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AN EXERCISE ON FIBONACCI REPRESENTATIONS

Jean Berstel
1

Abstract. We give a partial answer to a question of Carlitz asking
for a closed formula for the number of distinct representations of an
integer in the Fibonacci base.
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Introduction

In 1968, Carlitz [2] derived formulas for the number of distinct representations
of an integer n in the Fibonacci number system. He wondered whether a closed
formula exists for this number, as a function of n. The aim of this note is to give a
partial answer to this question. The answer is only partial because our formula is
not really “closed” in the sense that it implies evaluation of a product of matrices.

It is well-known that integers may have more than one representations when
expressed in the Fibonacci number system. This is due to the fact that two adja-
cent 1’s in a representation may be replaced by two 0’s with a carry to the next
position. More precisely, the number represented by a sequence of 0’s and 1’s is
invariant under the congruence generated by 011 ≡ 100 (precise notation will be
given later). It was discovered by Schützenberger (personal communication) that
iteration of the replacement of 011 by 100 is a rational transduction. As a con-
sequence, the normalized representation(i.e. the representation without factor 11)
can be computed by a finite transducer. Subsequently, the transducer has been
greatly improved by Sakarovitch (for the history, see Frougny and Sakarovitch [5]),
and we now have a letter to letter unambiguous transducer that computes this ra-
tional relation. By reverting the transducer, we get an automaton that computes
the set of all representations of an integer in the Fibonacci number system. Since
the transducer is unambiguous, counting the size of the output set for a given word
yields the desired expression. This value can be computed as usual by evaluating
a product of matrices.
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As we shall see, the transducer has four states (this seems to be minimal) and
therefore the matrices are 4×4 matrices. However, a closer look on the values leads
to another matrix expression where the matrices are only 2 by 2. The coefficients
of these matrices admit rather simple expressions. They appear to be obtained by
a kind of summation.

It remains to determine whether this new expression is limited to the Fibonacci
representation, or whether it is just a simple case of a more general situation. In
the last section, we will show that the latter situation holds. Similar expressions
can be obtained for all Ostrowski number systems. These number systems play an
analogue role, compared to the Fibonacci system, as Sturmian sequences compared
to the infinite Fibonacci word.

1. Notation

Fibonacci numbers are defined by F0 = 1, F1 = 2, Fn+2 = Fn+1 +Fn for n ≥ 0.
Every positive integer n admits a representation

n = Fm1 + Fm2 + · · · + Fmr (1)

with m1 > m2 > · · · > mr ≥ 0. It is convenient to write this representation as a
word over the alphabet {0, 1}, putting a 1 whenever the corresponding number is
in the sum (1) and a 0 otherwise. Thus, for instance 32 = 21+5+3+2+1, and the
corresponding word is 1001111. A result by Zeckendorff [10] states that the repre-
sentation (1) is unique provided mi ≥ 2+mi+1, that is if there are no consecutive
1’s in the associated word. Such a representation (that we call the Zeckendorff
representation) always exists. A simple way to transform a given representation
into the Zeckendorff representation is to repeatedly replace a factor 011 by 100
(possibly adding a leading 0 if necessary). The Zeckendorff representation of 32 is
1010100. Two representations are equivalent if they represent the same number.

The aim of this note is to compute the number R(n) of equivalent representa-
tions of n in the Fibonacci number system. For instance, R(32) = 4, because 32
has the four representations 1010100, 1010011, 1001111, and 111111. We compute
in fact this number as a function R(〈n〉), where 〈n〉 denotes the Zeckendorff rep-
resentation of n. Some experimentation shows that the behavior of R is rather
erratic. For instance, all numbers Fm − 1 only have one representation, namely
101010 · · ·101. In other cases, there are linearly many representations. Consider
the word (100)m. Each of the m blocs 100 may or may not be replaced by 011.
Thus, there are 2m representations of a number n whose size is approximately τ3m

where τ = 1
2 (1 +

√
5) is the golden ratio.

