turn to the proof ofLemma 5.2. The set Co-Acc(q) is rational.Proof. We �rst consider the case of the mode of acceptance by empty storageand accepting states. Let F be the set of accepting states.Consider a valid computation (x; q; u) �j�� ("; q0; ") with q0 2 F and u =t1 � � � tr+1, where t1; : : : ; tr+1 are in Z. It can be decomposed into:(x; q; u) �j�� (xr; pr; t1t2 � � � tr) �j�� � � �� � � �j�� (x2; p2; t1t2) �j�� (x1; p1; t1) �j�� ("; q0; ") :De�ne now a context-free grammar H over terminal alphabet Z, with non-terminal alphabet Q, and rules:



44 Jean-Michel Autebert, Jean Berstel, and Luc Boassonp �! p0z if 9x 2 A� : (p; z) xj== (p0; ")p �! " if p 2 F:Again, the grammar H can be e�ectively computed.A straightforward proof by induction on the length of a derivation showsthat if there is a derivation p ?�! u in H, then there is a valid computation(x; p; u) �j�� ("; q0; u) with q0 2 F in A.Conversely, if there is a valid computation (x; q; u) �j�� ("; q0; ") in A, thenthe decomposition described above of this valid computation gives the rulesto be applied to form a derivation q ?�! u in H.Thus we have: LH(q) = Co-Acc(q);and since H is a left linear grammar, Co-Acc(q) is rational.It remains to explain how to generalize the result for any mode of accep-tance, i.e. how to modify the grammar H in accordance with the mode ofacceptance chosen.Suppose that u is in Co-Acc(q), i.e. there exists x 2 A�, and (q0; u0) 2 Ksuch that (x; q; u) �j�� ("; q0; u0). If u0 is not empty, there is a longest left factorv of u such that the symbols of v are not involved in this valid computation.This computation can be divided into two subsets: in the �rst one all butone of the symbols of u above v are deleted, the second one being the restof the computation. If at the end of the �rst part, the internal con�gurationis (p; vz) for some pushdown symbol z, setting u = vzw, we then have twovalid computations: (x1; q; w) �j�� ("; p; ") and (x2; p; z) �j�� ("; q0; u0) with x =x1x2.Hence, this leads to the (left linear) grammar H over terminal alphabetZ, with nonterminal alphabet Q [ f�g, and rules:q �! q0z if 9 x 2 A� : (q; z) xj== (q0; ")p �! �z if 9 x 2 A� : (p; z) xj== (q0; u0)� �! �z + " for all z 2 Zq0 �! " if (q0; ") 2 K :Again we have LH(q) = Co-Acc(q), hence we get that Co-Acc(q) is rational.Note that, also in the general case, the grammars Gq and H can be e�ec-tively computed.From equation (5.2) and lemmas 1 and 2, we get that P (A) is rational,hence the proof of the theorem is complete.5.4 Pushdown transducersA pda to which is adjoint an output is a pushdown transducer. In this para-graph, we show that the output language of a pushdown transducer is a



Context-Free Languages and Pushdown Automata 45context-free language when the given input is precisely the language recog-nized by the associated pda.A pushdown machine with output over A is a 4-tuple S = (Q;Z;B; 
)where B is an alphabet called the output alphabet, 
 is a �nite subset of(A [ f"g) � Q � Z � Z� � Q � B�, and if T is the projection of 
 onto(A[f"g)�Q�Z �Z��Q, (Q;Z; T ) is a pushdown machine, called the pdmassociated to S.We note (h; q0; u) 2 
(y; q; z) as an equivalent for (y; q; z; h; q0; u) 2 
.An internal con�guration of a pushdown machine with output S is aninternal con�guration of the associated pdm. A con�guration is a 4-tuple(x; q; h; g) 2 A� � Q � Z� � B�, where x is the input word to be read, g isthe word already output, and (q; h) is an internal con�guration.The transition relation is a relation over con�gurations de�ned the fol-lowing way: there is a transition between c = (yx; q; wz; g) and c0 =(x; q0; wh; gu), where y is in (A [ f"g), g is in A�, q and q0 are in Q, z isin Z, w and h are in Z�, and g and u are in B�, and we note c j�� c0, if(y; q; z; h; q0; u) 2 
. A valid computation is an element of the re
exive andtransitive closure of the transition relation, and we note c �j�� c0 a valid com-putation starting from c and leading to c0.Besides T , we can derive from 
 an other function from A��Q�Z� intothe subsets of B�, named the output function of S, denoted �, and de�nedas follows:�(x; q; h) = fg 2 B� j 9 q0 2 Q; h0 2 Z� : (x; q; h; ") �j�� ("; q0; h0; g)g :It follows that, for x 2 A�, y 2 A [ f"g, q 2 Q, z 2 Z and w 2 Z�:�(yx; q; wz) = [(y;q;z;h;q0;u)2T u�(x; q0; wh) :A pushdown transducer is to a pushdown machine with output what a pdais to a pdm, i.e. it is a pushdown machine with output with speci�ed initialand accepting con�gurations.A pushdown transducer over A (pdt for short in the rest of the text) is a6-tuple T = (Q;Z;B; i;K; 
) where (Q;Z;B; 
) is a pushdown machine withoutput, i is the internal starting con�guration, and K = F � f"g where F isa subset of Q, the accepting states.If T is the projection of 
 onto (A [ f"g) � Q � Z � Z� � Q, then A =(Q;Z; i;K; T ) is a pushdown automaton, called the pda associated to T . Byconvention, the output of T in the initial con�guration is the empty word.The existence of a set K of accepting con�gurations leads to de�ne afunction similar to the function �, but taking accepting con�gurations inaccount:M (x; q; h) = fg 2 B� j 9 (q0; h0) 2 K : (x; q; h; ") �j�� ("; q0; h0; g)g :



