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Abstract 

A partial word is a word that is a partial mapping into an alphabet. We prove a variant of 
Fine and Wilf’s theorem for partial words, and give extensions of some general combinatorial 
properties of words. @ 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

A partial word of length n over an alphabet A is a partial function 

w:{O,...,n - l}-+A 

The domain of w is the set D(w) of positions p E {O,. . . ,n - 1) such that w(p) is 

defined. The set H(w) = (0,. . . , n - 1 }\D(w) is the set of hoks of w. A usual word 

over an alphabet A is just a partial word without holes. 

Partial words appear in comparing genes. Indeed, alignment of two sequences can 

be viewed as a construction of two partial words that are compatible in a sense that 

will be developed below. 

The aim of this note is to examine to which extent some elementary combinatorial 

properties of words remain true for partial words. As we shall see, these properties 

still hold when words have one hole, but become false as soon as words have two 

holes. 
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2. Notation 

To each partial word w over A we can associate a total word w0 (its companion) 
over an augmented alphabet A, = A U {o} by setting 

we(P) = 1 W(P) if P ED(w), 

0 if p EH(w). 

The mapping w H w, is a bijection, so many relevant notions for words, such as 

concatenation, powers, and so on, may be transported to partial words this way. 

Observe that the symbol o is not a “do not care” symbol, as for pattern matching, 

but rather a “do not know” symbol. 

Example. The (total) word w, = abcoocd corresponds to a partial word w of length 

7, with set of holes H(w) = {3,4}. 

A partial word w has period p or is p-periodic if, for all i, j E D(w), 

i z j (mod p) + w(i) = w(j). 

As an example, the word w with companion w, = aboaocabc is 3-periodic. Observe 

that, despite the fact that the length of w is a multiple of the period, w is not a power 

of a shorter word. This shows a clear difference between partial and total (or full) 

words. 

A partial words w is locally p-periodic if 

i,i+pED(w)+w(i)=w(i+p). 

A locally periodic total word is always periodic. This does not hold for partial words. 

As an example, the word w = abcobcd is locally 3-periodic but is not 3-periodic unless 

a = d. 

3. Fine and Wilf’s theorem revisited 

A well-known result due to Fine and Wilf [2] (see also the exposition in [l]) is the 

following: 

Theorem 3.1. If a (total) word x has periods p and q, and has length at least p + 
q - gcd(p, q), then x has also period gcd( p, q). 

In the particular case where the periods p and q are relatively prime, it suffices that 

Ix]2 p + q - 1 to get that x is l-periodic. 

We consider the case of partial words, and prove the following analog of 

Theorem 3.1. 
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Theorem 3.2. Let w be a partial word of length II which is locally p-periodic and 

locally q-periodic. If H( w is a singleton and if n >, p + q, then w is (strongly) ) 
gcd( p, q)-periodic. 

In the special case where p and q are relatively prime, our result implies Fine and 

Wilf’s theorem for relatively prime periods. Indeed, the latter is obtained in the case 

where the hole is just at the beginning or at the end of the word. 

The bound for the length il is sharp. Indeed, the partial word of length 12 

aaaabaaaaoaa 

has (strong) periods 5 and 8, has a unique hole but is not l-periodic. 

The result does not hold for two holes. Indeed, the partial word with companion 

aboabaoba 

of length 9 has periods 3 and 5 and two holes, without being l-periodic. This is a 

special case of an infinite set. Consider 

IX?) = (ab)mo(ab)mao(ba)m. 

Each word xc”‘) has length 6m + 3, and is easily checked to have periods 2m + 1 and 

2m + 3, without being l-periodic. 

4. Proof 

The proof is along the lines of the proof given in [l] with one modification where 

it appears to be necessary. We will illustrate it by an example. 

It suffices to prove the result for n = p + q, for, if \wI > p + q, it holds for every 

factor of w of length p + q, and thus also for w itself. 

Assume first that the result holds for relatively prime periods p and q, and consider 

the case where d = gcd(p, q) > 1. Set IZ = dn’, and define d partial words 

w@)=w(k)w(k+d)...w(k+(n’-l)d), k=O,...,d- 1. 

Setting p = p’d, q = q’d, each of the wck) is locally p’-periodic, and locally q/-periodic 

and has length n’ = p’ + q’. Consequently, it is l-periodic by our assumption, and w 

is d-periodic. 