2. A Transducer

A way to compute all representations from the Zeckendorff representation (or
inversely to compute the Zeckendorff representation from any representation) is
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to repeatedly apply the rewriting rule 100 → 011 (or its converse). Although one
application of a rewriting rule is a rational transduction, iteration of a rational
transduction usually does not lead to a rational transduction (for recent results
on iteration of rational transductions, see Simplot and Terlutte [8,9]). It happens
that in the case of the special rewriting rule 100 → 011, iteration is still a ratio-
nal transduction. The transducer given in figure 1 is taken from the forthcoming
book of Sakarovitch [7]. This transducer computes, for any word starting with a
0, a word of the same length which is the Zeckendorff representation of the inte-
ger represented by the input, perhaps with some leading 0’s to make the output
of the same length. For instance, inputting 01001111 yields as output 01010100.
Recall a quite remarkable but general result saying that a length-preserving ratio-
nal transduction can always be realized by a letter-to-letter transducer (see e.g.
Eilenberg [3] or Sakarovitch [7]). The transduction realized by our transducer is a
function, and moreover the transducer is unambiguous, that is for each pair p, q of
states, and each pair (x, y) of words, there is at most one path from p to q labeled
by (x, y).
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Figure 1. Fibonacci normalizer.

Consider the reversed transducer obtained by exchanging input and output la-
bels. The transduction realized by this transducer takes as inputs only Zeckendorff
representations and outputs, for each input word w, the set of all equivalent rep-
resentations of the same length (with leading 0’s). Since the transducer is un-
ambiguous the number of equivalent representations is the number of successful
paths with input label w. Thus, we may forget outputs. We consider only the
automaton given in Figure 2 and ask for the number of successful paths for a given
word. Computation of the number of successful paths for a given word is routine.
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Figure 2. Fibonacci automaton.
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For each letter a, we consider a matrix µ(a), where each coefficient µ(a)p,q equals
the number of edges from state p to state q labeled with a. Since the automaton
is unambiguous, these coefficients are always 0 or 1. Extending this matrix repre-
sentation to words by product, µ(w)p,q is the number of paths labeled w leading
from p to q. Thus the number of successful paths for w is the number λµ(w)γ,
where the row vector λ (the column vector γ) is defined by λp = 1 (γp = 1) if p is
an initial (terminal) state, and = 0 otherwise. Here, λ = (1 0 0 0) and

µ(0) =




1 0 0 0
0 0 1 0
1 1 0 0
1 0 0 0


 , µ(1) =




0 1 0 1
0 0 0 0
0 1 0 0
0 0 0 0


 , γ =




1
0
0
1


 ·

Proposition 2.1. Let w be the Zeckendorff representation of n. The number of
representations of n in the Fibonacci number system is R(n) = λµ(w)γ.

For instance, µ(1010100) =




4 3 0 0
0 1 0 0
1 1 0 0
0 1 0 0


 and consequently R(32) = 4.

3. A Shorter expression

For any d ≥ 0, define a matrix M(d) by

M(d) =
(

1 1
bd/2c dd/2e

)
·

For instance,

M(0) =
(

1 1
0 0

)
, M(1) =

(
1 1
0 1

)
, M(2) =

(
1 1
1 1

)
, M(3) =

(
1 1
1 2

)
.

If the integer n is written as

n = Fm1 + Fm2 + · · · + Fmr

with mi ≥ 2 + mi+1, set

di = mi − mi+1 − 1, (i = 1, . . . , r − 1), dr = mr.

Then the word 〈n〉 has the expression

〈n〉 = 10d110d2 · · · 10dr .
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Proposition 3.1. Let 〈n〉 = 10d110d2 · · · 10dr be the Zeckendorff representation of
a positive integer n. The number of representations of n in the Fibonacci number
system is

R(n) = (1 1)M(d1)M(d2) · · ·M(dr)
(

1
0

)
.