46 Jean-Michel Autebert, Jean Berstel, and Luc BoassonFinally, the transduction realized by T is the function � from A� into thesubsets of B� de�ned by8x 2 A�; �(x) = M (x; q1; z1) :Proposition 5.9. The image through � of a rational language is context-free.We don't prove this proposition.Consider now the following example: T = (Q;Z;B; i;K; 
) with A = B =fa; b; cg, Z = fz1; Xg, Q = fq1; q2; q3; q4g, K = f("; q4)g and 
 composed of(a; q1; z1; z1X; q1; a); (a; q1; X;XX; q1; a); (b; q1; X;X; q2; b);(b; q2; X;X; q2; b); (c; q2; X; "; q3; c); (c; q3; X; "; q3; c);(c; q3; z1; "; q4; c) :It is easy to see that, due to the fact that the language recognized by theassociated pda is faibjci+1 j i; j > 0g,�(x) = � aibjci+1 if x = aibjci+1 with i; j > 0; otherwise.So, if L = faibicj j i; j > 0g, then �(L) = faibici+1 j i > 0g. HenceFact 5.3. The image through � of a context-free language is not alwayscontext-free.Nevertheless,Theorem 5.4 (Evey). [14] Given a pushdown transducer T , if L is thecontext-free language recognized by the associated pda, the image �(L) is acontext-free language.Proof. Let T = (Q;Z;B; i;K; 
) be a pdt over A. De�ne a new alphabetH = fhy; ui j 9q; z; h; q0 : (y; q; z; h; q0; u) 2 
gWe can de�ne a set of transitions T in H � Q� Z � Z� �Q by:(hy; ui; q; z; h; q0) 2 T () (y; q; z; h; q0; u) 2 
:Setting A = (Q;Z; i;K; T ), we get a (realtime) pda over H recognizing acontext-free language N over H. Finally, we consider the two morphisms �and � from H� into A� and B� respectively, de�ned by:8hy; ui 2 H; �(hy; ui) = y and �(hy; ui) = u:It is then clear that �(N ) is the language L recognized by the associated pda,and �(N ) is equal to �(L).



Context-Free Languages and Pushdown Automata 476. SubfamiliesWe present here some subfamilies among the very numerous ones that havebeen studied in the literature. We will begin with the probably most classicalone, namely1. the family Lin of linear languages.We then turn to some families derived from it2. the family Qrt of quasi-rational languages3. the family Sqrt of strong quasi-rational languages4. the family Fturn of �nite-turn languages.We then present other subfamilies, namely5. the families Ocl of one-counter languages and Icl of iterated counter lan-guages6. the family of parenthetic languages7. the family of simple languages8. the families of LL and LR languages.6.1 Linear languagesThe simplest way to de�ne the family of linear languages is by grammars: acontext-free grammar is linear if each right member of the rules contain atmost one variable. A context-free language is linear if there exists a lineargrammar generating it [10, 4].We denote by Lin the family of linear languages. Naturally, the �rstquestion that arises is whether Lin is a proper subfamily of the family ofcontext-free languages. This is easily seen to be true. Many proofs are possi-ble. Here is an example of a context-free language which is not linear: let �be the linear language fanbn j n � 0g; the language �� is context-free butnot linear. The direct proof naturally leads to a speci�c iteration theorem:Theorem 6.1. Given a linear language L, there exists an integer N0 suchthat any word w in L of length at least N0 admits a factorization w = xuyvzsatisfying(1) xunyvnz 2 L 8n 2 N(2) uv 6= 1(3) jxuvzj � N0The proof of this iteration theorem is very similar to the proof of theclassical iteration theorem of Bar-Hillel, Perles and Shamir; it uses derivationtrees in a grammar generating L. In the usual version, the third conditionstates that the length of uyv is at most N0; here, due to the fact the grammaris linear, we may select in the derivation tree the topmost repetition insteadof the lowest one. (Note that in a non linear grammar, the notion of topmost



48 Jean-Michel Autebert, Jean Berstel, and Luc Boassonrepetition does not make sense.) We leave to the reader the proof of the abovetheorem as well as its use to prove that fanbn j n � 0gfambm j m � 0g is notlinear.The linear languages can be de�ned in many various ways. We brie
ydescribe here the most important ones.6.1.1 Pushdown automata characterization. We begin by some de�ni-tions. Given a computation of a pda A, a turn in the computation is a movethat decreases the height of the pushdown store and is preceded by a movethat did not decreased it.A pda A is said to be one-turn if in any computation, there is at mostone turn.Fact 6.1. A language is linear if and only if it is recognized by a one-turnpda.The proof of this fact is easy: the construction of a pda from a grammarpresented in the previous section on pda's gives raise to one-turn pda froma linear grammar; similarly, the construction of a grammar from a pda givesraise to a nearly linear grammar from one-turn pda: in the right member ofany rule, there is at most one variable generating an in�nite language. Sucha grammar can easily be transformed in a linear one.This characterization may help to prove that some languages are linear;it may be easier to describe a one-turn pda than a linear grammar for a givenlanguage. This is the case, for example, for the language over A = fa; bgL = fan1ban2b � � �ank j k � 2; 9i; j; 1 � i < j � k;ni 6= njg:The one-turn pda recognizing L can roughly be described as follows: themachine reads an arbitrary number of blocks anb, then it counts up thenumber of letters a in a block; it then reads again an arbitrary number ofblocks anb, then it counts down the number of letters a checking it is notequal to the previous number of a's. Clearly, this nondeterministic machineis one-turn and recognized L, hence L is linear.This characterization also naturally leads to consider the following ques-tion: say that a language is in the family DetLin if it is recognized by adeterministic one-turn pda (a one-turn dpda). Clearly, DetLin � Det\Lin.The question raises whether this inclusion is strict or not. The answer is yes.Here is a example : let A = fa; bg and consider the languageL = fanbmapbq j n = m or p = q n;m; p; q � 1g:It is easy to check that L is linear and deterministic:On one hand, the language L is generated by the linear grammarG givenby S ! T + X T ! aT + aT 0 T 0 ! bT 0 + bT 00T 00 ! aT 00b+ ab X ! Xb +X 0b X 0 ! X 0a+ X 00aX 00 ! aX 00b+ ab



