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Abstract 

We prove some new combinatorial properties of the set PER of all words w having two periods 
p and q which are coprimes and such that w = p + q - 2 [4,3]. We show that aPERb U {a, b} = 
St n Lynd, where St is the set of the finite factors of all infinite Sturmian words and Lynd is 

the set of the Lyndon words on the alphabet {a, b}. It is also shown that aPERb U {a, b} = CP, 
where CP is the set of Christoffel primitive words. Such words can be defined in terms of the 
‘slope’ of the words and of their prefixes [l]. From this result one can derive in a different 
way, by using a theorem of Bore1 and Laubie, that the elements of the set aPERb are Lyndon 

words. We prove the following correspondence between the ratio p/q of the periods p,q, pdq 
of w E PER f~ a(a, b}* and the slope p = (lw(h + I)/( Iwl. + 1) of the corresponding Christoffel 
primitive word awb: If p/q has the development in continued fractions [0, hl, . . . , !I,_ 1, h, + 11, 
then p has the development in continued fractions [0, h,, . . . , hi, hl + 11. This and other related 
results can be also derived by means of a theorem which relates the developments in continued 
fractions of the Stem-Brocot and the Raney numbers of a node in a complete binary tree. 
However, one needs some further results. More precisely we label the binary tree with standard 
pairs (standard tree), Christoffel pairs (Christoffel tree) and the elements of PER (Farey tree). 
The main theorem is the following: If the node W is labeled by the standard pair (u, o), by the 
Christoffel pair (n,~) and by w E PER, then uv = wab, xy = awb. The Stem-Brocot number 
SB( W) is equal to the slope of the standard word uv and of the Christoffel word xy while the 
Raney number Ra( W) is equal to the ratio of the minimal period of wa and the minimal period 
of wb. Some further auxiliary results are also derived. 

1. Introduction 

Sturmian words can be defined in several different but equivalent ways. Some defini- 

tions are ‘combinatorial’ and others of ‘geometrical’ nature. With regard to the first type 

of definition a Sturmian word is a binary injnite word which is not ultimately periodic 
and is of minimal subword complexity. A ‘geometrical’ definition is the following: A 
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Sturmian word can be defined by considering the sequence of the intersections with a 

squared-lattice of a semi-line having a slope which is an irrational number. A horizontal 

intersection is denoted by the letter b, a vertical intersection by a and an intersection 

with a comer by ab or ba. Sturmian words represented by a semi-line starting from 

the origin are usually called standard or characteristic. They are of great interest from 

the language point of view since one can prove that the set of all finite subwords of a 

Sturmian word depends only on the slope of the corresponding semi-line. We denote 

by St the set of all finite subwords of all Sturmian words. 

Infinite standard Sturmian words can be also introduced as follows: Let (co, cl, c2,. . .) 

be any infinite sequence of integers such that CO 30 and c; > 0 for all i > 0. We 

define the infinite sequence of words {s n } nap, where SO = b, s1 = a and for all na 1, 

as 

&I+1 = s, cJJ-‘S,_,. 

One can prove that the sequence {s } n ,,>o converges to an infinite sequence s which 

is a standard Sturmian word; moreover any infinite standard Sturmian word can be 

obtained by the preceding procedure. The sequence {s,,},~~ is called the approximating 

sequence of s and (CO,CI,C~, . . .) the directive sequence of s. The Fibonacci word f is 

the standard Sturmian word whose directive sequence is (1, 1,. . . , 1,. . .). 

We denote by Stand the set of all infinite standard Sturmian words. A word w E 

{a, b}’ is called a finite standard Sturmian word, or a generalized jinite Fibonacci 

word, if there exists s E Stand and an integer n 20 such that w = s,, where {s,,},>o 

is the approximating sequence of s. 

We shall denote by Stand the set of all finite standard Sturmian words. We say that a 

standard word s E Stand has the directive sequence (CO,CI ,..., cn), with co>O, ci > 0, 

1 d i bn, if there exists a sequence of standard words SO, sr , . . , s,,s,+I, s,+2 such that 

so = b, s1 = a, c,-I .sj+1 = si Si-I, l<i<n+ 1 

and s = s,+2. One can prove that any standard word has a unique directive sequence 

[31. 
A more set-theoretic definition of Stand, based on the Rauzy’s [12] method of con- 

struction of infinite standard Sturmian words, is the following. Let d = {a, b}. We 

consider the smallest subset B of &* x JZ!* which contains the pair (a, b) and closed 

under the property: 

(24, v) E LJf =+ (u, uv), (vu, v) E .!?x 

Let us set 

20 = {(a,b)} 

and define for n 2 0 

a n+,={(U,v)I 3(x,y)E9n:u=x, v=xyoru=yx, v=y}. 
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Thus 

R= UW~. 
tl30 

We call 92 also the set of standard pairs. Let us denote by Trace(W) the set: 

Trace(W) = {u E d* 1 3u E d* such that (u, o) E 92 or (u, U) E 2). 

One can easily prove that 

Stand = Trace(g). 

The set Stand has several characterizations, that we shall use in the following, based 

on quite different concepts: 

(a) Palindrome words. Let PAL be the set of all palindromes on d. The set C is 

the subset of d’ defined by 

C = & U (PAL* f? PAL{ab, ba}). 

Thus a word w belongs to C if and only if w is a single letter or satisfies the equation 

w=AB= Cxy, 

where A, B, C E PAL and {x, y} = {a, b}. A remarkable result obtained by Pedersen 

[lo] is that there exists, and it is unique, a word W such that 

W=AB=Cxy, 

if and only if gcd(jAj + 2, IBI - 2) = 1 

It was proved in [4] that 

Stand = C. 

(b) Periodicities of the words. Let w E &* and n(w) be the set of its periods 

(cf.[7], recall that a positive integer p < n is a proper period of w = ai . . . a,, where 

al,. . ., a, are letters, if Ui = Ui+p for i = 1,. . . , n - p; however, any integer p >n is 

assumed also as a period of w.) We define the set PER of all words w having two 

periods p, q E n(w) which are coprimes and such that IwI = p + q - 2. Thus a word 

w belongs to PER if it is a power of a single letter or is a word of maximal length 

for which the theorem of Fine and Wilf does not apply. In the sequel we assume that 

E E PER. This is, formally, coherent with the above definition if one takes p = q = 1. 

In [4] de Luca and Mignosi proved that 

Stand = d U PER{ab, ba}. 

(c) Special elements. A word w E St is a right (left) special element of St if 

wa, wb E St (aw, bw E St). The word w is bispecial if it is right and left special. It is 

called strictly bispecial if 

awa, awb, bwa, bwb E St. 
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Let us denote by SBS the set of all strictly bispecial elements of St. It has been proved 

in [4] that 

PER = SBS. 

If SR (SL) denotes the set of all right (left) special elements of St one has that [3]: 

SBS = SR n PAL = SL n PAL. 

(d) Palindrome closures. Let us introduce the map (-) : d* + PAL which as- 

sociates to any word w E JZP the palindrome word w(-) defined as the smallest 

palindrome word having the suffix w. We call w(-) the palindrome left-closure of w. 

If X is a subset of d’ we denote by Xc-) the set 

{w(-) E &if*1 w E X}. 

Let us define inductively the sequence {Xn},,3s of finite subsets of d* by 

x, = is] 

X n+i = (&Y$), n>O. 

Thus s E &+I if and only if there exist x E d and t E X, such that s = (xt)(-). 

We shall set 9 = UnaO X,,. One can prove [3] that Y = PER. We can summarize 

the above results in the following basic theorem. 

Theorem 1 .l . 
(1) Stand = C, 

(2) C = d U PER{ab, ba} 

(3) PER = SBS, 

(4) PER = 9. 

This theorem has several applications. In particular, one can determine the subword 

complexity of Stand and derive in a simple and purely combinatorial way, the subword 

complexity formula for St [4]. An application of Theorem 1.1 to the study of Sturmian 

words generated by iterated morphisms was recently given in [2]. 

Theorem 1.1 shows that the ‘kernel’ of the set of standard Sturmian words is the 

set PER. In this paper we shall present some new combinatorial results concerning the 

structure, the combinatorics, and the arithmetics of PER. These results are relevant for 

all finite Sturmian words because the set St is equal to the set of all subwords of PER. 

