
A Scalable Formal Method for Design and
 Automatic Checking of User Interfaces

 Jean Berstel+ Stefano Crespi Reghizzi* Gilles Roussel+ Pierluigi San Pietro*

 *Politecnico di Milano +Institut Gaspard Monge
 Dipartimento di Elettronica E Informazione Université de Marne-la-Vallée
 P.za Leonardo da Vinci, 32 5, Bd Descartes
 20133 Milano, Italia 77454 Marne-la-Vallée Cedex 2, France
 +39 02 23993405 +33 1 609 575 57
 {crespi,sanpietr}@elet.polimi.it First.Last@univ-mlv.fr

ABSTRACT
The paper addresses the formal specification, design

and implementation of the behavioral component of
graphical user interfaces. Dialogs are specified by means
of modular, communicating grammars called VEG (Visual
Event Grammars), which extend traditional BNF gram-
mars to make the modeling of dialogs more convenient.

A VEG specification is independent of the actual layout
of the GUI, but it can be easily integrated with various lay-
out design toolkits. The specification may be verified with
the model checker Spin, in order to test consistency and
correctness, to detect deadlocks and unreachable states,
and also to generate test cases for validation purposes. Ef-
ficient code is automatically generated by the VEG toolkit,
based on compiler technology.

Realistic applications have been specified, verified and
implemented, like a Notepad-style editor, a graph con-
struction library and a large real application to medical
software. The complete VEG toolkit is going to be avail-
able soon as free software.
Keywords: Formal methods, Human-computer interaction
(HCI), Applications of model checking, GUI design.

1 INTRODUCTION

Current industrial practice for designing graphical user
interfaces (GUI) uses toolkits and interface builders, usu-
ally based on visual programming languages, for produc-
ing the layout. These tools allow a simple and quick de-
scription of the geometric display, and frequently give
some support for designing interaction of components.
However, the dialog control must be hand-coded with con-
ventional programming techniques and there is no support,
other than testing, for checking its logic.

This situation is unsatisfactory at best, since the result-
ing systems may be unreliable and difficult to revise and
extend.

In particular, the reactive nature of event-driven systems

(such as a GUI) makes them much more difficult to test,
since the output values strongly depend on the interaction
that may occur during the computation. Hence, traditional
techniques may be costly and inadequate to build complex
GUI.

Formal techniques may allow one to perform systemati-
cally, or even automatically, validation and verification ac-
tivities like testing, simulation and model checking [4] and
to prove that the modeled systems possess desired proper-
ties. Hence, the validity of the design may be assessed be-
fore the development phase takes place.

Many formal methods have been proposed for GUI de-
sign [12], such as transition diagrams, Petri Nets [1], for-
mal grammars [14], process algebras [13], temporal logic
[3]. However, most methods get unwieldy as the system
complexity grows (i.e., they are beneficial only for small
systems or single components). Often they are not amena-
ble for automatic verification techniques and only support
simulation and testing. As pointed out by Shneiderman
[16, p. 159]: “Scalable formal methods and automatic
checking of user interface features would be a major con-
tribution”.

We propose a new method, combining various features
such as modularity, code generation and automatic verifi-
cation, to give a scalable notation to specify, design, vali-
date and verify GUIs. Our approach, called Visual Event
Grammars (VEG) is based on decomposing the specifica-
tion of a large GUI into communicating automata. Break-
ing a complex scene down into communicating pieces may
dramatically diminish the number of states, as shown by
popular notations such as Statecharts [7]. Each automaton
is an object, described by means of a grammar, specifying
a small part of the scene, such as a window or a widget.
Automata may share common behavior and hence be seen
as instances of general models. The automata interact by
sending and receiving communication events in order to
realize the expected global behavior.

0-7695-1050-7/01 $10.00 © 2001 IEEE
453

The VEG approach allows the automatic generation of
efficient code from the specification of the interface, and
its integration with commercial design tools. The various
automata are implemented with interacting parsers (where
the input stream of each parser is the sequence of input
events for the corresponding window or widget). A toolkit
has been prototyped, to produce Java classes that imple-
ment the logical behavior of the GUI.

Apart from the merits of individual notations, one of the
major obstacles in the industrial spreading of formal meth-
ods is the perceived difficulty in their use. Formal specifi-
cation languages are considered hard to master, and formal
verification techniques, such as theorem proving, to be for
experts only. Advances in automatic verification tech-
niques, such as model checking, may change this state of
the affairs, making in principle "pushbutton" verification
possible for various systems specified with automata.

In general, however, a specification or a program has to
be "abstracted" to be amenable for automatic verification
with tools such as model checkers. In fact, the number of
states of even simple programs is usually by far too high
for model checkers. Abstractions are hard to obtain and
there is no guarantee that the verification results for the ab-
stracted system are meaningful for the original one. In the
VEG toolkit, however, the abstracted version can be de-
rived automatically from the original specification and its
meaning is very close to the original one. In various cases,
the abstracted specification is exactly the one used to pro-
duce the application: the uniqueness of the specification
insures the coherence between the application and its for-
mal model. In our experiments, we found that even very
large GUI may be easily checked, since usually the number
of their states is much smaller than the current limits of
model checking technology.

Verification and validation activities in VEG are based
on Spin [8], a widely disseminated model checking tool.
Communicating automata fit particularly well into the do-
main of automatic verification: the VEG notation can be
easily translated into the Promela language, which is the
input language of Spin.