Context-Free Languages and Pushdown Automata 49On the other hand, the language L is recognized by the following dpda: countup the letters in the �rst block of a's; when entering the �rst block of b's,check if the number of b's is equal to the number of a's; if these two numbersare equal, read the second block of a's and of b's and accept; if they are notequal, restart the counting of letters a and b in the second block. This showsthat L 2 Det\Lin. However, L =2 DetLin ; there is no deterministic one-turnpda recognizing L. Intuitively, in any deterministic pda recognizing L, themachine has to count in the stack the number of a's in the �rst block andthen to check if the number of b's following these is the same. Hence, afterreading the �rst block in a?b?, we already got at least one turn. If, at thismoment, the number of a's and the number of b's happen to be di�erent, thecomputation will have to count up the number of a's and to count down thenumber of b's in the second block, giving raise to a new turn. Hence, anydeterministic pda recognizing L will be at least two-turn. It follows thatProposition 6.1. The family of deterministic and linear languages strictlycontains the family of languages recognized by deterministic one-turn pda (orequivalently, the family of languages simultaneously deterministic and linear).The same linear language can be used to prove other results such as:{ L cannot be generated by a linear grammar in Greibach normal form.{ L is unambiguous but cannot be generated by an unambiguous linear gram-mar (showing that the inclusion UnAmbLin � UnAmb \ Lin is strict).6.1.2 Algebraic characterization. Given an alphabet A, the rational sub-sets of A?�A? are de�ned as usual: they are the elements of the least family ofsubsets of A?�A? containing the �nite ones and closed under union, productand star (i.e. generated submonoid). This family is denoted Rat(A? � A?).To any subset R of A? � A?, we associate the language LR over A de�nedby LR = fuev j (u; v) 2 Rg, where ev denotes the reversal of v. We may thencharacterize the family of linear languages by the followingProposition 6.2. A language L over A is linear if and only if there existsa rational subset R of A? �A? such that L = LR.Proof. Given a linear grammar G = (V; P ) generating L, we consider the�nite alphabetB = fhu;evi j 9X;Y 2V : X ! uY v 2 Pg [ fhu; "i j 9X 2V : X ! u 2 Pg:We then construct a new grammar over B as follows: to each terminal ruleX �! u of the original grammar is associated the rule X �! hu; "i in thenew grammar; to each nonterminal (linear) rule X �! uY v of the originalgrammar is associated the rule X �! hu; eviY . This grammar is right lin-ear and generates a rational language K over B. Using the homomorphismtransforming each letter hu; evi of B in the corresponding element (u; ev) ofA? �A?, we get an homomorphic image R of K. So, R is rational. Then, itis immediate to prove that L = LR.



50 Jean-Michel Autebert, Jean Berstel, and Luc BoassonConversely, using the same homomorphism, given a rational subset R ofA?�A?, we can construct a right linear grammar generating R; the rules willbe of the form X �! (u; v)Y or X �! (u; v) for some u; v 2 A?. To suchrules we associate X �! uY ev and X �! uev respectively. The new grammarobtained is linear and generates LR.As the rational subsets of A? �A? are exactly the rational transductionsfrom A? into A?, this characterization strongly connects linear languages tothe theory of rational transductions and of rational cones [4].6.1.3 Operator characterization. The above characterization can be re-formulated in a slightly di�erent way. Given a rational subset R of A? �A?and a language L over A, we de�ne the binary operation bracket of R by L,denoted [R;L], by [R;L] = fumev j (u; v) 2 R; m 2 Lg:A family of languages F is said to be closed under bracket if, given a languageL in the family F and any rational set R in A? �A?, [R;L] is in F . We maythen stateProposition 6.3. The family Lin of linear languages is the smallest familyof languages containing the �nite sets and closed under bracket.Proof. Denote by Fin the family of �nite languages and let M = f[R;F ] jR 2 Rat(A?�A?); F 2 Fing. Since [K; [R;F ]] = [KR;F ],M is closed underbracket and is the smallest family of languages containing the �nite sets andclosed under bracket. Next, let L be a linear language. By Proposition 6.2,there exists a rational set R of A? � A? such that L = LR; this can now bereformulated L = [R; f1g] showing that L is in M. Hence, we have Lin �M.As we know that the family Lin contains the �nite languages and is closedunder bracket, we have the reverse inclusion.We shall see later that this characterization leads naturally to de�ne somenew subfamilies of the family of context-free languages.6.2 Quasi-rational languagesOne of the oldest families of languages derived from the family Lin is thefamily Qrt of quasi-rational languages. Again, this family can be de�ned invarious ways, that we present now.De�nition 6.1. The family Qrt of quasi-rational languages is the substitu-tion closure of the family Lin of linear languages.This de�nition can be made more precise: we de�ne, for k in N , the familyQrt(k) by Qrt(0) = Rat, and Qrt(k + 1) = Lin � Qrt(k), where Rat is thefamily of rational languages and, for two families of languages L and M, thefamily L � M is the family obtained by substituting languages in M intolanguages in L. Clearly,