In Section 3 we show that aPERb U d = St fl Lynd, where Lynd is the set of the 

Lyndon words on the alphabet &. 

In Section 4 we prove that aPERb U d = CP, where CP is the set of Christoffel 

primitive words. Such words can be defined in terms of the ‘slope’ of the words and 

of their prefixes [l]. From this result one can derive in a different way, by using a 

theorem of Bore1 and Laubie [l], that the elements of the set aPERb are Lyndon words. 
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In Section 5 we prove the existence of the following correspondence between the 

ratio p/q of the periods p, q, p<q of w E PER n ad* and the slope p = (lwlb 

+ 1 )/( Iw], + 1) of the corresponding Christoffel primitive word awb :If p/q has the 

development in continued fractions [0, hi, . . . , A,_ 1, h, + 11, then p has the development 

in continued fractions [O,h,, . . . ,h2, hl + 11. 

In Section 6 we consider binary complete trees described by binary words and tmi- 

modular matrices of order 2. Each node can be labeled by an irreducible fraction in 

several ways. From a general theorem we derive an interesting result which relates the 

developments in continued fractions of the Stem-Brocot and the Raney number of a 

node. 

In Section 7 we label the binary tree with standard pairs (standard tree), Christoffel 

pairs (Christoffel tree) and with the elements of PER (Farey tree). We prove the 

following main result: If the node IV is labeled by the standard pair (u, a), by the 

Christoffel pair (x, y) and by w E PER, then uu = wab, xy = awb. The Stem-Brocot 

number ,SB( W) is equal to the slope of the standard word uu and of the Christoffel 

word xy while the Raney number Ra( W) is equal to the ratio of the minimal period 

of wa and the minimal period of wb. Some further auxiliary results are also derived. 

In particular we give a different proof of the result of Section 5. 

2. Preliminaries 

For all notations and definitions not given in the text the reader is referred to the 

book of Lothaire [7]. 

In the following d will denote a finite alphabet and d’ the free monoid on it, i.e. 

the set of all finite sequences of symbols from &, including the empty sequence E. 

The elements of d are usually called letters and those of d* words. 

For any word w E d*, Iw] denotes its length, i.e. the number of letters occurring 

in w. The length of E is taken to be equal to 0. For any letter a E &, Iw/, will denote 

the number of occurrences of the letter a in w. A word u is a factor, or subword, of 

w if w E &*u&*, i.e. there exist x, y E zZ* such that w = xuy. The factor u is called 

proper if u # w. If x = s(y = E), then u is called a prefix (sufix) of w. By F(w) we 

denote the set of all factors of w. If u E &‘* and X is a subset of d*, then u-‘X will 

denote the set 

u-‘X={vEd*l UVEX}. 

For any w E d*, alph(w) denotes the smallest subset of & containing all the letters 

occurring in w. 

In the next we shall refer mainly to the alphabet d = {a, b}. We totally order the 

alphabet d by setting a < b. We can then totally order d* by the lexicographic 

order d defined as [7]: for all U, v E d* 
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If u <v and u # v, then we write u < v. We recall that two words f,g E &* 

are conjugate if there exist words u,v E d* such that f = uv and g = vu. If u and 

v are different from the empty word then f and g are said properly conjugate. The 

conjugation relation is an equivalence relation in d*. 

A word f is primitive if it is not properly self-conjugate. This is also equivalent to 

the statement that f # wJ’ for all w E d’ and p > 1. 

The reversal operation or mirror image ( _ ) is the unary operation in d* recursively 

defined as E = E and (z) = au”, for all u E d’ and a E d. The mirror image - 
is involutory and such that for all u,v E -Pe*, (uv) = iZ, i.e. it is an involutoty 

antiautomorphism of &*. For any L subset of &* we set i = (61 w E ,5}. A word w 

which coincides with its mirror image is called palindrome. The set of all palindromes 

over d is denoted by PAL(d), or simply, by PAL. 

A word w E d* is called a Lyndon word over ~4 if w is less, w.r.t. the lexicographic 

order, than every proper right factor. We denote by Lynd the set of all the Lyndon 

words over the alphabet {a,b}. There exist several characterizations, or equivalent 

definitions, of the Lyndon words [7]. We recall here that w E Lynd if and only if it 

is primitive and minimal in its conjugation class. 

We recall [7] that if 1,m f Lynd and 1 < m, then lm E Lynd. Conversely, any word 

w E Lynd\d can be always factorized, and generally in several ways, as w = Im with 

1,m E Lynd. When m is the suffix of w E Lynd of maximal length such that m E Lynd 

then one has 1 E Lynd and 1 < lm < m. This factorization (Z,m) is also called the 

standard factorization of w. 

A word w E d’ is called anti-Lyndon word if w is primitive and maximal in its 

conjugation class. Let us introduce in d* the automorphism (^ ) defined as : b = b, 6 = 

a. Thus E^ = E and for any w E -Qz*, w # E, tit is obtained from w by interchanging 

the letter a with b. For a subset L of d’ we set i = ($1 w E L}. One easily verifies 

that if u<v and JuI = Iv] then u^>v^ so that w is a Lyndon word if and only if 6 is 

anti-Lyndon. Thus the set of all anti-Lyndon words coincides with LFd. 

An infinite word (from left to right) x over d is any map x : N + d. For any 

i 3 0, we set xi = x(i) and write 

x =x&cl . ..x.... . 

The set of all infinite words over d is denoted by M”. A word u E d* is a (finite) 

factor of x E dw if u = E or there exist integers i, j such that i< j and u = xi.. .xj. 

The set of all finite factors of x is denoted by F(x). 

The subword complexity of the infinite word x is the map gX : N + N, defined as 

follows: for all n 3 0, 

gX(n) = Card(F(x) n ~4”). 

An infinite word x E d” is ultimately periodic if there exist words u, v E &* 

such that x = uv..v.. = UP. One can easily prove that an infinite word x is ultimately 

periodic if and only if there exists an integer n such that gX(n) <n. 
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Infinite Sturmian words are infinite words over the alphabet {a, b} which are not 

ultimately periodic and of minimal subword complexity. This is equivalent to the fol- 

lowing: 

Definition 1. An infinite word x E dw is Sturmian if and only if the subword com- 

plexity gX satisfies the following condition: For all n > 0 

gx(n) = n + 1. 

Let us now define the set St of finite Sturmian words: 

Definition 2. A word w E St if and only if there exists an infinite Sturmian word x 

such that w E F(x). 

The following interesting and useful combinatorial characterization of the language 

St holds [9,5]: 

Theorem 2.1. The language St is the set of all the words w E {a, b}* such that for 

any pair (u, v) of factors of w having the same length one has 

II u 10 - I 0 Inl 61. 

3. Lyndon and Sturmian words 

In this section we shall prove that the set of Sturmian words which are Lyndon words 

coincides with the set aPERb U {a, b}. To this end we need some results concerning 

the set PER whose proof is in [3]. 

Lemma 3.1. Let w E PER be such that Curd(alph(w)) > 1. Then w can be uniquely 

represented as 

w = PxyQ = QyxP, 

with x, y fixed letters in {a, b}, x # y and P, Q E PAL. Moreover, gcd(p,q) = 1, 

where p = (PI + 2 and q = IQ] + 2. 

Theorem 3.1. Let w E PER and x E {a, b}. Then (xw)(-) E PER. Moreover, if 
w = PxyQ, with P, Q E PAL and {x, y} = {a, b}, then one has 

(x-w)‘-’ = QyxPxyQ, (yw)‘-’ = PxyQyxP. 

Lemma 3.2. If w E &‘* and awb E Lynd n St, then w E PAL. 

Proof. If w = E or w E {a,b}, then the result is trivial. Let us then suppose that 

]w( > 1; we can write w = wi . . . w, with n > 1 and wi E _eZ, i E [I, n]. By 

hypothesis the word awb is a Sturmian word which is Lyndon. 
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Let us first prove that WI = w,. If WI = a then w, has to be equal to a in view of 

the fact that awb is a Sturmian word. Indeed, by Theorem 2.1 the word awb cannot 

begin with aa and terminate with bb. If WI = b then w,, = b in view of the fact 

that awb is a Lyndon word. Indeed, otherwise the Lyndon word awb will begin and 

terminate with the same factor ab which is a contradiction. 