Currently, our toolkit supports, with simple "pushbut-
ton" options, automatic detection of design errors such as
deadlock and unreachable states, but it also allows simula-
tion and test case generation. The support for verification
in VEG may also help in checking features of an interface
and in detecting requirement errors. For instance, a Quit
button in an Editor application should be reachable from
every state. This means that the GUI will never run into a
configuration where a user will no longer be allowed to
quit. This is a liveness property, which can be easily veri-
fied by a model checker. Another example is the verifica-
tion that all needed resources are available before a process
can start: in a text editor, a document must be created or
opened before you can write into it. Also this kind of (tem-
poral) properties can be easily verified with Spin.

The paper is organized as follows: Section 2 introduces
the basic VEG notation, Section 3 extends the notation,
Section 4 shows an example of modular design, Section 5
illustrates automatic verification in VEG and Section 6 re-
ports on the implementation. Finally, Section 7 describes
related works and Section 8 draws a few conclusions.

2 THE VEG FORMAL FRAMEWORK

The basic idea underlying the VEG framework is to
consider sequences of user input events as sentences in a
formal language. These sentences obey some syntactic
rules described by grammars (or automata). For example,
in some circumstances, opening a document that is already
open should be forbidden. In this sense, the grammar de-
scribes all authorized sequences of input actions.

2.1 A Simple Example

The scene of this introductory example is composed of a
window with three graphical components (see Fig. 2.1):
the central component is a small widget representing a jug-
gler while the other two are buttons, labeled Go and Stop
respectively, to control the juggler's behavior. When the
window is started, the juggler is idle. When the Go button
is pushed, the juggler is expected to resume or to start jug-
gling. On the contrary, when the Stop button is pushed, the
juggler is required to stop juggling and to become idle. In
addition, there is a quit button (represented by the small
cross at the topmost, right-hand corner of the window) to
destroy the scene.

Fig. 2.1: A Juggler

A simple VEG specification of a Juggler window is the
following one:

Model SimpleJuggler
Axioms start
start ::= \createScene idle
idle ::= <go> \startJuggling juggling
juggling ::= <stop> \stopJuggling idle

::= <quit> \destroyScene
End SimpleJuggler

A model such as SimpleJuggler is the smallest unit of

454

modularity in VEG. A model is a local grammar describing
the behavior of an automaton1, and it is composed of a set
of grammar rules. Each rule may have a left-hand side: a
variable name (also called a state or a nonterminal sym-
bol), such as start, idle or juggling. Each rule always has a
right hand-side, describing the behavior of the model when
in that state. Rules with an empty left-hand side are called
ubiquitous rule and may be applied in every state.

The right-hand side of a rule is a production in the tradi-
tional sense of BNF grammars, containing nonterminal
elements (the states idle and juggling) and terminal ele-
ments, which can be either input events (such as <go> and
<stop>) or visual actions, (such as \createScene and
\startJuggling). Also other elements may appear in a rule,
to be detailed later. The textual notation reflects the nature
of the items: input events are in angle brackets, such as
<go>, and visual actions start with a backslash, such as
\stopJuggling.

An input event is actually an abstraction of low-level
events or even low-level event sequences, as they already
exist in Motif or Java. For instance, the <quit> event mod-
els reception of a closing message received from the win-
dow manager, while <go> and <stop> model the activa-
tion of the corresponding buttons.

The VEG notation does not specify how the input
events are linked to the low-level events. For instance, the
input event <go> is not explicitly connected to a left-click
of the mouse on a PushButton labeled Go. The link be-
tween events is not expressed in VEG, but by means of a
dedicated, platform-dependent tool, which filters low-level
events and translates them into input events. In our exam-
ple, the <go> and <stop> input events could have been
synthesized from button activation, menu selection or key-
strokes shortcuts. In fact, the precise aspect of a "button" of
the juggler (i.e., a visual object to be provided by some
graphical component of the platform) is not specified: the
only logical requirement is that this component could be
activated, disabled and enabled. Examples of these compo-
nents for the Go and Stop "buttons" are Pushbuttons and
Menu entries. Since the same VEG specification is com-
patible with many different layouts and portable on many
different platforms, it is possible to experiment with vari-
ous layouts and platform elements and to reuse specifica-
tions defined in different projects, with a different layout.

Visual actions are the GUI responses in the interaction
with the user. For example, the visible action \createScene
is used to create visual objects of the platform. Visual ac-
tions correspond to suitable callbacks, defined in a Seman-
tic Library, and they can have parameters (i.e., variables),
as described in Section 3. The content of the action may be

1 The automaton must be deterministic and often it is finite-state. De-

terministic pushdown automata are also allowed, but they are rarely use-
ful and limit the possibilities of automatic verification. Some of the con-
structs of VEG may actually lead to infinite-state behavior, as explained
in Section 5.

explicitly programmed in a programming language or se-
lected from a set of predefined actions.

2.1.1 Models, instances, visual objects, creation and
destruction of scenes. Each model must be considered
akin to a class declaration in object-oriented programming
languages. Hence, it must be instantiated before use. Each
instance, also called a VEG object, has a name and its own
state, but obeys the same rules of behavior.

The semantics of a model such as the simple Juggler is
as follows: when an instance of the model is in some state,
and some input event is triggered, then the corresponding
rule is considered. Visual actions are performed and the
state changes to the next state of the rule. The initial state
is the axiom specified at instantiation.

Each VEG object usually has a visual counterpart,
called the visual object associated with the instance (such
as a PushButton, a TextWindow, etc.), which depends on
the platform. The link is prepared at run-time by the visual
action \createScene, which creates and initializes all the
necessary visual components. The window or the widgets
so defined are associated with a VEG object: only one win-
dow or one widget may be associated with one VEG object
at any time. The visible action \destroyScene is used to de-
stroy the window or the widget associated with a VEG
object. When a window is destroyed, also all its visual
components are destroyed.