Context-Free Languages and Pushdown Automata 51Qrt = [k2NQrt(k):It follows that Qrt(1) is exactly the family Lin. It should be noted that,due to closure properties of the family Lin, one has Lin � Rat = Lin. Onthe contrary, the inclusion Rat � Lin � Lin is strict.Example 6.1. Over the alphabet A = fa; bg, we consider the linear lan-guage L = fanbn j n > 0g. We then substitute to the letter a the linearlanguage La = fxnyn j n > 0g and to the letter b the �nite languageLb = fzg. This gives raise to a quasi-rational language in Qrt(2), namelyM = fxn1yn1 � � �xnkynkzk j k > 0; ni > 0; i = 1; : : : ; kg.One of the �rst question solved was: does there exist a context-free lan-guage which is not in the family Qrt? The answer is yes, and the �rstproofs were direct; they proved this and two related results. The �rst onestates that Qrt(k) is strictly included in Qrt(k + 1). The second one statesthat, similarly to the case of Lin = Qrt(1), we have, for each integer k,Qrt(k) � Rat = Qrt(k) and Rat � Qrt(k) � Qrt(k + 1). We will denoteQRT (k) the family Rat � Qrt(k). These results can be summarized in thefollowing chain of inclusionsRat = Qrt(0) �j Lin = Qrt(1) �j QRT (1) �j Qrt(2) �j� � ��j Qrt(k) �j QRT (k) �j Qrt(k + 1) �j� � �Before explaining how these results have been proved, we turn to some char-acterizations of languages in Qrt used in these proofs and which are of inde-pendent interest.Given a context-free grammar G = (V; P ) over A and, for each a 2 A,a context-free grammar Ga = (Wa; Qa) over B in which the axiom is a, weconstruct a new grammar H over B called the direct sum of the grammarsG and Ga for a 2 A as follows. The set of variables of H is the disjoint unionof V and of the sets Wa for a 2 A; the set of rules of H is the union of thesets of rules of G and of all the rules of the grammars Ga.Using the results of the section considering grammars as equations, it iseasy to see that, for each variable X 2 V , the language generated by Xin the grammar H is obtained from LG(X) by substituting to each letter athe language La generated by the grammar Ga. We then may repeat suchan operation giving raise to an iterated sum of grammars. It then followsimmediately thatProposition 6.4. [40] A language L is quasi-rational i� there exists a gram-mar generating L that is an iterated sum of linear grammars.Example 6.2. (continued) Consider the language L generated by the lineargrammar S �! aSb + ab and the languages La generated by the linear



52 Jean-Michel Autebert, Jean Berstel, and Luc Boassongrammar a �! xay + xy and Lb generated by the linear grammar b �! z.The direct sum of these grammars is:S �! aSb+ ab a �! xay + xy b �! zand generates the language M of the previous example.This characterization leads to the following new approach of quasi-rationallanguages. A variable S in a context-free grammar G is expansive if thereexists a derivation S ?�! uSvSw for some words u; v; w. A grammar whichcontains no expansive variable is said to be nonexpansive. A language isnonexpansive if there exists a nonexpansive grammar generating it. Then,Proposition 6.5. A language is quasi-rational i� it is nonexpansive.This proposition explains that some authors use the term nonexpansiveinstead of quasi-rational. Proving that any quasi-rational language of order kis generated by a nonexpansive grammar is straightforward by induction on k:for k = 1, we have a linear language, thus generated by a linear grammar; sucha grammar is obviously nonexpansive. Given now a language L in Qrt(k+1),by de�nition, it is obtained by substituting to each letter a a linear languageLa in a language M 2 Qrt(k). By induction hypothesis, M is generatedby a non-expansive grammar G; each language La is generated by a lineargrammar. The direct sum of G and of the Ga is clearly nonexpansive.The converse goes roughly this way: �rst, given a grammar G, de�ne apreorder relation � on the variables by setting X � Y if there exists twowords u; v and a derivation such that X ?�!uY v. As usual, this preorderinduces an equivalence relation X � Y i� X � Y and Y � X. Verify thenthat, if G is nonexpansive, in the right member of a rule X �! �, thereis at most one occurrence of a variable Y equivalent to X. Conclude then,using the order relation attached to the preorder �, that the grammar can bedescribed as an iterated direct sum of linear grammars, so that the generatedlanguage is quasi-rational.Proposition 6.5 is the result that has been used to prove directly thatthere exists a context-free language which is not quasi-rational (see [40, 55] forexample). One of the �rst languages considered was the Lukasiewicz languagegenerated by the grammar G S �! aSS + b:The proofs showed that any grammar generating this language had to beexpansive; the proofs were re�ned to exhibit, for each integer k, a languagein Qrt(k+1) not in Qrt(k). They used the following grammars clearly relatedto G :