Suppose, by induction, that we have already proved that wj = w,-j+i for j = 

1 , . . . , k, k < [n/2]. We want to prove that wi+l = wn_j. By using the inductive 

hypothesis we can also write awb as 

awb = auwj . . . w,_jGb. 

If wj = a, then wn_j = a since awb is Sturmian. Otherwise one would have 

~~a~& - IbiZbl,l = 2, 

which is a contradiction in view of Theorem 2.1. If wj = b, then wn-j = b. Indeed, 

suppose by contradiction that Wn_j = a. Since awb E St let x be an infinite standard 

Sturmian word such that awb E F(x). One has then aub,aGb E F(x). This implies [4, 

Proposition 93 

aub, biia, au”b, bus E F(x). 

Hence u and u” are factors of F(x) which are (right) special in x [4, Definition lo]. 

Since for any length, x admits only one (right) special factor in x of that length, it 

follows that u = u”. Hence the Lyndon word awb will begin and terminate with the 

same factor aub which is a contradiction. 0 

Theorem 3.2. d U aPERb = Lynd n St. 

Proof. Let us first prove the inclusion 2. If u E d the result is trivial. Let us then 

suppose that u E aPERb and write u = awb with w E PER. We shall prove the result 

by using induction on the length of the word w. 

Base of the induction. If w = E then u = ab E Lynd. If w = a or w = b one has, 

respectively, u = aab or u = abb and aab,abb E Lynd. 

Induction step. Let w E PER and suppose that [WI > 1. By Theorem 1.1, PER = 9, 

so that an integer n 2 1 exists such that w E X,,+i. Hence we can write 

w = (xv)‘-’ 7 

with x E J&’ and u E X,. Let us first consider the case when Curd(aZph(v)) = 1. If 

x = a and v = &l ,t hen xu = ul”l+’ so that (xv)(-) = &‘l+i and awb = ul”1+*b E Lynd. 

If x = a and v = bl’l, then w = (xv)(-) = bl”labl”l and u = awb = ablVlablUl+’ E Lynd. 

If x = b and u = bl’l one has u = awb = ablUlf2 E Lynd. Finally, if x = b and u = aI01 

one derives u = awb = alUl+lbul”lb E Lynd. Let us then suppose that Card(ai’ph(u)) = 

2. By Lemma 3.1 one can uniquelly represent v as 

v = PxyQ = QyxP, 
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with P, Q E PAL and x, y E {a,b} and x # y. By Theorem 3.1 one has (xv)(-) = 

QyxP.xy Q and 

u = awb = aQyxPxyQb. 

Let us first suppose that y = b. The word u becomes 

u = aQbaPabQb. 

Since Q,PabQ E PER and IQl, IPubQI < IwI one has by induction 

aQb = ll,aPabQb = 12 E Lynd. 

Thus 

u = 1,/z. 

Since aPabQb = aQbaPb one has Ii < 12 so that [7] u = 1112 E Lynd. 
Suppose now that y = a. One has 

u = aQabPbaQb. 

Let us set 11 = aQabPb and 12 = aQb. By the inductive hypothesis I,,12 E Lynd. 
Since 11 < 12 one derives that also in this case u = Ii 12 E Lynd. 

We have then proved that d U aPERb & Lynd. Let u E d U aPERb. If u E d then 

one, trivially, has u E St. Let us then suppose that u E aPERb, i.e. u = awb with 

w E PER. By Theorem 1.1, PER = SBS, so that awb E St. 

Let us now prove the inverse inclusion 2. Let u E Lynd fl St. If Iu] = 1 the result is 

trivial. Suppose then that Iu] > 1. Since u E Lynd then u E a&*b. Indeed, u cannot 

begin and terminate with the same letter and, moreover, necessarily the first letter has 

to be a and the last b. Let us write u as u = awb with w E d*. We want to prove 

that w E PER. From Lemma 3.2 one has that w E PAL. Since u = awb E St there 

exists an infinite standard Sturmian word x such that u = awb E F(x). This implies 

[4] that 

awb, bwa E F(x). 

Hence w is a palindrome (right) special element of St. This implies [3] w E SBS = 
PER. •I 

Corollary 3.1. d U bPERa = L$d f’ St = LFd n St. 

Proof. It is a straightforward consequence of the above theorem. One has only to 

observe that the sets d, St and PER are invariant under the reversal operation (“) and 

the involutory automorphism (- ) which interchanges the letter a with the letter b. 0 

Remark 1. From the preceding corollary it follows that the set of Lyndon words 

which are Sturmian words is invariant under the involutoty anti-automorphism of d* 



180 J. Berstel, A. de Lucal Theoretical Computer Science 178 (1997) 171-203 

which is the composition of the operations (- ) and (n ). This is not the case for the set 

Lynd. For instance, the word w = aababbab E Lynd, whereas $ = abaababb 6 Lynd. 

Corollary 3.2. If w E aPERb then there exist and are unique two words u, v E aPERb 
such that w = uv. The factorization (u, v) of w is the standard factorization of w in 

Lyndon words. 

Proof. If w E aPERb, then from Theorem 3.2, w E Lynd, so that w can be factorized 

in the standard way as w = Im with I, m E Lynd n St. Hence, by Theorem 3.2 one has 

I = aPb, m = aQb, w = Im = aPbaQb, 

with P, Q, PbaQ E PER. Let (I’, m’) be another factorization of w, i.e. w = I’m’ with 

1’ = aP’b, ml = aQ’b with P’, Q’, P’baQ’ E PER. Thus PbaQ = P’baQ’ and this is 

absurd in view of Lemma 3.1. 0 

Corollary 3.3. The enumeration function g of the set Lynd n St is given by g( 1) = 2 
and g(n) = 4(n) for n > 1, where 4 is Euler’s function. 

Proof. Clearly g(1) = 2. For n > 1 the above theorem has shown that there exists a 

bijection [, : PER n d” -+ Lynd n St n d”+* defined by: for w E PER, 

c,(w) = awb. 

Since for any n > 0, Card(PER n ~2”) = +(n + 2) [4, Lemma 51, where 4 is the Euler 

function, it follows that for n > 2 

g(n) = Card(PER n daZne2) = 4(n). 0 

Let us now set 

& = Cn&*a, Cb = Ennd*b. 

Corollary 3.4. C, = a-‘(Lynd n St)a, Cb = b-‘(LGd n St)b. 

Proof. By Theorem 3.2 one has Lynd n St = aPERb U d. Thus 

a-‘(Lynd n St)a = PERba U {a}. 

By Theorem 1.1, C = d U PER{ab, ba} so that C, = PERba U {a}. In a similar way 

by using Corollary 3.1 one obtains Zb = b-‘(Lzd n St)b. 0 

4. Christoffel words 

In this section we shall prove that the set aPERb U d coincides with the set CP 
of Christoffel primitive words. These words introduced by Christoffel, and recently 

reconsidered in depth by Bore1 and Laubie [l], may be defined in terms of the notion 
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of ‘slope’ of a binary word. The proof of this equality is remarkable by the fact that 

the elements of the set PER are definable in terms of ‘periods’ of the words. 

Let d = {a, b}. We consider the map 

P : sd* --f Q u {co}, 

defined by 

P(E) = 1, P(W) = IwlbIlwIa, for w # E. 

We assume that l/O = co. For any w E d* we call p(w) the ‘slope’ of w. For 

instance the words abbabaa, aaa and bb have, respectively, slopes i, 0 and oo. For 

any w E sZ* and k E [l,lw(] we define the set 

i&(W) = (24 E dk I P(U)dP(W)I. 

and denote by Ilk(w) the quantity 

pk(W) = mm{p(u)l 24 E 6kcW)). 

Note that &(w) is always not empty since for any k E [l, lwl] the slope of the word 

ak is 0. For any word w E d* we denote by w[k] the prefix of w of length k. 

Definition 3. A word w E d* is called a (positive) word of Christoffel if for any 

k E [l, ]w]] one has 

d”‘[k]) = ldW). 

Thus a word w E &* is a positive Christoffel word if and only if every prefix w’ of 

w has a slope which is maximal with respect to the slope of any other word u such 

that Iu] = ]w’I and p(u)<p(w). 

