
April 8, 2002 16:58 WSPC/132-IJAC 00095

International Journal of Algebra and Computation, Vol. 12, Nos. 1 & 2 (2002) 371–385
c© World Scientific Publishing Company

RECENT RESULTS ON EXTENSIONS OF

STURMIAN WORDS

JEAN BERSTEL

Institut Gaspard Monge (IGM), Université Marne-la-Vallée
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Sturmian words are infinite words over a two-letter alphabet that admit a great number
of equivalent definitions. Most of them have been given in the past ten years. Among
several extensions of Sturmian words to larger alphabets, the Arnoux–Rauzy words
appear to share many of the properties of Sturmian words. In this survey, combinatorial
properties of these two families are considered and compared.

1. Introduction

Sturmian words are infinite words over a two-letter alphabet that have exactly

n+ 1 factors of length n for each n ≥ 0. It appears that these words admit several

equivalent combinatorial definitions. They can also be described explicitly by an

arithmetic construction, providing a bridge between combinatorics and number

theory. Moreover, the definition by factors makes Sturmian words define symbolic

dynamical systems. The first detailed investigations of these words were done from

this point of view [37]. Their numerous properties and equivalent definitions, and

also the fact that the Fibonacci word is Sturmian, has lead to a great development,

under various terminologies, of properties of Sturmian words.

Several attempts have been made to extend Sturmian words to words over alpha-

bets of more than two letters. It appears that none of the three equivalent definitions

given below in Theorem 2.6 carry over in a satisfactory way to larger alphabets.

Another approach is that initiated by Rauzy [40] and developed by Arnoux and

Rauzy in [3]. They make a seemingly restrictive hypothesis on the way the growth

of the complexity function is realized, and this allows some structural description of

a new family of words now called Arnoux–Rauzy words, or AR-words for short. The

pertinence of this approach is confirmed by the purely combinatorial study under-

taken by Justin and his coauthors, yielding other extensions of properties already

known for Sturmian words.
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This survey is organized as follows. After some notation, we first review briefly

known definitions and properties of Sturmian words. We then present some of those

properties that hold for larger alphabets, with the definition introduced by Arnoux

and Rauzy.

Several reviews of properties of Sturmian words and related infinite words exist,

by T. C. Brown [10], Berstel [4], de Luca [20], Parvaix [39]. For early work, see

Venkov [44]. An introduction is [5]. A survey on more general sequences is by

Alessandri and Berthé [1]. The (future) book by the Luminy group [7] contains,

among many other topics, a detailed exposition of the theory of Sturmian sequences

from a more geometric point of view.

2. Sturmian Words

An infinite word x over an alphabet A is a mapping from the nonnegative integers

into A. We write x = a0a1 · · · where ai = x(i) is the ith letter of x. A factor of

x is a (finite) word u such that u = ai · · · aj for some i, j with i ≤ j. The empty

word is a factor of every word. The set of factors of x is denoted F (x) and the set

of factors of length n is denoted Fn(x). An infinite word x is recurrent if each of its

factors appears infinitely many times in it. It is uniformly recurrent if moreover the

occurrences of each factor have bounded gaps. This means that if a factor v starts

and ends with u and has no other occurrences of u, then its length is bounded by

some integer r(u) depending only on u.

2.1. Complexity and balance

The (subword) complexity function of an infinite word x over some alphabet A is

the function P that counts, for each integer n ≥ 0, the number P (x, n) of factors

of length n in x:

P (x, n) = Card(Fn(x)) .

Clearly, P (x, 0) = 1 and P (x, 1) is the number of letters appearing in x. Since

every factor can be extended to the right, one has P (x, n) ≤ P (x, n+ 1). Moreover,

P (x, n+m) ≤ P (x, n)P (x,m) as is easily checked. A right special factor of a word

x is a word u such that can be extended in at least two ways into a factor of x.

More precisely, the right degree of u is the number of letters a such that ua is a

factor of x. A right special factor has right degree at least 2. Symmetric definitions

hold for the left degree and left special factors.

Example 2.1. The Champernowne word

0110111001011101111000 · · ·

is obtained by concatenating the binary expansions of all nonnegative integers in

turn. Clearly, there are 2n factors of length n for each n. This word is recurrent but

not uniformly recurrent.
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Example 2.2. The Fibonacci word

f = 0100101001001010010100100101001001 · · ·

is the limit of the sequence of words defined by

f0 = 0, f1 = 01

fn+2 = fn+1fn .