Context-Free Languages and Pushdown Automata 53Sk �! aSkSk�1� � �Si �! aSiSi�1� � �S1 �! aS1S0S0 �! aS0b+ b:These results are now proved as a consequence of a very powerful lemma(the syntactic lemma) which will not be presented here (see [4]).It should be noted that, contrarily to the situation for linear languages,any quasi-rational language can be generated by a nonexpansive grammarin Greibach normal form. This follows from the construction of Rosenkrantzwhich preserves the nonexpansivity. On the other hand, it is an open problemto know if any unambiguous quasi-rational language can always be generatedby an unambiguous nonexpansive grammar ( i.e. do we have NonAmbQrt =NonAmb \ Qrt?). A possibly related open problem is the following: giventwo quasi-rational languages, is it true that their intersection either is quasi-rational or is not context-free?Proposition 6.5 leads to consider a new notion: the index of a derivationis the maximum number of occurrences of variables in the sentential formscomposing it. A terminal word u has index k if, among all the derivationsgenerating u, the one of minimum index is of index k. The grammar G is of�nite index if the index of any generated word is bounded by a �xed integerk. Otherwise, it is of in�nite index. It can be provedProposition 6.6. A language is quasi-rational i� it is generated by a gram-mar of �nite index.This result can be made even more precise: the family Qrt(k) is exactlythe family of languages generated by grammars of index k. We refer thereader to [22, 27, 47, 4] for a proof of this proposition.6.3 Strong quasi-rational languagesWe present now a less usual family of languages. It is derived from the bracketoperation de�ned above. Recall that Lin is the smallest family closed underbracket containing the �nite sets. Recall also that Rat � Lin denotes therational closure of Lin, and denote SQRT (1) this family of languages. (Thisfamily was denoted QRT (1) just above.) We then de�ne Sqrt(2) as the small-est family of languages containing SQRT (1) and closed under bracket. Moregenerally, for each integer k, we de�ne the families SQRT (k) as the ratio-nal closure of Sqrt(k), and Sqrt(k + 1) as the smallest family of languagescontaining SQRT (k) closed under bracket. Hence, we may writeSQRT (k) = Rat � Sqrt(k) ; Sqrt(k + 1) = [SQRT (k)] ;



54 Jean-Michel Autebert, Jean Berstel, and Luc Boassonwhere [L] denotes the bracket closure of the family L. Finally, we denote bySqrt, the in�nite union of the familiesSqrt(k). This is the family strong quasi-rational languages [7]. Clearly, for each k, Sqrt(k) �j Qrt(k). The followingmore precise fact holdsFact 6.2. There exists a language in Qrt(2) which is not in Sqrt.Such a language is the language M of the example above:M = fxn1yn1 � � �xnkynkzk j k > 0; ni > 0; i = 1; : : : ; kg:It is in Qrt(2). We want to show that it does not lie in Sqrt.First, we show that if F is any family of languages such that the languageM belongs to Rat � F , then M is a �nite union of products of languagesin F . This follows immediately from the fact that M does not contain anyin�nite regular set. Hence, if M 2 SQRT (k), M is a �nite union of product oflanguages in Sqrt(k�1). Trying to split M into a �nite product of languagesimmediately leads to note that there is exactly one factor in the product verysimilar to the language M itself. Thus, if M 2 SQRT (k), then M belongs tothe family Sqrt(k).Next, we check that if M = [R;L], then R is a �nite subset of fx; y; zg?�fx; y; zg?. This implies that, if M belongs to the family Sqrt(k), it is a �niteunion of products of languages lying in SQRT (k � 1). Again, there is onefactor in this union of products very similar to M leading to the conclusionthat M should lie in SQRT (k � 1).Hence, we may conclude that, if M belongs to Sqrt, it belongs toSqrt(1) = Lin. As M is not linear, the fact is proved.Similarly to the situation for quasi-rational languages, we haveProposition 6.7. For each k, the family Sqrt(k) is a strict subfamily ofSqrt(k + 1).6.4 Finite-turn languagesThe characterization of linear languages by one-turn pda naturally leads tode�ne �nite-turn pda's and languages. A pda is k-turn if any computationadmits at most k turns. Naturally, a language will be said to belong to thefamily Fturn(k) if it is recognized by a k-turn pda. Then a �nite-turn pdais a pda which is k-turn for some integer k. A language is �nite-turn if it isrecognized by a �nite-turn pda [21]. It is easy to prove that 0-turn languagesare rational.The family of �nite-turn languages can be described using the bracketoperation too. This de�nition is similar to the one of strong quasi-rationallanguages where the rational closure is replaced by the closure under unionand product. More precisely, let Fturn1 be the family Lin and set, for eachinteger k,



Context-Free Languages and Pushdown Automata 55FTURN k = Fin � Fturnk ; F turnk+1 = [FTURN k] ;so that FTURN k is the closure of Fturnk under union and product and thatFturnk+1 is the closure of FTURN k under bracket. Finally, we denote byFturn the in�nite union over k in N the families Fturnk [21]:Fturn =[k Fturnk =[k FTURNk :It should be noted that the two families Fturnk and Fturn(k) are notequal. For instance, let � = fanbn j n � 1g and consider the languageL = �k. It is easily seen that L is in FTURN 1. (So it belongs to Fturn2 also.)Besides, L does not belong to Fturn(k�1). So, FTURN 1 is not contained inFturn(k). However, the in�nite union of the families Fturnk and the in�niteunion of the families Fturn(k) coincide:Fact 6.3. The family Fturn is exactly the family of �nite-turn languages.Proof. It consists in showing that(1) if L is a �nite-turn language, so is [R;L](2) the family of �nite-turn languages is closed under union and prod-uct.This implies that Fturn is contained in the family of �nite-turn languages.Conversely, given a k-turn language, we decompose the computations of thek-turn pda recognizing it to get a description of the language through union,product and the bracket operation of (k � 1)-turn languages, showing thenthe reverse inclusion.Remark 6.1. The second part of the above proof shows in fact that, for eachk, we have the inclusion Fturn(k) �j Fturnk.The given characterization of �nite-turn languages obviously shows thatthey are all strong quasi-rational languages. Here again, we get a propersubfamily :Fact 6.4. There exists a language in Sqrt(1) which is not �nite-turn.Such a language is, for instance, �? = fanbn j n � 1g?. As for the abovefamilies, we have chains of strict inclusions:Proposition 6.8. For each k, the family Fturnk is a strict subfamily ofFturnk+1, and the family Fturn(k) is a strict subfamily of Fturn(k + 1).6.5 Counter languagesWe �rst present in this section the family of one-counter languages. It isde�ned through pda's.