In a symmetric way one can define a negative Christoffel word as a word w such 

that every prefix w’ of w has a slope which is minimal with respect to the slope of 

any other word u such that Iu( = (~‘1 and p(u)>p(w). 

We denote by CP (NCP) the set of all positive (negative) Christoffel words which - 
are primitive words. One can easily prove that NCP = CP. In the following we 

shall refer mainly to positive Christoffel words that we simply call Christoffel words. 
Following Bore1 and Laubie [l] one can represent any word w = wi . . . w,, Wi E 
{a,bII, i E Lnl, by a suitable graphic representation: to w one can associate a ‘path’ 

in the lattice N x N. One starts from the initial point 0 of coordinates (0,O) and 

to each occurrence of the letter a in w corresponds a horizontal step oriented on the 

right and to each occurence of a letter b corresponds a vertical step upwards. In this 

way one reaches a terminal point Q of coordinates (Iw],, ]w]b). In Fig. 1 we drop the 

orientations and denote by %w this graphic representation associated to w. 
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w = aabaabab 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Fig. 1. The representation of Christoffel words. 

Let p = p(w) be the slope of the word w and consider the semi-line r of the equation 

y=px, x90. 

One has that the initial and terminal points 0 and Q of 29,+, lie on r. Moreover, one 

easily derives from Definition 3 that w is a Christoffel word if and only if ‘SW lies in 

the plane’s region y<px, x20 and its vertices are the nearest possible to Y. Indeed, for 

any prefix wlkl, k E [l,n], one has p(w[k])<p(w). This is equivalent to the statement 

that any vertex of ‘SW lies under or on the semi-line r. The fact that the vertices of 

9SW are the nearest possible to r is equivalent to the statement that the slope of any 

prefix w’ of w is maximal with respect to the slope of any other word u E d* such 

that ]uJ = ]w’] and p(u)<p(w). 

Christoffel words satisfy some noteworthy properties which follow from Definition 

3 [I]: 

Proposition 4.1. Let (p,q) be a pair of nonnegative integers such that p + q > 0. 
There exists, and it is unique, a Christoflel word w having the slope p(w) = p/q and 

length IwI = p + q. 

Proposition 4.2. A ChristofSel word w is primitive tf and only if any proper prehx 
w’ of w has a slope p(w’) < p(w). 

Proposition 4.3. Let (p, q) be a pair of nonnegative integers such that p + q > 0. 
The corresponding word of Christoffel w is primitive if and only if d = gcd(p, q) = 1. 

Moreover, tf d > 1 then setting p = dr, q = ds one has w = ud where u E CP and 
JuI = r + s. 

From the previous results one derives that there exists a one-to-one correspondence 

@ of the set of all semi-lines starting from the origin and having a rational slope onto 
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the set of all Christoffel primitive words. More precisely, if r is a semi-line having 

the slope p/q with gcd(p, q) = 1, then the corresponding Christoffel primitive word 

w = @5(r) has the slope p(w) = p/q and length p + q. Moreover, the graph %w 

intersects the semi-line r only in the points 0 and Q of coordinates (0,O) and (q, p), 

respectively. 

However, one can associate to the semi-line r a binary word by considering the 

sequence of crosses of r with vertical and horizontal lines of the lattice N x N. We 

refer to the open interval (0, q) and an intersection of r with a vertical line (x = c, c > 

0) is denoted by the letter a and an intersection with a horizontal line (v = c, c > 0) 

by the letter b. Let us denote by Y(r) the word associated with the semi-line r. This 

is sometimes called “cutting sequence” [13] of r. The following proposition holds: 

Proposition 4.4. Let r be a semi-line of equation y = (p/q)x, x20, having the 
rational slope p/q with p + q > 1 and gcd(p,q) = 1. One has 

aY(r)b = Q(r). 

Proof. Let r be a semi-line of equation y = (p/q)x, x 2 0, having the rational slope 

p/q with gcd( p, q) = 1. From this latter condition it follows that r meets in the interval 

(0, q) only the corners (0,O) and (q, p). Let us set now 6(x) = (p/q)x and consider 

for n E (0,q) the quantity: 

4, = L&n)1 - i&n - l)l, 

where [x] denotes the integer part of x. For each n = 1,. . . , q - 1, A,, holds only 1 or 

0. Moreover, one has that A,, = 0 if and only if there is no intersection of r with a 

horizontal line in the interval (n - 1, n). Let us then consider the word 

u = u1 . ..+_l. 

where for i E (O,q), 

ui = a, if Ai = 0 

ui = ba, if Ai = 1. 

One has then that u is the cutting sequence Y(r) of r. Moreover, one has that j~lb 

equals the number of crosses of r in the interval [ 1, q - l] with horizontal lines of the 

lattice N x N. Since r meets the comer (q, p) it follows that ]uI~ = p - 1. In a similar 

way one derives that 1~1, equals the number of crosses of r in the interval [l, q - 11. 

Thus 1~1, = q - 1. Hence, 

JUI = ]UI, + JU]b = p + q - 2. 

We can then write 

u = al . . . aP+q__2, Ui E 54, iE[l,p+q-21. 
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Let w be the Christoffel primitive word corresponding to Y, i.e. w = Q(Y). One has 

Iw( = p + q. From the Definition 3 and Proposition 4.2 it follows that w has to begin 

with a and terminate with b. We can then write 

w = avb, 

with (v] = p + q - 2. We want prove that v = u. Indeed, in the graph 9w we have a 

vertical line (which represents a b) joining two horizontal lines (and, therefore, two a) 

if and only if between two consecutive vertical crosses of r (representing two letters 

a) we have a horizontal cross (which represents a b). Hence the sequence of letters in 

v is the same that in U. This implies u = v. 0 

Theorem 4.1. CP = aPERb U d. 

Proof. Let us first prove the inclusion G. Let w E CP. If (w] = 1, the inclusion is 

clear. Suppose then /WI > 1. We can write w = aub, u E d*. If u = E, then one has 

w = ab E CP, p(ab) = l/l and E E PER. Let us then suppose that u # E. 

Since w E CP we can write p(w) = p/q, with p + q > 1, gcd(p, q) = 1 and 

[WI = p +q. We can consider the semi-line r of equation y = (p/q&, having the slope 

p/q. One has that Q(r) = w. Moreover, from Proposition 4.4 the cutting sequence 

Y(r) of r, is such that aY(r)b = Q(r). Hence, u = Y(r). 
We can always rotate the semi-line r a sufficiently small angle cx in the anticlockwise 

sense in such a way that the slope of the new semi-line r’ becomes an irrational number 

and, moreover, r’ has the same sequence of crosses with horizontal and vertical lines in 

the interval (0,q) as the semi-line r, i.e. Y(r’) = Y(r). In a similar way one can rotate 

the semi-line r a sufficiently small angle CI’ in the clockwise sense in such a way that 

the slope of the new semi-line r” becomes an irrational number and Y(r”) = Y(r). 

Since the point P of coordinates (q, p) belongs to r, one has that in the interval (0, q] 

the sequence of crosses of r’ is represented by the word uba, whereas the sequence of 

crosses of the semi-line r” is represented by the word ua. 
According to the usual definition of standard Sturmian infinite word, one derives that 

ub and ua are prefixes of two infinite standard Sturmian words x’ and x”, respectively. 

From a general result [S] it follows that 
- 
(ua) = a; and (x) = bu” 

are right special elements of the words x” and x’, respectively. Hence one derives that: 

aiia, aiib E St, biia, bu”b E St. 

Thus fi E SBS = PER. Since PER c PAL it follows u’ = u E PER. 
Let us now prove the inverse inclusion 2. We know, from the general definition of 

the set CP that Lc$ C CP. Let us then consider the element w = aub with u E PER. 
Since PER = SBS, one has 

aua, aub, bua, bub E St. 
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Hence au,bu E &. From a result proved in [3] au, as well as bu, is a right special 

element in an infinite standard Sturmian word. We can then write 

au = $,, bu = &, 

where pi and p2 are two prefixes of two standard Sturmian words x1 and x2. Since 

u is a palindrome one has 

ua = PI, ub = ~2. 

Let us consider now the semiline r starting from the origin and whose slope is p = 

(1~16 + l)/(lul, + 1). The word Y(r) associated to r in the interval (O,Iwl,) is still U. 