Some VEG objects may not be associated with visual
objects, for instance because they behave as a controller of
other models or because the corresponding visual objects
have not been created yet.

2.1.2 Enabling and Disabling Widgets. In the Juggler
example, the go Activator cannot be activated when the
Juggler is already juggling. This behavior results from the
VEG specification: when the Juggler is in the state jug-
gling, the go Activator is in the state disabled and the input
event <activate> is not accepted in this state. In other
words, the event <activate> is not in the lookahead set of
the state disabled. In general, the lookahead set is the set of
events that may be accepted in the current state. Nymeyer
[9] introduced the use of lookahead sets to disable the
components (such as buttons or menu items) that are not
relevant at a given time, by shading them out.

Two general approaches may be followed for handling
occurrence of events that are not in the current lookahead
set. First, the GUI may simply ignore the event. This solu-
tion, however, has a problem because the user of the GUI
is left wondering which actions will have an effect.

A friendlier approach is to disable the components re-
sponsible for handling the event. Shading, as done by Ny-
meier, is precisely a visual counterpart of the disabling. In-
stead of disabling, more general actions can take place un-
der the responsibility of the receiving instance. In this
framework, the instance is just informed that it cannot be
reached from a given component and it executes the ap-
propriate action that may shade the component or raise a

455

warning, etc. (see for instance [1]).

2.1.3 BNF format and syntax-diagrams. The textual
notation of formal grammars that was shown here is intro-
duced only for explanation purposes, but it is not always
very convenient. Actually, there is a prototype of a visual
tool for entering and editing formal grammars represented
with a form of syntax diagrams. Internally, grammars are
represented by an XML document, which of course is not
expected to be directly edited or read.

In general, the right-hand side of a rule may be in ex-
tended BNF format, i.e., with the alternative operator |, the
optionality operator [] and the iteration operator { }. In
this paper, we use a simplified format for rules, called gen-
eralized right-linear, which is convenient for automatic
verification:
1) the right-hand side of every rule is composed of one or

more alternatives;
2) for each alternative there is at most one nonterminal,

called the next state, which is at the rightmost position
in the alternative.

For instance, a rule to describe that in a state ready it is
possible to receive either a <go> or a <stop> and then to go
back to the ready state again can be written as:

ready ::= <go> \startJuggling ready
 | <stop> \stopJuggling ready

2.2 A Refined View on the Example

The aim of this section is to introduce and illustrate
some of the other VEG concepts, mainly modularity, paral-
lel composition and communication events.

Any non-trivial GUI can hardly be described with one
model. The overall grammar of a GUI system is usually
partitioned into larger units, called packages. Each package
is a collection of models, with standard naming scopes,
similar to those of Java. Model declarations may also be
imported from other packages.

Models may be instantiated and launched in a specified
state, and then run in parallel by means of parallel compo-
sition, in the following sense. They concurrently listen for
input or communication events, collected by a Dispatcher
module: when receiving one event, a component is acti-
vated, consumes the event, executes a state transition and
then goes back to the "listening" state. Parallel composition
has an interleaving semantics: when a component is acti-
vated, the other components are not allowed to collect
events until the first one has completed a state transition.

To illustrate these features, we show how the Juggler
specification could be broken down into modules, by
specifying separately the control of each component. The
level of abstraction is lowered for the purpose of explana-
tion of our model, by means of explicit modeling of each
visual component of the juggler. This also shows that our
tool allows GUI designers to consider different levels of
abstraction, even in the same specification.

A model called Activator is in charge of controlling a
button. An instance of Activator may be in one of two
states: enabled or disabled. When enabled, it may be acti-
vated (e.g., pushed): in this case it sends a message (a
communication event) activated to any model willing to
listen and goes to the disabled state. When disabled, it
waits for a message enable: if it receives it, it goes back to
the enabled state. Also, an Activator object, when created,
may be started in any of the two states. This may be easily
accomplished because a model may have more than one
axiom, to be selected at creation time. The model can be
described in VEG with the following specification, that we
assume is part of a package called BasicComponents.

Package BasicComponents
Model SimpleActivator
 Axioms disabled, enabled
 enabled ::= <activate> !activated disabled
 disabled::= ?enable enabled
End SimpleActivator

The input communication events (i.e., received mes-
sages) start with a question mark, followed possibly by the
source name, and always by the name of the event, such as
in ?enable. Output communication events (i.e., emitted
messages) start with an exclamation mark, may contain the
destination followed by the name of the event, such as !ac-
tivated. The (optional) name of the source or of the desti-
nation may also be a parameter whose actual value is
specified at creation time, as shown in the Activator of
Section 4.

The juggler can be described by a model as follows:

Model Juggler
 Axioms idle
 idle ::= ?go.activated \startJuggling !stop.enable

juggling
 juggling::= ?stop.activated \stopJuggling

!go.enable idle
End Juggler

A juggler, when idle, expects to receive a communica-
tion event ?go.activated, i.e., an event activated coming
from a SimpleActivator called go. Next it starts juggling
and sends an event enable to a SimpleActivator called
stop, going to the state juggling. The definitions of go and
stop must be given in the same package of the Juggler.
When juggling, a juggler waits for a communication event
activated coming from stop: if it receives it, it stops jug-
gling, enables the Activator go and becomes idle again.
Notice that the ability of specifying the source of commu-
nication events may avoid name clashes of events among
different models.