It can be checked that P (f, n) = n + 1 for n ≥ 0. The left special factors are the

prefixes of f .

Example 2.3. The Tribonacci word

t = 010201001020101020100102 · · ·

is the limit of the sequence of words defined by

t0 = 0, t1 = 01, t2 = 0102

tn+3 = tn+2tn+1tn .

One has P (t, n) = 2n+ 1 for n ≥ 0.

Example 2.4. The Thue–Morse word

t = 011010011001011010010110 · · ·

is the limit of the sequence un of words defined by

u0 = 0, v0 = 1

un+1 = unvn, vn+1 = vnun .

The subword complexity function of the Thue–Morse sequence is more elaborate

(see [9, 22, 23]). One has P (t, 1) = 2, P (t, 2) = 4 and for n ≥ 3

P (t, n) = 2n+ 1 =

{
6 · 2r−1 + 4s if 0 < s ≤ 2r−1

8 · 2r−1 + 2s if 2r−1 < s ≤ 2r

where r and s defined by the decomposition n = 2r + s+ 1 with 0 < s ≤ 2r.

The Fibonacci, Tribonacci and Thue–Morse words are all uniformly recurrent.

They are even linearly recurrent, that is that the integer r(u) is a linear function

of the length |u|. Each of these words is also the fixed point of a morphism. The

morphisms are respectively

0 7→ 01

1 7→ 0

0 7→ 01

1 7→ 02

2 7→ 0

0 7→ 01

1 7→ 10 .
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A Sturmian word is an infinite word s such that P (s, n) = n+ 1 for any integer

n ≥ 0. Thus, s is a Sturmian word if and only if it has exactly one right special

factor for each length, and the degree of this factor is 2. Since P (s, 1) = 2, any

Sturmian word is over two letters. The Fibonacci word defined above is a Sturmian

word. Sturmian words are aperiodic infinite words of minimal complexity ([18, 37]).

Theorem 2.5. Let x be an infinite word. The following are equivalent:

(i) x is eventually periodic,

(ii) P (x, n) = P (x, n+ 1) for some n,

(iii) P (x, n) < n + k − 1 for some n, where k is the number of letters appearing

in x,

(iv) P (x, n) is bounded.

There is another combinatorial description of Sturmian words, namely as

balanced words. A set of words X is N -balanced if for all x, y ∈ X of equal length,

−N ≤ |x|a − |y|a ≤ N for all letters a. A finite or infinite word is itself N -balanced

if the set of its factors is N -balanced. The Fibonacci word is 1-balanced, and the

Tribonacci word is 2-balanced. A 1-balanced word is called balanced for short. As

we shall see below (Theorem 2.6), Sturmian and balanced words are the same.

2.2. Mechanical words and rotations

Given two real numbers α and ρ with 0 ≤ α ≤ 1, define two binary infinite words

sα,ρ and s′α,ρ over {0, 1} by

sα,ρ(n) = bα(n+ 1) + ρc − bαn+ ρc

s′α,ρ(n) = dα(n+ 1) + ρe − dαn+ ρe
(n ≥ 0) .

The word sα,ρ is the lower mechanical word and s′α,ρ is the upper mechanical word

with slope α and intercept ρ. It is clear that we may assume 0 ≤ ρ ≤ 1. If α is

irrational, sα,ρ and s′α,ρ differ by at most one factor of length 2.

The terminology stems from the following graphical interpretation. Consider the

straight line with equation y = αx + ρ. The points with integer coordinates just

below this line are Pn = (n, bαn + ρc). Two consecutive points Pn and Pn+1 are

joined by a straight line segment that is horizontal if sα,ρ(n) = 0 and diagonal if

sα,ρ(n) = 1. The same observation holds for the points located just above the line.

A special case deserves consideration, namely when 0 < α < 1 and ρ = 0. In

this case, sα,0(0) = 0, s′α,0(0) = 1, and if α is irrational

sα,0 = 0cα , s′α,0 = 1cα

where the infinite word cα is called the characteristic word of α.