This implies that w = aub is a Christoffel word. Finally, w = aub is certainly primitive 

since its conjugate wba is primitive [4], so that w E CP. 0 

Corollary 4.1. NCP = bPERa U d. 

Proof. Since NCP = c?; and PER C PAL, one derives from the above theorem, NCP = 

bPERaU d. 0 

Bore1 and Laubie proved in [l] that CP C Lynd and NCP 2 Lsd; moreover, the 

standard factorization of w E CP is the unique factorization of w in Christoffel prim- 

itive words. A different proof of this result is easily obtained by using Theorem 4.1, 

Corollaries 3.1 and 3.2. 

Let us now consider, in a way similar to that of standard pairs, the notion of Christof- 

fel pairs. We define the set %? as the smallest subset of sZ* x d* which contains the 

pair (a, b) and closed under the property: 

(u,u) E %? =3 (u,uu),(uu,u) E %T. 

Let us set 

go = {(a,b)) 

and for n > 0, 

GY? n+l = ((24, u))Zl(x, y) E %Tn : u = x, u = xy or u = xy, u = y}. 

One has then 

The set +Z is called the set of ChristofSel pairs. 

The following lemma shows the existence for all n > 0 of a bijection between the 

sets 9,, and %?,,. 



186 J. Berstel, A. de Lucal Theoretical Computer Science 178 (1997) 171-203 

Lemma 4.1. For all n 20 the elements of L!& are the standard pairs (a, a”b), (bna, b) 

and pairs of the kind (Pba, Qab) with P, Q E PER. Moreover, the elements of W,, are 

(a, a”b), (ab”, b) and (aPb,aQb) with (Pba, Qab) E .!+A?,,. 

Proof. By induction on n. For n = 0,l the result is trivial. For n = 2 the elements of 

6%~ and G??z are respectively 

(a,a*b), (b*a, b), (aba,ab), (ba, bab) 

and 

(a, a*b), (ab2, b), (aab,ab), (ab,abb), 

so that in this case the result is true. Let us then suppose the result true up to the 

integer n. We prove it for n+ 1. By hypothesis the elements of %Y,, are (a,a”b), (ab”, b) 

and (aPb, aQb) with (Pba, Qab) E 9,. By this latter fact it follows that 

(Pba, PbaQab), (QabPba, Qab) E %!,,+I. 

Since by Theorem 1.1 P, Q, QabP E PER, one has QabP = PbaQ. The pair (aPb, aQb) E 
%?,, generates the two elements of Ce,+i 

(aPb, aPbaQb), (aPbaQb, aQb), 

so that the result for these pairs is true. In %Yn+i there are also the other pairs 

(a, an+‘b), (ab”+‘, b), (a”+‘b, a”b), (ab”, ab”+’ ). 

To conclude the proof we have to show that the pairs 

(a”ba, a”b), (b”a, b”ab) E Bn+l. 

This is trivial since, by induction, the pairs (a, a”b) and (b”a, b) belong to W,. 0 

Let us denote by Trace(%) the set 

Trace(V) = {a E s/* 1 3v E d* : (24,~) E %T or (v,u) E %}. 

The following theorem was proved by Bore1 and Laubie in [l]. Here we report a 

different and simple proof. 

Theorem 4.2. CP = Trace(C). 

Proof. Let w E Trace(%). There exists an integer n>O and (u,u) E w,, such that 

w = u or w = v. From the previous lemma one has 

(u, v) = (a,a”b) or (u, v) = (ab”, b) or (u, u) = (aPb,aQb) 

with (Pba, Qab) E 9,. In any case w E aPERb U d, so that by Theorem 4.1, w E CP. 
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Let w E CP. If w E ~2, then the result is trivial. Let us then suppose w E CP\.&‘. 

From Theorem 4.1 one has w = aPb with P E PER. Hence Pab, Pba E Stand. This 

implies that there exists an integer n 30 and a standard pair (u, u) E &?,, such that 

u = Pba or u = Pab. By Lemma 4.1, aPb = w will be one component of a pair of 

%‘,,. Hence w E Trace(V). 0 

5. Slope and ratio of periods 

We denote by PER(,) the set of all elements of PER whose first letter is a, i.e. 

PER(,) = PER f! ad*. Similarly, PER(b) will be the set P_!%(b) = PER fl bd*. Hence 

PER = {E} U PER(,) U PER(b). One easily verifies that s E PER(,) if and only if 

s^ E PER(b), so that the operation (* ) determines a bijection of PER(,) in PER(b). 

In the following we denote by 5 the set of all fractions p/q such that 0 < p < q 

and gcd(p, q) = 1. From the results of the previous sections one easily derives [3] the 

following: 

Lemma 5.1. For any s E PER there exists a unique fraction p/q E 9 such that 

p, q E II(s), p is the minimal period of s and IsI = p + q - 2. The map n : PER -+ F 

defined as: 

n(s) = P/4, 

is a surjection. Moreover, for s # 8: 

n(s) = (Is1 - IQlMlQl + 2), 

where Q is the maximal proper palindrome &ix of s. 

The restrictions na and nb of n, respectively, to PER(,) U {E} and to PER(b) U {E}, 

are bijections. 

Remark 2. From the above lemma one has that the set PER(,) U {E} faithfully rep- 

resents all fractions p/q with 0 < p <q and gcd(p, q) = 1. One can then use the set 

P.!&, either to represent the negative fractions -p/q or the irreducible and improper 

fractions q/p. Let us observe that PER can also represent the set of all Gauss integers 

a + ib, with a, b > 0 and gcd(a, b) = 1. More precisely one can consider the map y 

from PER into the set of complex numbers such that y(s) = p + iq if s E PER,,, U {E} 

and y(s) = q + ip, ifs E PER(b). 

Let ‘9 the set of all irreducible fractions p/q with p and q non negative integers 

such that gcd(p, q) = 1. We define the map 

< : 9 ---f PER, 

as [(l/l) = E and for p/q # l/l, 

@p/4) = C’(P/q) if P < 4, 

&p/q) = n;l(q/p) if P > 4. 
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From Lemma 5.1 the map [ is a bijection. For all w E PER the irreducible fraction 

p/q = i-‘(w) will be called also the Farey number of w. 

We know (cf. Theorems 3.2 and 4.1) that there exists a bijection 

I : PER -+ CP\d, 

defined as: if w E PER, then A(w) = awb E CP. From Proposition 4.3 one has that 

there exists also a bijection p of CP\&’ and 9 which associates to the word u E CP 

the slope p(u) = In/b/l&. Hence, the map 

is a bijection ,u : 59 -+ ‘3. The map .n associates to any irreducible fraction p/q seen as 

the ratio of the periods of a word w E PER, the slope of the Christoffel primitive word 

awb. Hence, between the ratio of periods of the elements of PER and the slopes of the 

corresponding Christoffel primitive words there exists a bijection. In this section we 

shall see that this correspondence can be expressed in terms of the continued fractions 

of the slopes and of the ratios of periods. We need to recall some propositions [3] and 

prove some lemmas. 

We define the map 

as 

$(E) = 8, $(a) = a, ti(b) = b, 

andforallwE&*, x~d, 

$(wx) = (xl&v))‘-‘. 

Proposition 5.1. The map $ : d* + PER is a bijection. 

We can represent any word w E &‘* uniquely by a finite sequence (hl, h2,. . . , h,) of 

integers, where hl 2 0, hi > 0 for 1 < i < n and 

w = ahlbhzahi . . . . 

One has /WI = Cy=, hi. We call such a representation of the words of J&‘* the integral 

representation. 

Proposition 5.2. Let w E J+‘* and be (hl, h2,. . . , h,) its integral representation. The 

standard words 

have, respectively, the directive sequences 

(hl ,...,hn,l), (hl, . . . . h,-l,h,+ 1X 
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if n is even, and, respectively, 

(h,...,Ll,hn + 11, (h,..., ha, l), 

lf n is odd. 

Let ao,al,..., a,, be a finite sequence of integers such that ai > 0, 1 < i < n and 

ao, a,, >O. We denote by (ao,al , . . . , a,) the continued fraction [ao, al,. . . , a,_,, a,+11 = 

Lao, al ,...,a,-l,a,, 11: 

a0 + 
1 

1 
al + 

1 
a2 + 

a,-1 + - 
a, + 1 

We note that we use the above notation for continued fractions since in this way 

the major part of the results can be expressed by more symmetric formulas. 