Another model, called Box, is in charge of creating and
initializing the visual objects and instantiating the models.
To start a juggler, one has to instantiate the Box.

Model Box
 Axioms start
 start ::= \createScene begin

456

 begin ::= launch(
 juggler = Juggler.idle,
 go = SimpleActivator.enabled,
 stop = SimpleActivator.disabled)
 running
 running ::=<quit> \destroyScene
End Box

The launch operator is used to denote parallel composi-

tion: some children processes are named and started in the
specified state. In the example, an instance (called juggler)
of the Juggler is created and initialized in the idle state, and
two instances (go and stop) of SimpleActivator in the en-
abled state and in the disabled state, respectively.

In this example, the Box is only a container without in-
teractions, except for the event <quit>, in charge of
launching the other components and of initializing the
scene. In other cases, a container may be a privileged cen-
ter of communication between its members and other com-
ponents.

The complete specification of the juggler is organized in
a package as follows:

Package JugglerPackage
import BasicComponents
 Model Juggler ...
 Model Box...
End JugglerPackage

Object names are global in the same package. All ob-
jects run in parallel (in the sense explained above) and may
synchronize by exchanging communication events (whichs
are higher-priority, internally-generated events).

2.3 Containers and Groups

The children of a VEG object, at a given instant, are de-
fined as the components launched by the object and which
did not terminate yet their execution. When a VEG object
has children, it is called a container. Some special VEG
constructs may be used to simplify communication among
the children and between the container and its children. A
container can multicast a communication event to all its
children, by using the target all (e.g., !all.enable sends an
event enable to all the children of the container). To allow
more flexibility, it is possible to keep track of one or more
sets of selected children. Thus, a container may also broad-
cast communication events to a selected set x of children,
called a group, or to its complement ~x. This may be ac-
complished by means of a set of predefined semantic ac-
tions and predicates, called group selection mechanisms.

The action /AddTo(x) adds, to the group x, the child that
sent the latest communication event to the container, while
the action /RemoveFrom(x), removes it from the group x, if
present. The semantic predicate isEmpty may be used to
check whether a group is empty.

For instance, the fragment ?selected /addTo(s) !s.enable
!~s.disable first waits for an event called selected. When a

child C sends the event, C is added to the group s. Then an
event enable is sent to all the children in the group s, and
hence also to C, and an event disable is sent to the remain-
ing children.

It should be noticed that group selection features, while
being realized with semantic actions and predicates, are es-
sentially finite state, and hence do not hamper the possibil-
ity of automatic verification of VEG specifications (as long
as the number of children is bounded). In fact, they are
useful shorthands to avoid an increase of the rules and
states of a model.

3 MANAGING SEMANTIC ACTIONS

The expressive power of syntax is not always adequate
to model specific behaviors. For example, a typical login
session needs a function to check whether the password is
correct. These kind of utility routines are of course
independent from a GUI design, but the result of a routine
may influence the behavior to a significant amount. Se-
mantic functions are designed for modeling this role. They
are collected in a so-called Semantic Library and are writ-
ten in a programming language such as C, C++ or Java.

A semantic function has some variables (or semantic at-
tributes) as arguments and computes a value as result. Val-
ues can be associated with input events, states and com-
munication events and passed to visible actions and other
semantic functions. For instance, many input events, such
as pressing a key or pointing and clicking, have some val-
ues associated with them, such as the character entered or
the numeric value selected on a scale. For communication
events, values may be used to interface the models in a
parallel composition.

The set of values a variable can take constitutes its do-
main. A domain can be any data type, simple (boolean, in-
teger, ...) or structured (array, record, ...). Attribute do-
mains are declared with the syntax of the programming
language to be used for coding the semantic library

Semantic functions are divided into semantic predicates
(i.e., boolean functions) and semantic actions (the other
functions). Semantic predicates can be used as the guard in
a syntactic alternative of a production, as shown next, and
hence may have a direct effect on the behavior of a GUI.

3.1 Example of Attribute Specification

A Login Session is a dialog where a user is required to
enter a username and a password to start a session with a
remote host. The dialog box is composed of two text-input
fields, user name and password and the button Ok. After
entering name and password, pressing the Ok button starts
a verification procedure. If the login is correct, the dialog
is closed and the connection is established. If the login is
not correct, the user is asked to retry. After a fixed number
of failed login attempts, the dialog is closed. It is possible
to abort the dialog at any time by pressing the Quit button.

457

It is possible to add variables and their definitions to the
VEG notation. The result is an attribute grammar-style de-
clarative specification, which does not necessarily imply
an ordering of variable evaluation.

A VEG specification of the Login Session may be the
following one, where pushing the button labeled Ok after
filling the two textfields is modeled with an input event
<enterData>. The actual values of the user name and of
the password are two string attributes userName and
passwd of the state login. An integer attribute called n
keeps track of the number of login attempts. The parts that
are related to the attributes are italicized.

Model LoginSession
 start ::= \createScene login
 n.login := 0;
 login ::= <enterData> verify
 n.verify := increment(n.login);
 verify ::=
 /if_loginCorrect(userName.enterData,passwd.ente

rData)
 launch(session = Session.start)
/elsif_notTooMany(n.login) \message(“Retry”) login

 n.login := n.verify;
 /else \message(“Login Failed”) \destroyScene
End LoginSession

We assume that there is one model called Session,
which is launched in the state start. The semantic predi-
cates loginCorrect and notTooMany are used to discrimi-
nate, by means of a /if.../elsif.. /else construct, among the
various alternatives of the rule for verify. When the func-
tions loginCorrect, notTooMany, increment, to be included
in a Semantic Library, are properly implemented in a exist-
ing language such as Java, the VEG toolkit is able to gen-
erate an integrated LL(1) parser/semantic analyzer.