Mechanical words can be interpreted in several other ways. One is as cut-

ting sequence, and is as follows. Consider again a straight line y = βx + ρ, for

some β > 0 not restricted to be less than 1, and ρ not restricted to be positive.
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Consider the intersections of this line with the lines of the grid with nonnegative

integer coordinates. We get a sequence of intersection points. Writing a 0 for each

vertical intersection point and a 1 for each horizontal intersection point, we obtain

an infinite word Kβ,ρ that is called the cutting sequence. Then

Kβ,ρ = sβ/(1+β),ρ/(1+β) .

Indeed, the transformation (x, y) 7→ (x+y, x) of the plane maps the line y = βx+ρ

to y = β/(1+β)x+ρ/(1+β). Thus, cutting sequences are just another formulation

of mechanical words (see also [19] for a more detailed discussion).

Mechanical words can also be generated by rotations. Let 0 < α < 1. The

rotation of angle α is the mapping R = Rα from [0, 1[ into itself defined by

R(z) = {z + α} .

Iterating R, one gets Rn(ρ) = {nα+ ρ}. Thus, defining a partition of [0, 1[ by

I0 = [0, 1− α[ , I1 = [1− α, 1[ ,

one gets

sα,ρ(n) =

{
0 if Rn(ρ) ∈ I0
1 if Rn(ρ) ∈ I1 .

It is convenient to identify [0, 1[ with the torus T = R/Z. Then, for any subinterval

I of [0, 1[, the sets R(I) and R−1(I) are always intervals. As an example of the

use of rotations, consider a word w = b0b1 · · · bm−1, with b0, b1, . . . letters. We want

to know whether w is a factor of some sα,ρ = a0a1 · · ·, with a0, a1, . . . letters.

Observe that an+k = bi if and only if Rn+i(ρ) ∈ Ibi , or equivalently, if and only if

Rn(ρ) ∈ R−i(Ibi). Thus, for n ≥ 0,

w = anan+1 · · · an+m−1 ⇐⇒ Rn(ρ) ∈ Iw

where Iw is the interval

Iw = Ib0 ∩R−1(Ib1 ) ∩ · · · ∩R−m+1(Ibm−1) .

The interval Iw is non empty if and only if w is a factor of sα,ρ. Observe that this

property is independent of ρ, and thus mechanical words of same slope have the

same set of factors.

Mechanical words are quite naturally defined as two-sided infinite words.

However, it appears that several properties, such as the theorem below, only hold

with some restrictions (see e.g. [17, 18, 43])

Theorem 2.6. Let s be a binary infinite word. The following are equivalent:

(i) s is Sturmian,

(ii) s is balanced and aperiodic,

(iii) s is mechanical with an irrational slope.
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There is an interesting variation of the second condition of this theorem that

deserves to be mentioned. The first concerns balance. Instead of considering the

number |u|a of occurrences of a letter a in a word u, one may compute more generally

the number |u|z of occurrences of the word z as a factor in u. It has been shown

by Fagnot and Vuillon [27] that this extended notion also characterizes Sturmian

words in the following sense.

Theorem 2.7. An infinite word x is Sturmian if and only if, for each pairs of

factors u, v of equal length

||u|z − |v|z | ≤ |z|

for all nonempty words z.

2.3. Factor graph

One of the basic tools for investigating the growth of complexity in infinite words

was introduced by G. Rauzy. It is called the Rauzy graph or the factor graph. Let

x be an infinite word. The factor graph Gn(x) of order n is the graph with vertex

set Fn(x) and edges defined as follows. A tuple (p, a, b, s) ∈ A∗ ×A×A×A∗ is an

edge if and only if pa = bs ∈ Fn+1(x).

The outdegree of a vertex in Gn(x) is the right degree of the factor. In the case

of a Sturmian word, there is a unique right special factor dn of length n. Let b

be the letter such that bdn−1 = dn. Then the edges leaving dn are (dn, 0, b, dn−10)

and (dn, 1, b, dn−11). Similarly, there is exactly one vertex with indegree 2. This is

the left special factor gn of length n. Observe that dn = gn if and only if dn is a

palindrome word. See Fig. 1 for the factor graphs of the Fibonacci word.