Proposition 5.3. Let w be a word on the alphabet d = {a, b} and $(w) be the 

corresponding element of PER. If (hl, . . . , h,) is the integral representation of w, then 

q(tj(w)) has a development in continued fractions given by (0, h,, . . . , hl). 

Lemma 5.2. Ifs is a standard Sturmian word having the directive sequence (hl, . . . , h,), 

then the slope p(s) of s is given by 

P(S) = IMl~la = (O,hl,...,hn - 1) = [O,h,...,M. 

Proof. Let s E Stand have the directive sequence (hl, . . , h,). If n = 1 then we have 

s = ah’b so that p(s) = l/hi = [0, hl].(Note that this result holds also when hl = 0. In 

this case p(s) = 00.) Let us now give the proof for any n. We can write 

so = b, s1 =a, s2 =.+s(), . ..) h,, s,+1 = s, s,_, = s. 

The lengths of the terms si, i = 1,. . . ,n, satisfy the following recurrence relations: 

ISi+ lb = hilSi]b + ISi-116, 

IS,+, ]a = hilsil, + ISi- Ia. 

For i = l,...,n, we have 

]O, hi,. . . > hl = Pi/qi, 
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where for i = 1 , . . . ,a, pi/qi is an irreducible fraction. From the general theory of 

continued fractions one has 

Pi = bPi-1 + Pi-Z, 

qi = hiqj-1 + qi-2. 

Moreover, PI = 1, qt = hi and p2/q2 = h2/(hlh2 + 1) = I.s31&Ja, so that p2 = /Q(~ 

and q2 = Isjl, = 1 + hlh2. By a comparison of the recurrence relations one derives 

that for i = l,...,n : 

pi = Isi+ lb and qi = l~i+l Ia, 

so that 

p(s) = l&z+1 lb/l%+1 la = P&n = 10, h, ‘. . , hll. q 

Theorem 5.1. Let w E PER(,) and be q(w) = p/q. If p/q has the development in 
continued fractions (0, hl, . . . , h,), then the slope p of the Christoffel primitive word 

awb has a development in continued fractions given by (0, h,, . . , hl). 

Proof. Let w E PER(,) and let u E d* be such that w = G(u). If (hl,. . . , h,) is the 

integral representation of u, then by Proposition 5.3, q(w) = p/q has a development 

in continued fractions given by (0, h,, . . . , hl ). One has, moreover, that 

p = p(awb) = p(wab) = p(wba). 

It follows by Proposition 5.2 that either wab or wba is a standard Sturmian word 

having the directive sequence: 

(hl,...,h, + 1). 

Hence, by Lemma 5.2 the slope of such a word is (0, hl,. . ., h,), i.e. 

p = p(awb) = (O,hl,. . ., h,). 0 

A different proof of Theorem 5.1 will be given in Section 7. 

Example 1. Let u = a2b3a. The word w = t&u) is 

w = (a2b)3a3b(a2b)2a2. 

One has q(w) = p/q = lo/13 = (0,1,3,2) and p(awb) = (IV+, + l)/(lw10 + 1) = 
7/16 = (0,2,3,1). 

Corollary 5.1. Let w E PER(,) and be u E &* such that w = Q+(U). If u has the 

integral representation (hl, . . . , h,), then one has p(awb) = (O,hl,. . ., h,). 

Proof. From Proposition 5.2, q(w) = p/q = (0, h,, . . . , hl). Hence from Theorem 5.1 

it follows p(awb) = (0, hl,. ., hn). 0 
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Corollary 5.2. Let w E PER(b) and q(w) = p/q. If p/q has the development in 

continued fractions (0, hl, . . . , h,) then the slope p of the ChristofSel primitive word 

awb is given by 

p(awb) = (h,, . . . , hl). 

Proof. Let I? be the word obtained from w by interchanging the letter a with the letter 

6. One has that 

II(+) = r](w) = p/q = (0, h,, . . . , h,) 

and 

p(awb) = (I4 + lY(lwl, + 1) = WI, + l)/(l% + 1). 

Since 6 E PER(,) from Theorem 5.1 one has p(aGb) = (0, h,, . . . , hl) and p(awb) = 

(p(aGb))-1 = (h,,...,hl). 0 

6. Matrices and trees 

Let 91, or simply 22, be the set of all matrices: 

M= 
ab 

( ) cd ’ 

where a, b, c and d are nonnegative integers and such that det(M) = ad - bc = 1. As 

is well known $3 is a monoid freely generated by the two matrices: 

(E)? (::). 

Let &’ = {L,R} be a two letter alphabet and d* the free monoid on d. We denote 

by I the empty word of {L, R}*. The map a : d 4 $3 defined by 

can be extended to an isomorphism of {L, R}* onto 9. (The empty word 1 is repre- 

sented by the identity matrix.) We can then identify, when no confusion arises, each 

word W E (15, R)* with the corresponding matrix a(W). We say also that W is the 

generating word of the matrix a(W). We shall write any word W E {L,R}* in the 

following form: 

W = RRoL”1 . . .L%lRh 
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for a suitable n >O, as, a, 20 and ai > 0 for i E [ 1, n - I]. We denote, as usual, 

by @ and 6”, respectively, the mirror image of W and the word obtained from W by 

interchanging the letter R with the letter L. We denote also by W’ the word (F) = (F). 

The operation (‘) is an antiautomorphism of {L,R}*. It holds the following [ll]. 

Proposition 6.1. Let W E {L,R}* and be 

Then 

The next proposition is stated in [l l] without proof. 

Proposition 6.2. Let p and q be positive integers which are coprimes. Then there 
exists a unique word W E {L,R}* such that 

(;)=w(i>- 
Proof. We make induction on the integer n = p + q. If n = 2 then p = q = 1 and 

W = 1. Suppose then n > 1. We can write, and uniquely, 

if, respectively, q > p or q < p. Let us consider only the first case. The second is 

dealt with in a similar way. Since gcd(p,q - p) = 1 and p + (q - p) = q < n, by 

induction there exists a unique word V E {L, R}* such that 

This implies that 

(;)=Lv(;). 0 

To each vector 

24= 
P 0 4 ’ 

P>4 ’ 0 

we associate the number f(u) = p/q. If 
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then we define 

f(W)=(a+b)/(c+d)=f w ; ( 0) . 
From the general theory [ 11,6] one has 

Proposition 6.3. Zf W = RaOLal . . . Lal>- 1 Ran, then f(W) has the development in con- 

tinued fractions given by 

f(W) = [ao,w,. . .,&I + 11 = (ao,a ,,..., a,). 

Let us now consider the complete binary tree. Each path from the root to a particular 

node can be represented by a word W E {L, R}*. More precisely, the sequence of letters 

of W = RaOLal . . . Lan-’ Ran, read from left to right, gives the sequence of right and left 

moves in order to reach the node starting from the root. Since for every node there 

exists a unique path going from the root to the node, one has that the nodes are 

faithfully represented by the words W E {L, R}*. In the following we shall identify the 

nodes of the tree with the binary words of {L, R}*. 

Let us now label each node of the tree with an irreducible fraction p/q, p and q 

positive integers, in the following way. The root has the label l/l. If a node has the 

label p/q, then the ‘left son’ has the label 

pI(p+q)=f L ; 
( ( >) 

and the ‘right son’ has the label 

. 

We call this labeled binary tree the Raney tree. The label of each node W is called 

the Raney number of W and denoted by Ra( W). From the definition one has 

Ra(W) = f(q) = p/q, with 
(;)=fi(:). 

From Proposition 6.2 it follows that all irreducible fraction p/q, p, q > 0 can be 

faithfully represented by the Raney tree. 