4 HIERARCHICAL DESIGN OF SCALABLE
COMPONENTS

This section shows how to combine some VEG con-
structs for modular design of graphical interfaces, to obtain
a hierarchical description of visual communicating mod-
ules.

Each component of a typical GUI offers a set of options,
or choices, to the user, and in addition some tools for enter-
ing numerical of alphabetical data. At the top level, there is
frequently a menu bar, providing a set of menus. Each of
the menus contains entries that may themselves be menus.
Observe that these menus or menu entries are not inde-
pendent: a menu may be disabled (or even be absent) de-
pending on the current state of the GUI, triggered by
choices made in other menus.

This hierarchical organization admits many visual varia-
tions: option panes may be used in order to gather sets of
choices, sets of options may be shown as lists and numeri-
cal values may be entered with scales or scrollbars.

We illustrate the modular design in VEG of these typi-

cal GUIs by means of the overall description of a simple
text editor. This is useful to show how to describe menus
with interacting items, where each item should be viewed
as a menu itself.

The interaction with the text is done with the menu en-
tries (or similar components, such as buttons in toolbars,
accelerators or contextual menus). Each entry triggers an
action that is responsible for achieving some task. More-
over, some of the entries (and thus of the tasks) may be in-
terdependent. A typical example is the standard File Menu
(where “Save”, “Save As”, “Close” are entries that are not
always activated) or the Edit Menu.

It is important, for modularity, that the communication
is between the menu and its items, and not directly be-
tween items, else it is hard to extend or revise the menus.
In this sense, a menu is a container, and its elements are
the menu items. Communication is between the container
and its items; the container is in charge of the communica-
tion with other containers and/or with the text component.

The behavior of the menu entries is so general that it
should be inserted in a library of reusable components,
such as the package BasicComponents. Hence, we first de-
scribe a more complex Activator than the one used in Sec-
tion 2, namely an activator that can also be disabled or en-
abled by receiving a suitable communication event when in
any state. To make the Activator as general as possible, the
enabling/disabling events are considered only if a source
called client, specified as a parameter of the model, has
sent them. The actual value of the client parameter is a
VEG object to be specified at creation time. The client is
also the target of the communication event activated. This
model may also be included in the Package BasicCompo-
nents.

Package BasicComponents
Model Activator(client)
 Axioms disabled, enabled
 enabled ::= <activate> \changeAspect
 !client.activated disabled
 ::= ?client.disable disabled
 | ?client.enable enabled
End Activator

A ubiquitous rule is in charge of handling the disable
and enable events (hence, no rule for the disabled state is
necessary). The visible action /changeAspect must be
specified for changing the aspect of the button (for in-
stance, changing the displayed text , etc.).

As an example of modular design, consider a simple
Edit Menu, composed of the entries Cut, Copy, Paste. At
the beginning, none of these entries is enabled. A Cut or a
Copy operation requires that some text is selected. A Paste
requires that a Cut or a Copy operation have been executed
before. Each operation makes an action on the text (doCut,
doCopy, doPaste), which is not described in VEG. Each
entry of the menu communicates with the menu itself, sig-
naling its activation and receiving the enabling/disabling

458

commands, while the menu communicates with the text
component. After launching the various entries, the Edit-
Menu may be in one of four states: running, waiting for
some text to be selected, while the three entries cut, copy
and paste are disabled; cutcopy, when some text has been
selected, with cut and copy enabled; paste, when the paste
entry is enabled and the others disabled (some text was cut
or copied but currently it is not selected); full, when all the
entries are enabled (some text was cut or copied and the
text is currently selected).

Package EditMenu;
Import BasicComponents
Model EditMenu
 start ::= launch(
 cut = Activator(EditMenu).disabled,
 copy = Activator(EditMenu).disabled,
 paste = Activator(EditMenu).disabled)
 running

 running ::= ?Text.select !cut.enable !copy.enable
 cutcopy

 cutcopy ::= ?Text.select cutcopy
 | ?Text.deselect !cut.disable !copy.disable running
 | ?cut.activated !Text.doCut !cut.disable
 !copy.disable !paste.enable paste
 | ?copy.activated !Text.doCopy !copy.enable

 !paste.enable full

 paste ::= ?Text.select !cut.enable !copy.enable full
 | ?paste.activated !Text.doPaste paste

 full ::= ?Text.select full
 | ?Text.deselect !cut.disable !copy.disable paste
 | ?cut.activated !Text.doCut
 !cut.disable !copy.disable paste
 | ?copy.activated !Text.doCopy !copy.enable full
 | ?paste.activated !Text.doPaste
 !cut.disable !copy.disable paste
End EditMenu

The EditMenu communicates with the Text, which for
brevity is not described here. The interaction among menu
entries may similarly be described for the usual File menu.
Dialog boxes with lists of choices (such as a Format speci-
fication box) may also be managed in a similar way.

5 AUTOMATIC VERIFICATION

A primary goal of verification activities is to ensure that
a specification is consistent, i.e., it handles every combina-
tion of states and events that may occur.