The factor graph of order n of a Sturmian word x is composed of three paths:

the first is from gn to dn, both vertices included. This path is never empty. There

01 10

00

010

101

100001

0100 1001 0010

01011010

01001 10010

00100

00101

01010

10100

Fig. 1. Factor graphs for the Fibonacci word.
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are two other paths, from dn to gn, one through vertex dn−10, the other through

dn−11. We consider that the endpoints dn and gn are not part of these paths. Then

such a path may be empty. This happens if and only if dn−10 = gn or dn−11 = gn
which in turn is the case if and only if dn−1 = gn−1 because gn−1 is a prefix of gn.

An infinite word y is accepted by Gn(x) if there is an infinite path in the graph

with label y. Of course, x itself is accepted by Gn(x). The set of accepted infinite

words is a sofic dynamical system, and the minimal system generated by x is the

intersection of theses systems, for n ≥ 0.

Factor graphs have been used by V. Berthé [6] to compute the explicit values

of the frequencies of the factors of a Sturmian word.

2.4. Return words

Let x be an infinite word, and let u be a factor of x. A return word for u in x is a

factor of x that starts at some occurrence of u in x and that stops just before the

next occurrence of u in x. Thus, a return word is a nonempty factor w such that u

is a prefix of wu and moreover wu contains exactly two occurrences of the word u.

If x is uniformly recurrent, then every factor u of x has finitely many return words.

The notion of return word was introduced independently by Durand [26] and by

Holton and Zamboni [30] in order to study primitive substitutive sequences.

Consider for example the Thue–Morse word t = 011010011001 · · ·defined earlier.

The return words for u = 01 are 01, 010, 011, and 0110. On the contrary, in the

Fibonacci word f = 0100101001001 · · ·, the word 010 for instance has two return

words 01 and 010. This is a characteristic property.

Theorem 2.8. A uniformly recurrent word is Sturmian if and only if each of its

prefixes has exactly 2 return words.

This was proved by Vuillon [45]. A simplified proof appears in [35]. As we shall

see below, this characterization holds not longer for Arnoux–Rauzy words.

2.5. Palindromic closure

The palindromic closure of a finite word u is the shortest palindrome word u(+)

having u as a prefix. For instance, for u = 0100101, one gets u(+) = 01001010010.

The following characterization is due to de Luca [20].

Proposition 2.9. An infinite binary word s is a characteristic Sturmian word if

and only if there exists an infinite binary word ∆(s) = a0a1 · · · with infinitely many

occurrences of both letters such that

s = lim
n→∞

un

where u0 = ε and un+1 = (unan)(+), for n ≥ 0.

The word ∆(s) is the directive sequence of s. As we shall see, the same result

holds for AR-words.
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2.6. Palindromes

The first palindromes that are factors of the Fibonacci word are easily computed.

They are ε, 0, 1, 00, 010, 101, 1001. It appears that there is just one palin-

drome of even length, and that there are two palindromes of odd length. This is

a general property that even characterizes Sturmian words, as shown by Droubay

and Pirillo [25].

Theorem 2.10. An infinite word is Sturmian if and only if, for each nonnegative

integer n, there is exactly one palindrome of length n, if n is even, and there are

exactly two palindromes of length n, if n is odd.

2.7. Decimation

Given an infinite binary word x over the alphabet {a, b}, we number the occur-

rences of each letter from left to right, starting with number 1. For instance, in

the Fibonacci word f = abaababaaba · · ·, the fourth a appears at position 5, and

the fifth at position 7. The k-decimation of x is the word obtained in withdrawing

all letters whose occurrence has a number that is not a multiple of k. It appears

that the Fibonacci word is invariant under all decimation. This is a general result,

already mentioned by Rauzy and proved by Justin and Pirillo [34].

Theorem 2.11. An infinite word is invariant under all decimations if and only if

it is a characteristic mechanical word (that is of rational or irrational slope).

Parvaix [38] studied extensions of the decimation operation.

2.8. Doubling map

For each 0 < α < 1, the set Sα of Sturmian words of slope α over the alphabet

{0, 1} is a minimal dynamical system. Each word x ∈ Sα can be viewed as the

binary expansion of some real number r(x) in the interval [0, 1[. It is not difficult

to check that x < x′ for the lexicographic order if and only if r(x) < r(x′). Also,

provided α is irrational, the smallest and greatest words in Sα (for the lexicographic

order) are the two words 0cα and 1cα, where cα is the characteristic word of slope α.