56 Jean-Michel Autebert, Jean Berstel, and Luc BoassonDe�nition 6.2. A pda is one-counter if the stack alphabet contains only oneletter. A context-free language is a one-counter language if it is recognized bya one-counter pda by empty storage and accepting states.We denote by Ocl this family of languages. The terminology used herecomes from the fact that, as soon as the stack alphabet is reduced to a singleletter, the stack can be viewed a counter.Example 6.3. Over the alphabet A = fa; bg, we consider the Lukasiewiczlanguage generated by the grammar S �! aSS + b. It is a one-counterlanguage: each letter a increases the height of the stack by 1, each letter bdecreases it by 1. The word is accepted i� it empties the stack.As in the case of linear languages, the �rst question is whether Ocl is aproper subfamily of the family of context-free languages. The proof that thisholds is more technical than in the case of linear languages. The idea is toprove an iteration lemma for one-counter languages and to use it to get thedesired strict inclusion [6]. We will give later on such counter-examples, butwe will not state this lemma which is too technical and beyond the scope ofthis presentation.As in the case of linear languages, the de�nition of one-counter languagesthrough pda's naturally leads to de�ne the family DetOcl as the family oflanguages recognized by a deterministic one-counter pda. Clearly, DetOcl �Det \Ocl. As in the linear case, the inclusion is strict :Proposition 6.9. The family of deterministic and one-counter languagesstrictly contains the family of languages recognized by a deterministic one-counter pda (or, equivalently, the family of languages simultaneously deter-ministic and one-counter).Proof. Over the alphabet A = fa; b;#g, consider the language L = fw#w0 jw;w0 2 fa; bg? w0 6= ewg. We will show that L is in Det \ Ocl and is not inDetOcl.It is deterministic: clearly the language fw# ew j w 2 fa; bg?g is determinis-tic. So, its complementC is deterministic, too. The language L is exactly theintersection of the language C and of the rational language fa; bg?#fa; bg?.It follows that L is deterministic.It is one-counter: the language L can be described as the (non disjoint)union of the two languagesL1 = fw#w0 j jwj 6= jw0jgL2 = fucv#u0dv0 j c; d 2 fa; bg; c 6= d; juj = jv0jg :Clearly, L1 and L2 are one-counter languages. Thus, L = L1 [ L2 is a one-counter language.To see that L is not in DetOcl, the idea is to observe that, after readingan input w, the length of the stack is polynomially bounded in the lengthof the input. Since there is only one stack symbol, there exist two distinct



Context-Free Languages and Pushdown Automata 57words w and x of the same length that lead to the same (unique due todeterminism) con�guration. Hence, since w#ex is accepted, so is x#ex, whichis impossible.Remark 6.2. The last argument of the above proof can be also used to showthat the linear language fw#ew j w 2 fa; bg?g is not one-counter; it needsto prove that a one-counter pda may always be supposed to be realtime (see[18]). This shows, in particular, that the family Ocl is a strict subfamily ofthe family of context-free languages.As in the case of linear languages, it can be seen that Ocl � Rat = Oclwhence the inclusion Rat � Ocl � Ocl is strict. This new larger family,denoted here OCL, is exactly the family of languages recognized by a one-counter pda which admits bottom testing. Again as in the case of linear lan-guages, we may de�ne the family Icl of iterated counter languages as thesubstitution closure of the family Ocl.Similarly to what happened for the quasi-rational languages, this de�ni-tion can be made more precise: we may de�ne, for each k in N, the familyOcl(k) by Ocl(0) = Rat, and Ocl(k+1) = Ocl(k) � Ocl. Then, the family Iclis the in�nite union over k in N of the familiesOcl(k). Using such de�nitions,Ocl(1) = Ocl.The study of the families Ocl(k) leads naturally to prove that Ocl(k) �Rat = Ocl(k), whence Rat � Ocl(k) �j Ocl(k). This last family will naturallybe denoted OCL(k) and we get the following chain of strict inclusionsRat = Ocl(0) �j Ocl(1) �j OCL(1) �j Ocl(2) �j� � ��j Ocl(k) �j OCL(k) �j Ocl(k + 1) �j� � �(To be compared to the similar chain of inclusions concerning the familiesQrt(k) and QRT (k).)The languages in Icl can be characterized as languages recognized bypda's such that the stack language lies in the bounded set z?1 � � �z?k.Up to now, we may remark that the situation here is very similar tothe situation we had when dealing with linear and quasi-rational languages.However, it is worth noticing that, contrarily to the case of linear languages,one-counter languages do not enjoy other characterizations through gram-mars or operators as linear languages did. This explains that we will not gethere subfamilies similar to the strong quasi-rational languages, etc...If we compare the families Lin and Ocl with respect to inclusion, we seethat these two families are incomparable. Even more,Proposition 6.10. There is a language in Ocl which is not in Qrt. There isa language in Lin which is not in Icl.