Consistency may take various aspects. In particular, it
implies that, given some state of a model, there should be a
rule that is applicable for every event that may be received
by the model in this state. If this rule is missing, then some
situation has been forgotten by the designer, such as the
case of a component sending an event that is never con-
sumed. The run-time effect of such an error is that the ap-

plication is blocked, i.e., a deadlock occurs. Thus, dead-
lock detection is a major goal to be achieved.

Consistency also means that the specification does not
contain states that are unreachable, reflecting design con-
cepts that are unusable, such as the case of a component
waiting for an event that will never be sent.

Deadlock-free specifications may still have logical er-
rors, because they may behave different from what was in-
tended, such as the case of a login session where no pass-
word identification is done. This kind of error may be de-
tected by validation activities, such as simulation, anima-
tion, and verification of (temporal) logic properties, which
are also possible with the VEG toolkit.

Model checking [4,8] is a powerful and useful tech-
nique, allowing the automated verification that a finite
state machine verifies a given property, such as deadlock-
freeness, usually specified in a temporal logic language.
Model checking is thus the ideal tool to verify consistency,
because it is completely automated. However, the verifica-
tion of non-trivial software systems requires the implemen-
tation to be abstracted to make the verification feasible.
Abstracting a program into a meaningful and relevant fi-
nite-state version is not an easy task: the number of possi-
ble states of the system must be significantly reduced: even
if a model checker may sometime check systems with 1060
reachable states or more, this is actually equivalent to less
than 200 bits of state space. Hence, an abstraction must in-
troduce significant approximations to the original system.

The VEG formalism has been designed in such a way
that an abstraction of the system can easily be obtained, al-
lowing an automatic translation into the Promela language
of Spin. In fact, when studying formal features of a user in-
terface, the actual values of the parameters passed to and
from the semantics and visible actions may be ignored: it
suffices to record the event that a semantic or visible action
has been called, rather than calling it. However, the pres-
ence of semantic predicates introduces a loss of precision,
since they are used as guards of a branch cannot be evalu-
ated anymore: the choice of the branch to be followed be-
comes nondeterministic.

Moreover, most predefined semantic actions may be
translated into the finite state constructs of Promela. For
instance, the selection mechanism, which is implemented
with predefined semantic actions, is also modeled by our
translation. For example, this permits to check that sending
an event to an empty selection set does not produce a dead-
lock. Also other semantic actions, such as the number of
attempts in the login dialog may be easily modeled in
Promela. On the other hand, user defined semantic actions
(ad hoc coded in Java) are ignored by our translation and
treated as part of the terminal alphabet. However, the set of
predefined semantic actions can be extended to deal with
common semantic actions that can be modeled in Promela.

In order to define the translation from VEG to Promela,
a VEG package P can be formalized as a transduction [2] T

459

from an input alphabet of input events to an output alpha-
bet of visible actions and semantic actions. If the transduc-
tion T depends on the values of the semantic variables, the
transduction T is called semantically-branching.

Denote with S the transduction obtained from T by
replacing semantic branching (i.e., /if ... /else constructs)
with all possible continuations (i.e., replacing the /if .../else
constructs with the alternative operator |). T is semanti-
cally-branching precisely when T ≠ S.

Significant information may be automatically obtained
for S using verification programs. Some information about
T may be deduced in view of the following statement.

Statement 1. The following properties hold:
1) if a state is unreachable in S, then it is unreachable in T;
2) if S is deadlock-free, then T is deadlock-free.

Notice that the converse properties may not hold when
T ≠ S. Also, part (2) of the statement assumes that the se-
mantic and visible actions do not have an internal deadlock
themselves (such as a nonterminating code).

Often, S is finite-state (e.g., the Juggler example) and
hence it can be verified by using model checking tech-
niques. The number of states of S for a GUI is usually not
very large: for instance, it can be just a few hundreds for a
simple text editor like the Windows Notepad and even
much larger numbers can be handled by model checkers.

The transduction S, however, may not be finite-state.
This is the case when the number of VEG objects in a
specification may not be bounded by any integer (e.g., the
user is allowed to instantiate any number of copies of a
window). In this case, S is called an unbounded transduc-
tion.

If S is not finite-state, it cannot be verified using stan-
dard model checking techniques. In this case, we introduce
an approximation, by fixing an upper bound N on the
number of VEG objects that can be created. Under these
assumptions, we obtain a finite-state approximation SN of
the transduction S. The transduction SN can be verified by
model checking when N is not too large. The verification
results for SN are in most cases extendable to S and to T:

Statement 2. Let S be an unbounded transduction.
1) If a state x is unreachable in some SN, then x is un-

reachable in S (and thus in T);
2) if there is a deadlock in S then there is a deadlock also

in some SN.
Statement 2 cannot give any guarantee that the results of

a verification on a finite-state version SN may be extended
to an unbounded S. For example, a deadlock in S may oc-
cur only when a certain number k of instances of a model
have been created: checking only SN with N<k cannot de-
tect the deadlock. However, it is often the case that either a
system does not work correctly for a small value of N or it
works correctly for every N. Hence, even with small values
of N we can increase the confidence in the correctness of
the specification: the results of the verification obtained on

the approximation give some useful and meaningful hints
on the correctness of the original package, although they
cannot be automatically generalized.

5.1 Applications of Spin

During the experiments that various developers and we
performed, many errors have been found and corrected by
using Spin. Once the error is found, Spin builds a counter-
example that shows the internal sequence of events and
state transitions leading to the error. Knowing the internal
behavior of the system makes debugging much easier: in
traditional testing of the actual GUI only the "external" be-
havior of the program is instead visible.