Clearly, r(1cα) = 1/2 + r(0cα), and in fact the set r(Sα) is entirely contained in

the interval [r(0cα), r(1cα)] of length 1/2. Moreover, the set r(Sα) is a dynamical

system for the operation induced on T = R/Z by the shift, which is the well-

known “doubling map” σ : t 7→ 2t mod 1. This observation admits a converse. For

each interval Cµ = [µ, 1/2 + µ], there is a unique α such that r(Sα) ⊂ Cµ, and

moreover, there is no other dynamical system for the doubling map that is a subset

of Cµ. This correspondence is described in detail by Bullett and Sentenac [11] where

they consider it as a reformulation of the results in [37]. They also prove that, for

irrational α, the number µ = r(0cα) is transcendental.

Considering probability measures, the first result may be restated by saying that

there is a unique probability measure with support contained inCµ and invariant for

the doubling map σ. It is quite natural to call it the Sturmian measure of parameter
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α, where α is the unique number such that r(Sα) ⊂ Cµ. If α is rational, this

measure is the finite measure mα defined by mα(x) = 1/Card(r(Sα)) for x ∈ r(Sα).

Sturmian measures can also be defined directly by considering the mechanical words

(Bousch and Mairesse [8]).

3. Arnoux–Rauzy Words

The definition of Sturmian words by their complexity implies that they are over

a binary alphabet. Equivalent words over more than two letters can be defined by

relaxing the minimality condition for the complexity (see e.g. [17]). Also, balance

could be considered, but this seems to be quite complex. Another approach was

introduced by Rauzy [40], and investigated in depth by Arnoux and Rauzy [3], and

resulted in a family of words now called Arnoux–Rauzy sequences or AR-words for

short. However, as we shall see, none of the oldest characterizations of Sturmian

words (growth, balance, mechanical property) holds for this family.

An infinite word x over a k letter alphabet is an Arnoux–Rauzy word if there is

a unique left special factor and an unique right special factor for each length, and

if, moreover, these factors have right degree (respectively left degree) exactly k.

The Tribonacci word is a typical example of an AR-word over 3 letters. The

prefixes of this word are the left special factors, and the reversals of these prefixes

are the right special factors.

The Rauzy graphs (or factor graphs) of an AR-word x over k letters are quite

similar to those of a Sturmian word. For a given integer n, the graph Gn(x) has

exactly one vertex d with outdegree k, and one vertex g with indegree k. These

may be identical (if and only if the right special factor is a palindrome). All other

vertices have indegree 1 and outdegree 1, so there are k nontrivial paths in the

graph from the vertex d to the vertex g and one path from g to d. This path is the

null path if and only if d = g. Any AR-word is uniformly recurrent and its set of

factors is closed under reversal.

A more general definition has been introduced and studied by Droubay, Justin

and Pirillo [24] (also [33]). They only require that the right special and the left

special factors are unique, but the degree of these factors may be less than k. They

call these words episturmian. AR-words appear as strict episturmian words. There

is a growing interest in AR-words and in episturmian words ([2, 14, 16, 31, 36, 47].

An AR-word x is characteristic if its prefixes are the left special factors. Again,

the Tribonacci word is characteristic. Observe that, in the binary case, characteristic

words were defined by a geometric property which appeared to be equivalent to the

combinatorial definition.

Rauzy’s rules [41] are one of the methods for describing characteristic AR-words.

For simplicity, we give them here the ternary case. There are three of them:

(x, y, z) 7→ (x, xy, xz)

(x, y, z) 7→ (yx, y, yz)

(x, y, z) 7→ (zx, zy, z) .
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As an example, if you apply the rules in turn to (0, 1, 2), the result is:

0 1 2

0 01 02

010 01 0102

0102010 010201 0102

0102010 0102010010201 01020100102

· · ·

which clearly converges to the Tribonacci sequence. This behavior can also be

expressed by iterating morphisms (Rauzy [41]). Given an alphabet A, define

morphisms τa : A∗ 7→ A∗ for a ∈ A by setting

τa(b) =

{
a if b = a

ab otherwise .

For a word w = a1 · · · an, set τw = τa1 · · · τan . As an example, τ012(0) = τ01(20) =

τ0(1210) = 0102010.

Proposition 3.1. Any characteristic AR-word over an alphabet A is obtained as

the limit of any of the sequences (τdn(a))n≥0 for a ∈ A, where dn is the prefix of

length n of some infinite word ∆ that contains infinitely many occurrences of each

letter in A.