It remains to prove the result for relatively prime p and q. We may assume p < q. 
Consider the function 

f : (0,. . . ,p- l}-{O,...,P- 1) 

defined, for k E (0,. . . , p - 1 }, by: f(k) is the unique integer in (0,. . . , p - 1) that is 

congruent to k + q modulo p. 
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Since f(k) K k + q (mod p), it follows that f2(k) z f(k) + q s k + 2q (mod p) and 

in general fh(k)zk+hq(mod p) for all kE{O,...,p-I} and h 3 0. Thus fp(k)=k 

and fh(k) # fh’(k) for 0 <A <h’ <p. Thus, for every k E (0,. . . , p - l}, one has 

{k fW,f2(k), . . . , fp-’ (k)) = (0,. . . , P - 1). 

Define now the path of kE{O,...,p - 1) to be the subset of {O,...,p +q - l} 

given by 

P(k)={k,k+q,k+q-p,k+q_2p,...,f(k)}. 

It starts with a big (forward) step k H k + q, followed by a sequence of small (back- 

ward) steps of the form e H t-p taking eventually the number back into (0,. . . , p- 1). 

The set H(w) being a singleton, set H(w) = {r}. 

Before proceeding with the proof, let us give an example. 

Let p = 5 and q = 17, and thus IwI = 22. There are 5 paths 

P(O)= {0,17,12,7,2}, P(1)={1,18,13,8,3}, 

P(2) = {2,19,14,9,4}, P(3)= {3,20,15,10,5,0}. 

P(4)={4,21,16,11,6,1}, 

So, the permutation f is given by 

(0,2,4, ~3). 

The proof that follows is divided into two cases, according to the value of the hole r: 

l 0 < Y < 4, for instance r=2. Then since f(2)=4, we obtain w(4)=w(l)= 

w(3) = w(0) = w(i) for i 25, as required. 

l 5 < r < 21, for instance r = 14. Since 14 is in the path P(2), all the other paths 

together ensure again that all letters are equal. 

We now proceed with the formal proof. 

If r is not in P(k), then w(k) = w(f(k)), because weak q-periodic@ implies w(k) = 

w(k + q), and weak p-periodicity implies w(k + q) = w(k + q - p) =. . . = w(f(k)). 

The sets P(k)\(k) are pairwise disjoint (and in fact are a partition of (0,. . . , p + 

q - 1)). This means that the hole r belongs to exactly one of the sets P(k) \ {k}, and 

Y belongs to at most two P(k). More precisely: 

l If O<r<p- 1, then one has w(f(r))=w(f2(y))= . . . = w(fP-l(r)). The numbers 

f(r),. . ., _fJ’-‘c(r) are exactly the integers (0,. . ., p - 1) \ {r}, and this means 

precisely that the partial word w(O). . f w(p - 1) is l-periodic. It follows easily that 

w is l-periodic. 

l If p<r<p+q- 1, then r is in P(t), fort such that t+qrr(modp). One has 

NY(t)) = w(f2(t)) =. . . = WWYO), and as above this means that the total word 

w(O). . . w(p - 1) is l-periodic. Again, it follows easily that w is l-periodic. 0 
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5. Further results 

In this section, we present some analogous of well-known elementary combinatorial 

properties of words, extended to partial words. It appears that several implications still 

hold for partial words with a single hole, but become false for words with two holes. 

Given two partial words x and y of the same length, we say that x is contained in 

Y or that Y contains x, and we write x c y, if D(x) c D(y) and x(k) = y(k) for all k 

in D(x). Two words x and y are compatible and we write x T y if there exists a word 

z that contains both x and y. In this case, the smallest word containing x and y is 

denoted by x V y and is defined by D(x V y) = D(x) U D(y) 
We start with several straightforward rules for computing with partial words. 

XT? ytt*xyw (multiplication), 

xy r zt, 1x1= (z 1 +x t z and y r t (simplification), 

xtv, zcx+zry (weakening). 

From these rules, we get easily the following. 

Lemma 5.1 (Levi’s lemma). Let x,y,z,t be partial words. Zf xy Tzt and (x1 < JzJ, 
there exists a factorisation z = ps such that x T p and y 7 st. 

Proof. Set indeed z = ps with (xl= IpI. Then xy T pst and the simplification rule gives 

the result. 0 

Theorem 5.2. Let x and y be partial words such that xy has at most one hole. The 
following are equivalent: 

1. xyfyx. 

2. x cz”, y c zm for some word z and integers n,m. 
3. xk r ye for some integers k,d. 

As the proof shows, equivalence (2) w (3) and implication (2) + (1) hold without 

any condition. 

On the contrary, implication (1) + (2) is false even if xy V yx has no hole, as shown 

by the example x0 = obb, yO = abbo. 
We start with a lemma. 

Lemma 5.3. Let x be a partial word and let u and v be two (jiill) words. If x has 
only one hole and if x c uv and x c vu, then uv = vu. 