Some of the errors detected with Spin would probably
have escaped even an accurate testing phase. For instance,
in the specification of a Notepad-style editor, when the
mouse button was held to make a selection, it was possible
to activate other dialogs with keystrokes and to send com-
mands such as paste or cut (for instance, allowing to cut a
text which was not yet completely selected). With Spin the
error was immediately found by deadlock detection, before
designing the layout and linking it to the VEG specifica-
tion.

Also validation activities are well supported by Spin. In
the above example of the Notepad editor, there was a prob-
lem with the copy button, which, as usual in text editors,
should always be enabled whenever the text is selected: ac-
tually, the copy button became disabled after its activation,
even though the text remained selected. The problem was
that the controller did not send any event to enable it again
after an activation. This is a specification error, which
could not be detected by deadlock or unreachability analy-
sis, but which was easily found using the assertion check-
ing capabilities of Spin to verify the following state invari-
ant (with obvious meaning):
state(text,selected)->
state(cut,enabled)&&state(copy,enabled)
This error would be found also with traditional testing, but
with much higher costs of detection and correction.

6 IMPLEMENTATION

The notation and results presented in the previous sec-
tions are part of a LTR project of the European commu-
nity, called Gedisac (Graphical Event-Driven Interface
Specification and Compilation). The project comprised
several partners from university and industry. The aim of
the project was to develop and provide a set of tools, based
on compiler technology, to be used during GUI design.
These tools are designed to complement traditional layout
tools such as those provided by Java Workshop or J++.
The toolkit, developed in Java, includes a visual editor of
VEG specifications, a parser generator and tools and librar-
ies for linking specifications to the platform. The develop-
ment process is depicted in Fig. 6.1.

460

Consistency
Checker
(SPIN)

Visual
 VEG Editor

(VVE)

 VEG
Parser

Generator

XML2Promela
Translator Translator

Promela
specification

XML
specification

Check
result

Parser &
Evaluator

Semantic
Library

Skeletons

USER

Fig. 6.1: The VEG development process.

The user interacts with the Visual VEG Editor (VVE) to
write a VEG specification. Following a user request, VVE
produces three different specifications: The first one is an
internal XML encoding of the VEG specification without
attributes. The second one contains the set of semantic rou-
tines used by the VEG specification implemented in the
target language Java (Semantic Library Skeletons). The
third one is the Promela translation.

The user may check the consistency of the specification,
by using the Promela file as input to the Spin model
checker. Model checking could be omitted by the user, but
it is essential for safety critical applications. To produce
the real application, the XML file is used to generate a set
of communicating parsers and semantic evaluators. These
objects are linked with the semantic libraries and with the
visual components corresponding to the models, which
produce the input events.

Realistic applications have been specified and imple-
mented, like a Notepad-style editor, a graph construction
library and a large real application to medical software.
One window of the latter is shown in Fig. 6.2.

Fig. 6.2: A window of a GUI of a medical software appli-
cation developed in VEG.

Various experiments have found no difference in per-
formance between the VEG-generated code and Java code

hand-written to implement the same application. The de-
velopers of the medical software application claimed over-
all significant time saving over previous development of a
similar application. The largest benefits were, predictably,
concentrated in the testing phase.

7 RELATED WORKS

The idea of applying context-free or regular grammars
to the description of dialogs is not new, since it is at least
as old as of 1981 (e.g., [11,14,15]. The reason is that gram-
mars have various advantages over other approaches. For
instance, the terminal alphabet of a grammar is usually
composed of high-level events at the application level,
such as Start, Quit, Cut, etc., allowing platform-
independence and often also widget-independence. Some
authors introduced a special notation to supplement gram-
mars whenever they seem unsuited to describe some fea-
tures. For instance, Van den Boss [17] has proposed and
developed a special rich notation, exceeding the power of
context-free grammars. For this and similar approaches,
however, the possibility of automatic verification of the
specification becomes quite small, since the more powerful
the model is, the more reduced the automatic verification
activities may be. As it was shown, VEG does not suffer of
this problem, since most features extending traditional
grammars are still finite-state, and the others (e.g., attrib-
utes) can usually be abstracted away during the verification
phase. Also, in VEG special care was taken in order to in-
troduce a small amount of features that are really useful in
designing GUI, while avoiding to make the notation rather
baroque as other approaches have often done. Grammar
approaches were abandoned since they do not deal with
parallelism, lack structuring constructs and fail in cleanly
integrating data structure and control structure aspects of a
GUI. However, we have shown that the VEG constructs
support parallelism and structuring, and that the use of at-
tribute grammars neatly blends data and control.

There are of course many formal notations other than
grammars, used also for GUI design, such as Statecharts
[7] and Petri Nets (e.g., [1]). While these methods have
been widely applied for GUI specification and design, at
least in academic research, their own modeling power is
excessive (and often not well tailored towards GUI appli-
cations), making them harder to verify than VEG.

Up to now, GUI validation and verification (V&V) has
been addressed mainly by applying testing techniques. A
recent example is [10]), where test cases are generated and
then checked with a test oracle. Model checking has also
been applied for V&V of GUI, e.g., in [5], where an exist-
ing GUI is abstracted into a finite state version that can be
checked with SMV. In general, these approaches (either
test oracles or model checking) have the advantage of be-
ing applicable to any GUI (programmed in any language),
but they need to build an explicit high-level model of the
system: the abstraction to be applied is application-

461

dependent and there is no guarantee of the significance of
the verification results. As [5] says, "Selection and applica-
tion of abstractions is fundamentally a creative process and
this is its chief drawback." In VEG, we already have a
high-level model of the system: the model checker verifies
exactly the same specification that will be implemented,
giving greater confidence in the analysis. Moreover, the
model checker may be applied as a debugging tool to ver-
ify and validate a GUI before its implementation takes
place, rather than only checking it afterwards. Finally, it is
clear that a certain amount of testing of the GUI is always
necessary, even after formal V&V: in principle, the model
checker could also be used to generate test cases (and test
oracles) as well.