Palindromic closure is another equivalent way to generate characteristic

AR-words [24].

Theorem 3.2. Any characteristic AR-word over an alphabet A is obtained as the

limit of a sequence (un)n≥0 of words, where un+1 = (unan)(+) is the palindromic

closure of unan, u0 = ε, and the infinite word ∆ = a0a1 · · · contains infinitely

occurrences of each of the letters in A.

We call the words un described in this theorem A-central words. Again, the

Tribonacci word is a good example. Given ∆ = 012012 · · ·, we get

01 02010010201010201001020102 · · ·

where the symbols of the word ∆ are italicized.

It happens that the palindromes occurring in such a sequence have a special

property that allows an alternate description and construction. We report the

formulation of Risley and Zamboni [42]. Instead of palindromic closure, the basic

operation is suffix replication. For this, the letters of the word ∆ are marked when

they are added at the end of the word, and un+1 = unanvn, where vn is the longest
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suffix of un containing no marked occurrence of an. As and example, consider again

the Tribonacci word.

u0 = ε

u1 = 0

u2 = 01 0

u3 = 01 02010

u4 = 01 020100102010

u5 = 01 0201001020101020100102010 .

· · ·

In other words, the suffix replication constructs precisely the palindromic closure.

The relationship between these formulations is contained in the formula from [33]

(again, dn = a0 · · ·an−1 and un+1 = (unan)(+))

un+1 = τdn(an)un .

Because of these numerous combinatoric properties, some geometric and

number-theoretic characterizations were looked for. In particular, rotations on the

two dimensional torus T2 seemed to be good candidates. Such a rotation was given

by Rauzy in 1982 for the Tribonacci word [40], and they are known for large families

of other AR-words. It was believed that every ternary AR-word codes the orbit of a

point under a rotation on T2. However, this does not hold, as proved by Cassaigne,

Ferenczi and Zamboni [12]. They prove the proposition below, and then use another

result by Rauzy to get the negative answer.

Proposition 3.3. There exist AR-words x that are imbalanced, in the following

sense. For each integer n, there are factors u, v of x equal length with ||u|a−|v|a| > n

for some letter a.

It can be shown that the Tribonacci word is 2-balanced, and more generally,

if x is an AR-word that is linearly recurrent, then x is N -balanced for some N

(a word is linearly recurrent if there is a constant K such that for every factor u

and for every return word v of u, one has K−1|u| ≤ |v| ≤ K|u|). Linearly recurrent

AR-words were completely characterized in [15, 42].

3.1. Return words

Theorem 2.8 extends partially to AR-words [35].

Proposition 3.4. In a k-letter AR-word, the number of return words of any

nonempty factor is exactly k.

This property however is not characteristic of AR-words. Consider for instance

the modified Chacon word (this has complexity 2n+ 1, see Ferenczi [28] for other
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properties). It is the fix point of the morphism

0 7→ 01

1 7→ 201

2 7→ 2201

and starts as follows

c = 012012201012012201220101201 · · · .

For instance, the factor 12 has the return words 120, 1220, 12010 and 122010.

Proposition 3.4 has been extended to regular interval exchange transformations

by Vuillon [46]. An interval exchange transformation is a piecewise affine trans-

formation that maps a partition into intervals of the unit interval into another

partition, according to a permutation. This transformation could be more compli-

cated than a rotation. A transformation is regular if no endpoint of the intervals

of the partition is non-trivially mapped into another endpoint. Vuillon shows that

infinite word that codes the orbit of a point under a regular interval exchange

transformation of k intervals has the property that each of its nonempty factors

has exactly k return words.

3.2. A theorem of Fine and Wilf

A period of a words w = a1 · · · , an, where a1, . . . , an are letters, is an integer p ≤ n
such that ai = ai+p for 1 ≤ i ≤ n − p. A remarkable theorem, due to Fine and

Wilf [29] states that if w has two periods p, q and n ≥ p + q − gcd(p, q), then

gcd(p, q) is also a period of w. The bound of this result is known to be sharp, and

the description of words of maximal length for which the theorem fails to hold

shows a surprising relationship with prefixes of characteristic Sturmian words. It

suffices to consider the case where gcd(p, q) = 1. It was shown by de Luca and

Mignosi [21] that the words of maximal length for which Fine and Wilf’s fails are

precisely the words un of Theorem 3.2 over two letters, that is the central words

over a two letter alphabet. This result was extended to three letters by Castelli,

Mignosi and Restivo [13] and to the general case by Justin [32]. We just sketch the

construction.