58 Jean-Michel Autebert, Jean Berstel, and Luc BoassonThe Lukasiewicz language given above as an example of one-counter lan-guage is precisely the language proved not to be quasi-rational (see previoussubsection). The second inclusion can be proved using the linear languageL = fw# ew j w 2 fa; bg?g (see the previous remark).Such a result leads to consider the two following problems: is it possibleto characterize the languages in Lin\Ocl on one hand, and, to describe anycontext-free language by substituting linear and one-counter languages onthe other hand.The �rst question is still open (see [8] for results on this theme). The sec-ond question has a negative answer: de�ning the family of Greibach languagesas the substitution closure of linear and one-counter languages, we get a largestrict subfamily of the family of context-free languages: it does not containthe language D?, the Dyck language over fa; b; a; bg (see [4]).6.6 Parenthetic languagesWe now turn to another subfamily of the family of context-free languages.Consider an alphabet A containing two particular letters a and a. A context-free grammar over the terminal alphabet A is parenthetic if each rule of thegrammar has the following form X �! a�a with � containing neither theletter a nor the letter a. As usual, a language is said to be parenthetic if it isgenerated by some parenthetic grammar.This family of languages has been introduced by McNaughton [39]. Inthe particular case where the alphabet A does not contain any other lettersthan the two special ones a and a, we speak of pure parenthetic grammar orlanguage.Example 6.4. Over the alphabet A = fa; ag [ fxg, the grammar G given byS �! aSSa + axais parenthetic.Clearly, any pure parenthetic language over A = fa; ag is included in theDyck language D?1 . The following characterization due to Knuth [35] shows,in particular, that D?1 is not (purely) parenthetic. A word u over the alphabetA = fa; ag [B is balanced if it satis�es juja = juja and, for any pre�x v of u,jvja � jvja. It should be noted that a word w is in D?1 i� it is balanced.Given a word u over the alphabet A = fa; ag [ B and an occurrence ofthe letter a in u, we factorize u in u = vaw. An occurrence of a letter b 2 Ain w is an associate of a i� u = vaxby with xb balanced.Example 6.5. Let u = ababaabaa. The �rst a and the �rst b are associates.The �rst a and the �rst a are associates too.



Context-Free Languages and Pushdown Automata 59A language L over the alphabet A = fa; ag [B, is balanced i� any wordu 2 L is balanced. It is said to have bounded associates if there exists aninteger k such that any occurrence of a letter a in u 2 L admits at most kassociates. We may then characterize parenthetic languages as follows:Proposition 6.11. A context-free language L is parenthetic if and only if itis balanced and has bounded associates.The proof of the \only if" part is immediate. The \if" part consists in acareful study of the structure of any grammar generating a language whichis balanced and have bounded associates. This study shows that the rules ofthe grammar may be `recentered' to ful�ll the parenthetic conditions.Example 6.6. Consider the grammar G over A = fa; ag[ fb; c; d; eg given bythe set of rulesS �! XY X �! aabaXa + ad Y �! aY acaa+ ea:Clearly, this grammar is not parenthetic. However, the generated language isbalanced and has bounded associates. Hence, it is a parenthetic language.This characterization can be used to see that the Dyck set D?1 is not paren-thetic: it is balanced but it has unbounded associates. This characterizationallows also to prove the followingProposition 6.12. If a language L is nonexpansive and parenthetic, thereexists a parenthetic nonexpansive grammar generating it.This fact contrasts with the Proposition 6.1.Besides this characterization, parenthetic languages enjoy some other niceproperties. In particular, any such language is deterministic. Moreover, theequivalence problem for parenthetic grammars is decidable [35], solving inthis particular case the equivalence problem of deterministic languages.This family of languages can be related to the whole family of context-free languages in the following way. Given a context-free grammarG = (V; P )over B, we associate to it a parenthetic grammar Par(G) as follows : enlargethe terminal alphabet B into the terminal alphabet A = B [ fa; ag wherea and a are two new letters; to each rule X �! � of G, associate the ruleof Par(G) given by X �! a�a. It is easy to check that to each leftmostderivation in Par(G) generating a word w, corresponds a leftmost derivationin G generating the word u obtained from w by erasing the new letters aand a. This correspondence is a bijection between derivations. Hence, thedegree of ambiguity of a word u in the grammar G is the number of words wgenerated in Par(G) that map to u when the letters a and a are erased.Example 6.7. Consider the grammar H given by S �! SS + x. The corre-sponding parenthetic grammar Par(H) is S �! aSSa+ axa. The word xxxis the image of the two words aaxaaaxaaxaaa and aaaxaaxaaaxaa corre-sponding to the two (leftmost) derivations in H