Let us now consider the Stern-Brocot tree [6] which is a complete binary tree 

labeled by irreducible fractions according to the following rule. The label p/q in a 

node is given by (p’ + p”)/(q’ + q”), where p//q’ is the nearest ancestor above and to 

the left and p”/q” is the nearest ancestor above and to the right.(In order to construct 

the tree one needs also to add to the binary tree two more nodes labeled by l/O and 

O/l.) For each node W we denote by SB( W) the corresponding label; SB( W) is called 

the Stern-Brocot number of W. One has that [6] 

SB(W) = f(W) = p/q, with (i)=W(:). 
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From Proposition 6.2 it follows that all the irreducible fractions p/q, p, q > 0, 

are faithfully represented in the Stern-Brocot tree. Hence, each node W of a binary 

tree can be labeled by two irreducible fractions the Raney number Ra( W) and the 

Stern-Brocot number SB( W). We report below (see Fig. 2) a part of the binary tree. 

The tree is labeled by Raney’s numbers and by the Stem-Brocot numbers in the 

brackets. 

Let us consider the node 

W=LRL2R= 

One has 

Hence Ra( W) = f(R) = 1 l/8 and SB( W) = f(W) = 7/12. 

0 1 
1 ......_I_ 

_..._ ___... 
,,_.‘. 

,_... 
0 

‘.... . . . . . . .._ . 
.._. 

0 

...... 

. . . . . 
,_... 

1 1 

- 

_ 

1 1 

Fig. 2. The Raney and the Stem-Brocot trees. 
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The relation between Raney’s number and Stem-Brocot’s number is given by the 

following: 

Proposition 6.4. Let a node in the binary tree have the Raney number p/q and the 

Stern-Brocot number r/s. The number r/s has the development in continued fractions 

r/s = (a0, al,. . . ,a,) 

with n even, ao,a,,>O and ai > 0, i = l,...,n - 1, if and only if p/q has the 

development in continued fractions 

p/q = (ha,-l,...,ao). 

Proof . Let W = RaoLal . . . Latl-l Rat1 be a node. One has by Proposition 6.3 

SB(W) = f(W) = (ao,al,..., a,). 

Since @ = R”llLatl-’ . . . LalRaO, by using again Proposition 6.3 one has 

Ra(W) = f(E) = (a,,a,_l,..., ao). 0 

Let us observe that in the case of the above example S(W) = 7/12 = (0, 1,1,2,1) 
and Ra(W)= 11/S= (1,2,1,1). 

7. Standard, Christoffel and Farey trees 

We can label a complete binary tree by the standard pairs (u, v) E .%! as follows. 

The root is labeled by the pair (a, b) E &’ and if (u,v) E W is a label of a node, then 

the label of the ‘left son’ is (u, uv) E W and the label of the ‘right son’ is (vu, v) E 9?. 

We call this tree the standard tree. 

Let us introduce in W two elementary maps, or operators, L and R, defined by 

(4 uv) = L(u, a), (vu, v) = R(u, v). 

We can then consider a map c : {L,R}* -+ 92 inductively defined as: for all W E 

{R,L}* 

a(l) = (a,b), a( WR) = Ro( W), a( WL) = Lo(W). 

In this way one has for all W E {L,R}* 

a(W) = F@(a, b). 

From the above construction one has that a(W) is the standard pair which labels W 

in the standard tree; W is also called the generating word of the standard pair o(W). 

The map cr is obviously surjective. Moreover, it is also injective and then bijective. 

This can be proved in several ways. We shall prove it as an obvious consequence of 

the following: 



196 J. Berstel, A. de LucalTheoretical Computer Science 178 (1997) 171-203 

Lemma 7.1. For any standardpair (u, u) E 92 there exists a unique word W E {L,R}* 

such that 

(u, 0) = W(a, b). 

Proof. The proof is by induction on the integer it = Ju[ + 1~1. For n = 2, i.e. u = a 
and u = b, one has W = z. For n > 2 one can write, uniquely, 

(u, u) = L(u,u-‘u) or (24, u) = R(u-‘24, u). 

Let us consider only the first case. The second is dealt with in a similar way. Since 

Iul+ (u-‘UJ = ( ( u < n then by induction there exists and is unique a word Y such that 

(u,u-‘u) = V(a,b). 

Hence, 

(u, 0) = LVV(a,b), 

so that W = LV. 0 

Theorem 7.1. A word W of {L, R}* generates the standard pair (u, u) if and only if 
W generates the matrix: 

Proof. The proof is by induction on the length n of W. If n = 0, i.e. W = z, then 

the standard pair generated by I is (a, b) and the matrix generated by z is the identity 

matrix, so that in this case the result is trivially true. Let us now suppose that the 

statement of theorem is true up to the length n 20 for W; we want prove that it is 

true for a length of W equal to n + 1. Let (u, u) be the standard pair generated by W. 
By using the inductive hypothesis, we have that 

(u, u) = @(a, b), if and only if a(W) = 

Let us consider the words 

(u, uu) and (vu, u). One has 

and 

WL and WR generating, respectively, the standard pairs 

a( WR) = I4 l4J + I47 
I42 14 + I4 

which proves the assertion. 0 



Lemma 7.2. For any w E PER, ra(w) = p/q where p is the minimal period of wa 

and q the minimal period of wb. When Card(aZph(w)) > 1 then p is also the minimal 

period of wab and q the minimal period of wba. 

Proof. If w = a”, n > 0, then wa = a”+’ and wb = a”b. Now wa and wb have 

respectively the minimal periods 1 and n + 1. Since ra(w) = l/(n + 1) the result is 

verified. In a similar way if w = b”, n > 0, one has ra(w) = n + 1 and the minimal 

periods of wa and wb are, respectively, n + 1 and 1. 

Let us then suppose that Card(alph(w)) > 1. We can write w as 
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Let us introduce the map ra : PER -+ 3 defined by 

ra(E) = l/l, ra(d*)=l/(n+l), ra(b”)=n+l, n>,l 

and, if w E PER and Card(alph(w)) = 2, then 

ra(w) = P/4, 

where p = IP] + 2, q = IQ] + 2 and PbaQ = w is the unique factorization of w of the 

previous kind with P, Q E PAL, One can easily prove that ra is a bijection. For any 

w E PER we call ra(w) the Raney number of w. 

As it is clear from the definition, the Raney number of w E PER, as well as the 

Farey number of w, is a ratio of the two periods p and q such that gcd(p, q) = 1 and 

]w] = p + q - 2. For any w E PER the Farey number of w is equal to r-a(w) or to its 

inverse. 

A further interpretation of the Raney number of an element of PER is given by the 

following: 

w = PbaQ = QabP. 

Let p = jPI + 2 and q = IQ1 + 2 the two periods of w such that gcd( p, q) = 1 and 

[WI = p + q - 2. Let us consider the words: 

wa = QabPa, wb = PbaQb. 

The word wa, as well as wab, has the period p, whereas the words wb and wba 

have the period q. Let us suppose p < q. One has that p is the minimal period of wa 

and of wab. In fact, otherwise, if wa or wab has a period p’ < p, then also w would 

have the period p’ which contradicts the minimality of p. 

We want now to prove that q is the minimal period of wb and wba. Indeed, suppose 

that wb or wba has the period q’ < q. The words wb and wba cannot have the period 

p since, otherwise, by the theorem of Fine and Wilf [7] they will be powers of a 

single letter; hence q’ > p. Now the word w has the periods p, q and q’. Moreover, 

(WI = p+q-2>p+q’- 1, 

so that by the theorem of Fine and Wilf w has also the period gcd(p, q’). Since p is 

the minimal period of w it follows that q’ = kp, k > 1. In view of the fact that wb 
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has the period q’ and w = WI . . . w,, Wi E {a, b}, i = 1,. . . , n, has the period p, one 

derives 

b = wn-kp+l = %-,+I. 

This implies that wb has the period p which is a contradiction. 0 

Corollary 7.1. Zf W generates the standard pair (u, v) E W, then 

R4W) = lulllvl, SB(W) = I~vllJIl~vI,. 

Moreover, if uv = nab with n E PER then 

Ra( W) = m(n). 

Proof. By definition one has 

Ra(W) = f(R) and SB(W) = f(W). 

By Theorem 7.1 we can write 

so that by Proposition 6.1 

One has then 

= ~u~/~v~ and SB(W) = f W i 
( 0) 

. 

If the standard pair (u, v) = (a, anb), n 2 0, then one has rc = a” 

Ra( W) = l/(n + 1) = ru(a”). 