For a sequence p = (p1, . . . , pn) of nonnegative integer which are not all

zero, set |p| = p1 + · · · + pn and gcd(p) = gcd(p1, . . . , pn). Further, let µ(p) =

min{p1, . . . , pn | pi 6= 0} and let λ = λ(p) be any index such that pλ = µ(p) is the

minimum. Define a mapping R : p 7→ p′ = R(p) by

p′i =

{
pi if pi = 0 or i = λ

pi − pλ otherwise .

The mapping R just achieves one step in the Euclidean algorithm in its additive

form. Set p(0) = p, and p(k+1) = R(p(k)), and let m(i) = m(i, p) be the smallest
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exponent k such that p(k) contains exactly i zero entries. Finally, set h(i) = h(i, p) =

|pm(i)|. It follows from Euclid’s algorithm that h(n− 1) = gcd(p). Justin extends a

result by Castelli, Mignosi and Restivo for three periods and shows

Theorem 3.5. If a words w has periods p1, . . . , pn and has length at least

f(p), where

f(p) =
|p|
n− 1

+

n−2∑
i=1

h(i, p)

(n− i)(n− i− 1)
− gcd(p)

then w has period gcd(p).

Say that a tuple p is good if m(1, p) = · · · = m(n− 1, p) and gcd(p) = 1. For a

good p, the formula for f reduces to f(p) = (|p| − 1)/(n − 1). Then Justin shows

the following:

Theorem 3.6. Let A be an n-letter alphabet. The set of words w of length

f(p)− 1 having n periods p1, . . . , pn such that p = (p1, . . . , pn) is good is the set of

A-central words.

Example 3.7. Consider the triple p = (7, 11, 13). Euclid’s algorithm gives

p(0) = (7, 11, 13)

p(1) = (7, 4, 6)

p(2) = (3, 4, 2)

p(3) = (1, 2, 2)

p(4) = (1, 1, 1)

where the minimal entry is underlined. The triple (7,11,13) is good. Consider the

word obtained by concatenating the positions of the underlined entries, here d =

0120. The central word generated by this word is the prefix 01020100102010 of the

Tribonacci word. This word has indeed the three periods 7, 11, 13, and has length

14. Thus it is a maximal word where the generalized Fine and Wilf theorem fails.
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1. P. Alessandri and V. Berthé, Three distance theorems and combinatorics on words,
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6. V. Berthé, Fréquences des facteurs des suites sturmiennes, Theoret. Comput. Sci. 165
(1996), 295–309.
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sequences, J. Théor. Nombres Bordeaux 5 (1993), 123–137.

20. A. de Luca, Sturmian words: Structure, combinatorics, and their arithmetics, Theoret.
Comput. Sci. 183 (1997), 45–82.

21. A. de Luca and F. Mignosi, On some combinatorial properties of Sturmian words,
Theoret. Comput. Sci. 136 (1994), 361–385.

22. A. de Luca and S. Varricchio, On the factors of the Thue–Morse word on three symbols,
Inf. Proc. Lett. 27 (1988), 281–285.

23. A. de Luca and S. Varricchio, Some combinatorial properties of the Thue–Morse
sequence, Theoret. Comput. Sci. 63 (1989), 335–348.

24. X. Droubay, J. Justin and G. Pirillo, Episturmian words and some constructions of
de Luca and Rauzy, Theoret. Comput. Sci. 255 (2001), 539–553.

25. X. Droubay and G. Pirillo, Palindromes and Sturmian words, Theoret. Comput. Sci.
223 (1999), 73–85.

26. F. Durand, A characterization of substitutive sequences using return words, Discrete
Math. 179 (1998), 89–101.

27. I. Fagnot and L. Vuillon, Generalized balance in Sturmian words, Technical Report
2000-02, Liafa, 2000.



April 8, 2002 16:58 WSPC/132-IJAC 00095

Recent Results on Extensions of Sturmian Words 385

28. S. Ferenczi, Les transformations de Chacon: Combinatoire, structure géométrique,
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9 (1997), 351–369.
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