Proof. We may suppose that JuI d Jvj. Set v=u’v’, with Iu’] = /uJ, and set x= yz with 

IyJ = IuJ. Here u’, v’ are full words, and y, z are partial words. 

From yz c uv, we get y c u and z c u. Similarly, since yz c vu = u’v’u, we get y c ti’ 

and z c v’u. Two cases arise. 
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Case 1: y has no hole (and z has one hole). Then y = u = u’, and z c u = uu’, z c v’u. 
By induction, uv’ = v’u whence uv = vu. 

Case 2: y has one hole (and z has no hole). Then y c u, y cu’, and z = v = v’u = u’v’, 
Thus u and v’ are conjugate full words, and there exists two words s and t such that 
u = st, u’ = ts and VI = (ts)“t for some n > 0. Since y c st, y c ts, by induction st = ts, 
whence uv = vu. 0 

Proof of the theorem. (1) + (2). If x and y have same length, then the simplification 
rule shows that x 7 y. Since either y or x has no hole, this implies XC y or vice-versa. 
Assume 1x1~ lyl. By Levi’s lemma, there is a factorization y = ut, with (u( = 1x1, such 
that 

xTu and utftx. 

We distinguish three cases. 

(1) 

(a) The hole is in x. Then x T u implies x c u, whence xt c ut. By the weakening 
rule, the second relation in (1) gives xt T tx. Since x c u, this implies xt c tu. By the 
previous lemma, ut = tu, and there exists a word z such that t =z” and u = z”‘, so that 
Y=z”+~ and XCZ”‘. 

(b) The hole is in u. This case is symmetric to the previous one. 
(c) The hole is in t. Then (1) gives x = u and xt T tx. By induction, x c z” (whence 

x = zn) and t c z”‘. By the multiplication rule, y = ut c z”+~, 

(2) + (1). The multiplication rule gives xy r z”+~ and yx T z”+“. Thus xy r yx. 
(2) + (3). By the multiplication rule, x”’ cznm and y” CZ”~, showing that xm t f. 
(3) + (2). The proof is partly similar to that of Fine and Wilf’s theorem. Clearly, 

the result holds if D(x) = 0 or D(y) = 0. Set p= 1x1 and q = [y(, and suppose first that 
p and q are relatively prime. Then x4 r yJ’ by the simplification rule. 

Let i E D(x). The numbers i, i + p, . . . , i + (q - 1 )p belong to 0(x4). All these letters 
in x4 are the same, say the letter a. The remainders modulo q of i, i+p, . . . , i+(q- 1)p 
are precisely the numbers 0, 1, . . . , q- 1 (not necessarily in this order). Indeed, it suffices 
to show that the remainders are all distinct, and assuming 

i+/zp-i+pp (mod q) 

one gets that q divides (1 - p)p, and since (p,q) = 1, that q divides 1 - ~1, whence 
i = ,u. 

It follows that y c aq, whence also x cap. 
Assume next that (p, q) = d, and set p = p’d, q = q’d. Then x4’ t yp’ a,d 1x9’ I = 

1 yJ” I= p’q’d. Define, for 0 < h < d - 1, 

x/, =x(h)x(h+d)...x(h+(p’- l)d), 

yh = y(h)y(h + d) . . . y(h + (q’ - 1 )d). 

Then [xh I= p’, 1 yh ( = q’, and xl’ T y {‘. By the previous argument, one g&S xh C a{’ 

and yh c a$ for some letter h, whence x C (a0 . . . ad- 1 f and y C (a0 . f . ad-1 )q’. •! 
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It is natural to look for a similar result concerning conjugacy. Consider nonempty 

partial words X, y, t such that xy 1 yt. It is reasonable to conjecture that, under mild 

assumptions, there exist partial words u, v such that 

xcuv, t c vu, y c(uv)“u. 

However this is false, even if xyt has a single hole. Consider indeed x = a, y = obb and 

t = b. Then xy = aobb and yt = obbb are clearly compatible, and there are no words 

u, v such that a=uv and b=vu. 

6. Concluding remarks 

The order x c y on partial words introduced in the previous section is well known 

as the “less defined” order in denotational semantics. It is simply defined by taking 

o as the bottom element in the flat order over the alphabet, and extending this order 

to sequences. It might therefore be interesting (as suggested by Olivier Carton) to 

consider words over ordered alphabets (not necessarily linear orders) and to extend 

other combinatorial results. 

Combinatorics of partial words will presumably not be as rich as the combinatorics 

of words. It is clear that the more holes are in words, the more degrees of freedom 

exist to combine and to compare them. It is somewhat astonishing that if only one 

hole is allowed, several classical results still hold, however they become false as soon 

as there are two holes. 
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