In a similar way one proves the result if (u,v) = (b”a, b). Let us now suppose that 

u = Pba and v = Qab, with P, Q E PER. One has then 

z = PbaQ E PER, 

so that 

Ra( W) = Iul/lvl = p/q = m(n). 

In this case by the previous lemma Ra( W) is equal to the ratio of the minimal 

period of uv and the minimal period of vu. 0 

We label now the complete binary tree by the Christoffel pairs (x, v) E 59 as follows. 

The root is labeled by the pair (a, b) E 59 and if (x, JJ) E %Y is a label of a node, then 
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the label of the ‘left son’ is (x,xy) E V and the label of the ‘right son’ is (xy, y) E V. 

We call this tree the Christoffel tree. 

Let us introduce in 9? the two operators, L and R, defined as: for any (x, y) E %? 

(x, XY > = L(x, Y), (XY, Y) = @, Y 1. 

We can then consider a map r : {L, R}* + %? inductively defined as: for all W E 

{R,L}* 

~(z)=(a,b), z(WR)=Rz(W), z(WL)=Lz(W). 

In this way one has for all W E {L, R}* 

z(W) = ti(a,b). 

From the above construction one has that r(W) is the Christoffel pair which labels 

W in the Christoffel tree; W is also called the generating word of the Christoffel pair 

r(W). 
The map z is obviously surjective. Moreover, it is also injective and then bijective. 

This is a consequence of the following lemma whose prove is very similar to that of 

Lemma 7.1. 

Lemma 7.3. For any Christoffel pair (x, y) E % there exists a unique word W E 
{L,R}* such that 

(4 Y) = WC% 6). 

In a way similar to that of Theorem 7.land Corollary 7.1 one can prove 

Theorem 7.2. A word W of {L, R}* generates the ChristofSel pair (x, y) if and only 

if W generates the matrix 

Moreover, Ra( W) = lxl/lyl and SB( W) = Ixy(b/lxyl,. 

In the Fig. 3 we report the binary tree labeled by the standard pairs and by the 

Christoffel pairs. 

Finally, we consider the Farey tree [3] which is obtained by labelling the complete 

binary tree with the elements of the set PER in the following way: the root is labeled 

by the empty word E E PER. Moreover, if u E PER is a label of a node then the label 

of the ‘left son’ is (au)(-) and the label of the ‘right son’ is (bu)(-). Let L,R be the 

two operators L,R : PER --) PER defined for all u E PER as: 

L u = (au)‘-‘, R. u = (bu)‘-‘. 
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Fig. 3. The standard and the Christoffel trees. 

We can then consider the map q : (L,R)* + PER inductively defined as: for all 

W E {L,R}* 

cp( L) = E, cp( WL) = L . cp( W), cp( WR) = R . cp( W). 

In this way one has for all W E {L, R}* 

cjY( W) = ti. E. 

For each W E {L, R}‘, cp( W) gives the label of the node W in the Farey tree. The 

map q is a bijection. In fact, if we introduce the isomorphism j : {L,R}* -+ {a,b}* 

defined by j(L) = a, j(R) = b. Then one has 

V(W) = ~(AW))~ 

where $ : {a,b}* --t PER is the map defined in Section 5. Thus cp = j o i+k; since $ is 

a bijection, so will be cp. 

To each node W of the Farey tree one can associate the irreducible fraction Fu( W) 

defined by 

F@(W) = P(cp(W)), 

where [ was defined in Section 5. We call Fu( W) the Farey number of W. If a node 

W is labeled by p/q, with p < q, then its sons will be labeled by p/(p + q) and 

q/(p + q). (Note that no necessarily WL has the label p/(p + q).) 



J. Berstel, A. de Lucal Theoretical Computer Science 178 (1997) 171-203 201 

Let W = RaoLnl . ..Lan-‘Ran. ao,a, 30 and ai > 0, i = l,..., n-l, we define ord(W) 

the number of nonzero elements in the sequence (as, al,, . . , a,). There exists a relation 

between the Farey number Fu( W) and the Raney number Ra( W). 

Proposition 7.1. For all W E {L,R}* 

Fu( W) = R4W) ford(W) is odd, 

l/R4 W) otherwise. 

Proof. Suppose first that ord( W) is odd. Since n is even then either as = a, = 0 

or aa,un > 0. In the first case Ra(W) = (O,a,_l,..., a1,O) = (O,a,_l,..., ~1). Now 
j(W) = &lb@ . ..&-I. so that the integral representation of j(W) is (al,. . . , a,_~). 

This implies from Proposition 5.3, q(cp( W)) = r($(j( W))) = (O,a,_l, . . . ,a~). Since 

cp( W) E PER(,) one has that 

F4W) = i-‘(cp(W)) = r(cp(W)) = MW). 

In the second case Ra( W) = (a,,a,_l,. . . ,al,ao) and the word j(W) = baoanl . . . ban 
has the integral representation (ao,ai,. . . ,a,). Thus r((j( W)) = (O,a,,. . .,a~). Since 

I&(W)) E PER(b) one has 

Fa(W) = i-‘(cp(W)) = (q(@‘)))-’ = (a,,...,a,,ao) = MW). 

Let now ord( W) be an even integer. One has two consider the two subcases: as = 

0, a, > 0 and a0 > 0, a, = 0. In the first subcase Ra( W) = (a,, . . . ,a~). Since the 

integral representation of j( W) is (al,. . . ,a,) and cp( W) E PER(,), one has 

Fu(W) = <-‘(cp(W)) = q(cp(W)) = (O,a,,...,a,) = l/Ra(W). 

In the second subcase Ra( W) = (0, a,_~, . . , al, a~) and the integral representation 

of j(W) is (ao,ai,..., a,_~) one has q($(j(W)) = (0, a,_1 ,..., al,ao). Since q(W) E 
PER(b), it follows that 

Fa(W) = [-‘(C/I(W)) = (@(W))-’ = (a,_,,...,a,,ao) = l/Ra(W). 0 

Proposition 7.2. Let W E {L, R}* and CT(W) and cp( W) the standard pair (u, v) and 

the element of PER which label W in the standard tree and in the Farey tree respec- 
tively. One has 

uv = cp( W)ab. 

Proof. Suppose first that a0 = 0, i.e. q(W) E PER(,). Let (u,v) be the standard pair 

a(W). Let us write uv = nab with rc E PER(,). We know from Corollary 7.1 that 

Ra( W) = ru( n) = p/q where p = It.4 and q = 1 VI are the two periods of rr such that 

gcd(p,q) = 1 and p + q - 2 = InI. S’ mce Fa( W) < 1 from the previous proposition 

one has 

Fu( W) = PI4 if p<q, 

4/P otherwise. 
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Hence cp( W) = i(Fa( W)) = rc. The case as > 0 is dealt with in a symmetric way. 

0 

Let us now give a different proof of Theorem 5.1. 

Proof of Theorem 5.1 . Let w E PER(,) and W E {L, R}* be such that w = cp( W). If 

a(W) = (u, v), then one has by the previous proposition uu = wub. By Corollary 7.1 

one has that 

SB( W) = (uu(&4t$ = (WUb(~/(WUb(, = p(uwb). 

Moreover, from Propositions 6.3 and 6.4 one derives SB( W) = (ao,q,. . . ,a,) and 

Ru( W) = (a,, . . . al, ~0). Since w E PER,,, then ua = 0. 

If ord( W) is odd then a, = 0 and by Proposition 7.2 

r/(w) = Fu( W) = Ru( W). 

Hence, p(uwb) = (O,ui,...,u,_i) and q(w) = (O,u,_i . . ..a~). If ord(W) is even then 

a, > 0 and 

v](w) = Fu( W) = l/Ru( W). 

Hence, p(uwb) = (0, al,. . . ,a,) and q(w)= (O,u, . . . . al). 0 

Example 2. In the case of the word W = LRL*R one has (cf. Fig. 3) a(W) = (u, u), 

z(W) = (x, y) and cp( W) = w, with 

u = ubuubuububu, v = ubuubuub, x = uubuubuubub, y = uubuubub, 

and 

w = ubuubuububuubuubu. 

One has then uv = wub and xy = uwb. Moreover, 

sR(W) = 7/12 = i~uib/l~rI, = IxYI~/IxYI~. 

and 

Ru( W) = l/Fa(W) = 11/8 = lul/lul = /xl/lyl. 
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