For r = 1, this is Theorem 2 of Carlitz [2]. In this case, n = Fd for some d and
〈Fd〉 = 10d. Consequently, R(Fd) = 1+bd/2c. As another example, consider again
n = 32 = 21 + 8 + 3. Then 〈n〉 = 1010100, whence (d1, d2, d3) = (1, 1, 2) and

R(32) = (1 1)
(

1 1
0 1

)(
1 1
0 1

)(
1 1
1 1

)(
1
0

)
= 4.

Observe that the formula of the expression is close to that derived from the au-
tomaton, where the matrices M(d) are “condensed” by considering each block 10d

as a “letter”.

Proof. By induction on the number r in the expression 〈n〉 = 10d110d2 · · · 10dr .
The lengths of two representations of a positive integer n differ by at most one.
Denote by G(n) the number of long representations, and by P (n) the number of
short representations, so that R(n) = G(n)+ P (n). Consider the Zeckendorff rep-
resentation of 〈n〉 = 10d10d2 · · · 10dr and let m be the integer with representation
10d2 · · · 10dr . Then G(n) = R(m) = G(m) + P (m), because a long representation
of n can only be obtained by keeping unchanged the leading block 10d. Con-
cerning short representations, there are two cases. If d is even, then there are
d/2 short representations of 10d, and each short representation of m contributes
a suffix of a short representation of n when completed with one leading 0. Thus
P (n) = d/2R(m).

If d is odd, there is one special representation of 10d, namely the representation
ending in 10. This last block 10, together with any short representation of m
contributes to two representations of n, the first having a joining block 100 and
the second 011. It follows that P (n) = bd/2cR(m) + P (m). Grouping these
formulas, and using the equality R(m) = G(m) + P (m), we get the relation(

G(n)
P (n)

)
=
(

1 1
bd/2c dd/2e

)(
G(m)
P (m)

)
.

The result follows.

Let us mention that the argument of the proof also holds when the integers di are
zero. This means that we do not need to start with the Zeckendorff representation.

Corollary 3.2. Let n be a positive integer, and let w = 10d110d2 · · · 10dr be any
representation of n in the Fibonacci number system. The number R(n, w) of rep-
resentations of n which are lexicographically smaller than or equal to w is given by

R(n, w) = (1 1)M(d1)M(d2) · · ·M(dr)
(

1
0

)
·
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4. Ostrowski number system

As pointed out by Brown [1], Zeckendorff representations exist in a much larger
framework, and goes back at least to Ostrowski [6]. This and related number
systems were studied in particular by Fraenkel [4] (see also the references there
and in [1]). It is convenient, for the exposition given here, to modify slightly the
numbering found in the literature.

Consider a sequence a = (a0, a1, . . . , ah, . . . ) of integers with a0 ≥ 0, ah ≥ 1 for
h ≥ 1. Define a sequence (qh) by q−1 = q0 = 1 and qh+1 = ahqh + qh−1 for h ≥ 0.
Every positive integer n admits a representation

n = ytqt + · · · + y0q0

with yt > 0 and 0 ≤ yh ≤ ah for 0 ≤ h ≤ t. The representation is unique provided
yh = ah implies yh−1 = 0 for h > 0. A number system of this kind is called an
Ostrowski system, and the unique representation is the Ostrowski representation.
Of course, taking ah = 1 for all h, the numbers qh are the Fibonacci numbers,
and the condition for uniqueness, namely that yh = ah implies yh−1 = 0, precisely
means that there are no adjacent 1’s in the representation. Thus the Fibonacci
number system is the simplest Ostrowski system. As another example, consider the
sequence a starting with (2, 2, 3, 2, 2, 2, 3). A straightforward computation gives
q1 = 3, q2 = 7, q3 = 24, q4 = 55, q5 = 134, q6 = 323. It follows that the integer
n = 660 has the following six representations in this system:

2000200
2000121
1210200
1210121
1202300
1202221.