Another aspect of VEG is that the specification is
largely layout-independent: this approach is similar to [6],
where interactive services using more than one interface
are considered (e.g., automated teller machine, bank by
phone or web-based interfaces). The key principle is that
all user interfaces share the same service logic (Sisl: Sev-
eral Interface Single Logic). The logic is specified in an
event based model with a constraint-based language using
reactive constraint graph described in XML and translated
into Java. The constraint graph may be translated into state
machines for automatic test case generation.

8 CONCLUSIONS

In this paper, we have shown how to apply grammars
for the specification, design, verification and implementa-
tion of GUI. Dialogs are specified by means of modular,
communicating grammars called VEG (Visual Event
Grammars). VEG extend traditional BNF grammars to
make the modeling of dialogs more convenient.

A VEG specification is independent of the actual layout
of the GUI, but it can be easily integrated with various lay-
out design toolkits. Moreover, a VEG specification may be
verified with the model checker Spin, to test its consis-
tency and correctness, to detect deadlocks and unreachable
states, and also to generate test cases.

Efficient code is automatically generated by the VEG
toolkit, based on compiler technology. Realistic applica-
tions have been specified, verified and implemented, like a
Notepad-style editor, a graph construction library and a
large real application to medical software.

The complete VEG toolkit is going to be available soon
as free software. Future work will consider the application
of the method to the design of safety-critical software, in
order to exploit the verification capabilities of VEG.

Acknowledgements The VEG notation and toolkit is the
result of an Esprit Long-Term Research project, called Ge-
disac, started in 1998 and completed in 2000. Special
thanks to Marco Pelucchi, who developed the VEG toolkit
and various prototypes, first as a graduate student and after
while working at Txt. We gratefully acknowledge the con-
tributions of many people to the development of the VEG

ideas and toolkit. Among them, Alberta Bertin, Txt, Fabien
Lelaquais, Marie Georges and Christian de Sainte-Marie,
Ilog, Alessandro Campi, Politecnico di Milano. We also
thank the project reviewers Gorel Hedin, Lund Inst. of
Technology, and Ian Sommerville, Lancaster University,
and the project officers Pierrick Fillon and Michel Lacroix,
for their many useful suggestions.

REFERENCES

1. Bastide, R., Palanque, P., A Petri Net Based Environment
for the Design of Event-Driven Interfaces, 16th Int. Confer-
ence on Application and Theory of Petri Nets (ATPN'95)
Torino, Italy, 20-22 June 1995.

2. Berstel, J., Rational Transductions and Context-Free Lan-
guages. B. G. Teubner, Stuttgart, 1979.

3. Brun, P., XTL: A Temporal Logic for the Formal Develop-
ment of Interactive Systems, in [12].

4. Clarke, E.M., Emerson, A., Sistla, A. P., Automatic Verifi-
cation of Finite-State Concurrent Systems Using Temporal
Logic Specifications, ACM TOPLAS 8(2): 244-263 (1986).

5. Dwyer M.B, Carr, V., Hines, L., Model Checking Graphical
User Interfaces Using Abstractions, Proc. 6th European
Softw. Eng. Conf., 244-261, Sep. 1997.

6. P. Godefroid, L. Jagadeesan, R. Jagadeesan and K. Laufer,
Automated Systematic Testing for Constraint-Based Interac-
tive Service, FSE'2000, pp. 40-49, San Diego, Nov. 2000.

7. Harel, D. , Statecharts: a visual formalism for complex sys-
tems, Science of Comp. Progr. 8, 231-274, 1987.

8. Holzmann, G.J, The Model Checker Spin, IEEE Trans. on
Software Engineering, 23(5),279-295, May 1997.

9. Nymeyer, A., A grammatical specification of human-
computer dialog, Comp. Lang., 21(1):1-16, April 1995.

10. A. Memon, M. Pollack and M.L Soffa, Automated Test Ora-
cles for GUIs, FSE 2000, San Diego, CA, Nov. 6-10, 2000.

11. Olsen, D., Pushdown automata for user interface manage-
ment. ACM Trans. on Graphics, 3(3):177-203, July 1984.

12. Palanque, P., Paternò F. (eds), Formal Methods In Human-
Computer Interaction, Springer Verlag, December 1997.

13. Paterno', F., Faconti, G., On the Use of LOTOS to Describe
Graphical Interaction, in People and Computers VII: Pro-
ceedings of the HCI'92 Conference, Cambridge University
Press, pp.155-173, September, 1992.

14. Reisner, P., Formal Grammar and human factor design of an
interactive graphics system. IEEE Trans. on Software Engi-
neering, 7(2), 229-240, 1981.

15. Shneidermann, B. Multiparty grammars and related features
for defining interactive systems, IEEE Trans. Syst. Man Cy-
ber., SMC-12, 2, 1982, pp. 148-154.

16. Shneidermann, B., Designing the User Interface: Strategies
for Effective Human-Computer Interaction, 3rd edition (July
1997), Addison-Wesley.

17. van den Boss, J. Abstract interaction tool: a language for
user-interface management systems. ACM Trans Prog. Lang
Syst., Vol. 10, 1988, pp. 215-247.

462