60 Jean-Michel Autebert, Jean Berstel, and Luc BoassonS �! SS �! xS �! xSS �! xxS �! xxxand S �! SS �! SSS �! xSS �! xxS �! xxx:A very similar family of languages has been introduced by Ginsburg [19].Let k � 1. Given an alphabet A = fa1; : : : ; akg, we associate to it the copyA = fa1; : : : ; akg and the alphabet Z = A[A. A grammar over Z [B with krules is completely parenthetic if the ith rule has the form X �! ai�ai with� containing no letters in Z. As usual, a language is completely parentheticif there exists a completely parenthetic grammar generating it.Clearly, if we consider the morphism from Z onto fa; ag erasing the in-dices, we get from any completely parenthetic language a parenthetic lan-guage. Such languages often appear in the study of languages attached totrees.Example 6.8. Given the completely parenthetic grammar G0 given by S �!a1SSa1 + a2xa2. The corresponding parenthetic grammar is the grammar Gof the above example.6.7 Simple languagesA context-free grammar G = (V; P ) over A is simple if it is in Greibachnormal form and if, for each pair (X; a) 2 V � A, there is at most one ruleof the form X �! am. As usual, a language is simple if it can be generatedby a simple grammar [28, 36]. It is easy to check that any simple languageis deterministic. (It is even LL(1).) It is easy too to check that there doesexist deterministic (even LL(1)) languages which are not simple. The simplelanguages are exactly the languages recognized by simple deterministic pda'sas de�ned in the previous section. Moreover, this family of languages enjoysnice properties :1. Any simple language is pre�x (i.e. if the two words u and uv are in Lthen v is the empty word).2. The equivalence problem for simple grammars is decidable [36], solvingagain in a particular case the equivalence problem of deterministic lan-guages.3. The family of simple languages generates a free monoid.Similarly to parenthetic and completely parenthetic languages, simple lan-guages give raise to a family, namely the family of very simple languages. Agrammar is very simple if it is simple and such that for any terminal lettera there is at most one rule of the form S �! am. (Here, a appears as �rstletter of one rule at most; in the case of simple grammars, it could appear as�rst letter of various rules, provided they have not the same left member.)



Context-Free Languages and Pushdown Automata 61Clearly, any very simple language is simple. The converse is not true: forinstance L = fancbnamc j n � 1 m � 0g is simple but not very simple. It issimple because it is generated byS �! aS0XT S0 �! aS0X + c T �! aT + c X �! b:To prove that L is not very simple, we show that any grammar in Greibachnormal form generating L admits at least two rules whose right memberbegins with the letter a. Using for instance Ogden's iteration lemma on theword ancbnanc where the n �rst letters a are marked, we get that there is aderivation S ?�!aiXbjanc X ?�!akXbk X ?�!ak0cbk00 ;from this we derive that there is a rule of the form X �! a�. Marking nowthe n last letters a, we get that there is a derivationS ?�!ancbnai0Y aj0c Y ?�!ahY ah0 Y ?�!ah00 ;from this we derive that there is a rule of the form Y �! a�.Clearly the two variables X and Y have to be di�erent: if X = Y , wemay derive from X = Y the word akah00bk which is not a factor of L. Thus,we have two di�erent rules with a right member beginning by a, hence, thegrammar cannot be very simple.Any context-free language is an homomorphic image of a very simplelanguage. Indeed, a context-free grammar in Chomsky normal form can betransformed in a very simple grammar by adding new terminal letters. Thehomomorphism erasing these new letters will reconstruct the original one.Let us mention along the same lines that, to any completely parentheticgrammar is naturally associated a very simple grammar obtained by erasingall the barred letters. Hence, any very simple language is an homomorphicimage of a completely parenthetic language.6.8 LL and LR languagesWe end this survey of various classical subfamilies of the family of context-free languages by brie
y presenting the two most usual subfamilies appearingin syntactical analysis. Given a word w over the alphabet A, de�ne Firstk(w)as the pre�x of length k of w; if jwj < k, Firstk(w) is equal to w. We maynow de�ne LL-grammarsDe�nition 6.3. [1, 38] A context-free grammar G = (V; P ) over the terminalalphabet A is a LL(k)-grammar ifS ?�!̀uXm �! u�m ?�!̀uvS ?�!̀uXm0 �! u�0m0 ?�!̀uv0



62 Jean-Michel Autebert, Jean Berstel, and Luc Boasson(with u; v; v0 2 A? and X 2 V ) andFirstk(v) = Firstk(v0)imply � = �0.A language is a LL(k)-language if it can be generated by a LL(k)-grammar. It is a LL-language if it is a LL(k)-language for some k. The ideais that given a terminal word uv and a leftmost derivation from S into um,the �rst k letters of v allow to determine what is the next rule to be used inthe derivation. We will not develop here this syntactical analysis technique.However, it follows clearly from this remark that any LL-language is determi-nistic. More precisely, the families of LL(k)-languages form a hierarchy. Theirin�nite union is a strict subfamily of the family of deterministic languages.For instance, the language L = fancbn j n � 1g [ fandb2n j n � 1g isclearly deterministic. It is not a LL-language: an unbounded number of lettersa has to be read before it can be decided which rule to apply in an early stageof the leftmost derivation, because it depends on whether the word containsa letter c or a letter d.Using rightmost derivations instead of leftmost derivations leads to de�nethe LR-grammars:De�nition 6.4. [28, 34] A context-free grammar G = (V; P ) over the termi-nal alphabet A is a LR(k)-grammar if,S ?�!r mXu �! m�u = pvS ?�!r m0X 0u0 �! m0�0u0 = pv0(with u; u0 2 A?; p 2 (V [A)?V ) andFirstk(v) = Firstk(v0)imply X = X 0 and � = �0:Again, a language is a LR(k)-language if it is generated by a LR(k)-grammar. It is a LR-language if it is a LR(k)-language for some k.The idea is the following: given a sentential form pv where v is the longestterminal su�x, the �rst k letters of v allows to determine the rule that hasbeen applied just before getting the sentential form pv. Here again, this re-mark that we will not develop here, implies that any LR(k)-language is deter-ministic. However, the situation is now very di�erent from the LL situation.Proposition 6.13. The family of LR(1)-languages is exactly the family ofdeterministic languages.So, from the families of languages point of view, the LR(k)-condition doesnot give raise to an in�nite hierarchy. It should be noted that, in terms ofgrammars, it is indeed an in�nite hierarchy. It should be noted also that agrammar which is not LR may generate a language which is indeed LR. Itmay even be rational: the grammar S �! aSa ; S �! a is not LR and itgenerates the rational language a+.
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