The first is the Zeckendorff representation. If we try to derive formulas similar
to those given for the Fibonacci number system, it seems that the automata-
theoretic approach will be difficult to extend because the sequence a needs not to
have bounded coefficients, and therefore there is no finite “alphabet”. Moreover,
the position of an integer in the sequence a is quite relevant for the computation,
even in the case of bounded coefficients. This cannot be memorized by a finite
automaton, unless the sequence a is periodic.

It appears that the short formula of the previous section admits a generalization
to the case of Ostrowski number systems. To do this, we consider an integer n
written in such a system and, as for the Fibonacci system, we group together
consecutive 0’s. Then the representation writes as

b110d1b210d2 · · · br10dr
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where b1, . . . br > 0. An integer bh is maximal if it takes the maximal value that is
allowed in that position. As an example, in the representation 2000200 = 203202,
one has b1 = b2 = 2. Since the digits in position 2 and 6 can grow up to 3 (because
a2 = a6 = 3), neither b1 nor b2 is maximal, despite the fact that the representation
is the Zeckendorff representation. In the Fibonacci system, each bi is maximal,
because every nonzero digit must be 1.

In order to state the expression for the number of representations, we introduce
matrices M ′(d) by

M ′(d) =
(

0 0
1 + bd/2c 1 + dd/2e

)
.

For instance

M ′(0) =
(

0 0
1 1

)
, M ′(1) =

(
0 0
1 2

)
, M ′(2) =

(
0 0
2 2

)
, M ′(3) =

(
0 0
2 3

)
.

Proposition 4.1. Let 〈n〉 = b110d1b210d2 · · · br10dr be the Zeckendorff represen-
tation of a positive integer n in some Ostrowski number system. The number of
representations of n in this system is

R(n) = (1 1)N(d1)N(d2) · · ·N(dr)
(

1
0

)

where N(dh) = M(dh) if bh is maximal, and N(dh) = M ′(dh) otherwise.

As an example, according to the proposition, the number of representations of
660 in our running system is

(1 1)
(

0 0
2 3

)(
0 0
2 2

)(
1
0

)
= 6.

Proof. The argument of the proof is quite similar to that of Proposition 3.1. Long
and short representations have to be replaced by maximal and sub-maximal rep-
resentations. A representation of n is maximal if its leading nonzero digit (that
we denoted b1) is maximal. As we have seen, a Zeckendorff representation needs
not to be a maximal representation.

Denote by H(n) the number of maximal representations, and by S(n) the num-
ber of sub-maximal representations, so that R(n) = H(n) + S(n). Consider the
Zeckendorff representation 〈n〉 = b110d1b210d2 · · · br10dr and let m be the integer
represented by b210d2 · · · br10dr . If b1 is maximal, then H(n) = R(m) because
a maximal representation of n can only be obtained by keeping unchanged the
leading block b110d1 . If b1 is not maximal, then H(n) = 0.

Concerning sub-maximal representations, the argument of the previous proof
transposes. Observe first that there are 1+bd/2c representations of b10d, and that
they are contribute sub-maximal representations of n because b1 is not maximal.
We consider two cases. If d = d1 is even, then S(n) = (1 + d/2)R(m). If d is
odd, then there is one special representation of the leading block b10d, namely
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the representation ending with a c0 for some digit c > 0. This block, together
with the initial letter b of any sub-maximal representation of m, contributes to
two representations of n, the first containing the block c0b and the second having
the block (c − 1)ai(b + 1) for a convenient index i. It follows that S(n) = (1 +
bd/2c)R(m) + S(m). Grouping these formulas, one gets the relation

(
H(n)
S(n)

)
=




M(d1)

(
H(m)
S(m)

)
if b1 is maximal,

M ′(d1)

(
H(m)
S(m)

)
otherwise.

The result follows.

5. A final remark

As already mentioned, the behavior of R(n) is rather irregular as a function
of n. Perhaps, some better description could be obtained for the average value
of R(n), as it happens to be the case for other number-theoretic functions.
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