
Theoretical Computer Science 273 (2002) 47–67
www.elsevier.com/locate/tcs

Shu�e factorization is unique

Jean Berstela, Luc Boassonb ;∗

aInstitut Gaspard Monge (IGM), Universit�e Marne-la-Vall�ee, 5, boulevard Descartes, 77454
Marne-la-Vall�ee C�edex 2, France

bLaboratoire d’informatique algorithmique: fondements et applications (LIAFA), Universit�e
Denis-Diderot, 2, place Jussieu, 75251 Paris C�edex 05, France

Abstract

We prove that, given a *nite set of words S, there exists at most one (normalized) multiset
P such that S is the shu�e of the words in P. The multiset P is e-ectively computable.
c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Let A be an alphabet. The shu/e x��y of words x; y over A is a binary commutative
and associative operation. The paper addresses the following problem: “Given a *nite
set S of words over A, do there exist words x1; x2; : : : ; xn such that

S = x1 �� x2 �� · · · �� xn (1)

and, in the positive case, is the solution unique?”
A set S such that Eq. (1) holds, is called a shu/e set. Observe that if Eq. (1) holds,

then all words in S have same length and even have same Parikh vector. This means
that words in a solution x1; x2; : : : ; xn have bounded length, and thus an exhaustive search
answers the question of existence, with a considerable cost. We give here a di-erent
method. This method could presumably lead to an e<cient algorithm. This will be
a topic of later work.

Next, if a solution x1; x2; : : : ; xn exists, there are easy cases where it is not unique,
even up to permutation. Consider a single letter a, and any power an with n¿2. Then
an = ap1 �� ap2 �� · · · �� apk for every p1 + p2 + · · ·+ pk = n, showing that the solu-
tion is not unique at all. An extreme case is when an is replaced by n copies of
a. It appears that this is the only case of ambiguity. More precisely, we show that,

∗ Corresponding author.
E-mail address: luc.boasson@liafa.jussieu.fr (L. Boasson).

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00433 -3

48 J. Berstel, L. Boasson / Theoretical Computer Science 273 (2002) 47–67

when powers of a single letter are decomposed into sums of letters (a process we call
normalization) then the solution is unique. We call shu/e root of S any normalized
solution.

Shu�e factorization has been studied extensively when multiplicities are considered.
There are quite precise descriptions of the shu�e algebra Q〈A〉 of polynomials with
rational coe<cients. A theorem of Radford [5] states that the shu�e algebra Q〈A〉 is
freely generated by the Lyndon words (see, e.g., [6, Theorem 6:1]). This means in
particular that every *nite set S, viewed as a polynomial with coe<cients 0 and 1 is a
shu�e of a *nite polynomial over Lyndon words, but perhaps with negative coe<cients.
For instance, since a�� b = ab+ba and ab is a Lyndon word (assuming a¡b), one has
ba = ab − a�� b.

Our approach is di-erent. We consider only ordinary sets of words that are obtained
as shu�es of (multi)sets of words, without considering multiplicities in the result, and
without considering “negative” multiplicities in the words to be shu�ed. The main
result is the following.

Theorem 1.1. A 9nite shu/e set has a unique shu/e root.

Obviously, this root is e-ectively computable. In other words, given a *nite set S of
nonempty words, there exists at most one e-ectively computable normalized multiset P
such that S = ��P.

Our method is constructive. Given the set S, we try to compute some polynomial
P that is a candidate for the equality S = ��P. We show that if the computation
fails, the set S is not a shu�e set. If the computation succeeds, it yields a unique
polynomial P. If S �= ��P, then S is not a shu�e set. Otherwise, P is the unique
polynomial such that S = ��P. Thus, our proof gives at most one “candidate” poly-
nomial. Even if this candidate exists, it must be checked that it indeed produces the
set S.

The construction of the candidate polynomial is in two parts. The *rst is a reduction
step that we call separation. The second part is a divide-and-conquer method that strips
o- parts of the words, and parts in the words to get simpler and simpler sets. A full
example of the separation process is given at the end of Section 3. A large example
of the second step appears in Section 6.

The separation reduces the computation to the case where all words in S start with
a *xed letter (and all end with this letter, or all end with other letters). The candidate
polynomials for the separated sets are computed in the second part. Then they are
composed to yield, if the composition succeeds, a candidate that is checked for being
the shu�e root.

The initial letter, in the separation process, is called later the pivot. It is used as
a marker for decomposing words into blocks. Each block starts with pivot letters,
and contains no other pivot letters. It appears that shu�ing words can be restricted,
with some care, to shu�ing sequences of blocks: the blocks play the role of some
metaalphabet.

J. Berstel, L. Boasson / Theoretical Computer Science 273 (2002) 47–67 49

The second part uses two kinds of reductions, called shadow and trim reductions.
Both reduce a given separated set as produced in the *rst step to smaller sets of the
same kind. The problem is solved for the two subcases, and their solutions are combined
to a solution of the initial set, provided a solution exists. Both reductions operate
on blocks. A shadow reduction consists in selecting minimal initial block pre*xes,
and a trim reduction cuts initial blocks. Considering both reductions is necessary to
guarantee that the composed solution is uniquely determined. A commented example
is given after Lemma 5.2.

As it will appear, the proof of the theorem also provides an algorithm to test whether
a *nite set is a shu�e set. This algorithm seems to be much faster than the naive
algorithm, however we have no proof for this. Algorithms exist for related problems.
Thus, Ref. [7] computes the shu�e of two words without repetition. An algorithm for
the computation of the shu�e of a *nite set of words, that is e<cient in time and
in space, has been developed recently by Allauzen [1]. It is based on a clever use of
su<x trees. He shows that the shu�e of n words x1; : : : ; xn can be computed in time
and space the multinomial

O

((|x1| + · · · + |xn|
|x1|; : : : ; |xn|

))
;

and that the shu�e set can be stored in linear space, i.e., in space O(Card x1 �� · · · ��
xn). Ref. [4] gives a parallel algorithm for testing whether a word is in the shu�e
of two words. See also [3]. General properties of the shu�e operation are given in
[2, Chapter 6].

2. Notation

We use standard notation. The empty word is denoted by �. We recall the de*nition
of radix order. Let A be an ordered alphabet. The radix order over A∗ is a total order
de*ned by u¡v if |u|¡|v| or |u|= |v| and u¡v in the lexicographic order on words (of
same length). This order is clearly pre*x preserving, i.e., x¡xy for every nonempty
word y.
Shu/e: Let A be an alphabet. The shu/e of two words over A is de*ned for words

x; y and letters a; b by

x�� � = ��� x = x;

ax�� by = a(x�� by) ∪ b(ax��y):

The shu�e is a binary commutative and associative operation. We will be concerned
with the shu�e of nonempty words. The shu�e operation is extended to sets as
usual by

X ��Y =
⋃

x∈X;y∈Y
x��y:

50 J. Berstel, L. Boasson / Theoretical Computer Science 273 (2002) 47–67

We may also consider shu�ing all words in a given set. Thus, for a set X = {x1; x2; : : : ;
xn}, we can de*ne �� (X) = x1 �� x2 �� · · · �� xn. This unary shu�e operation is in
fact de*ned for multisets. Indeed consider for instance

a�� ab�� ab = {ababa; aba2b; a2bab; a2b2a; a3b2}:

This is quite di-erent from a�� ab = {aba; a2b}. We call shu/e set any *nite set S
of nonempty words that is the shu�e of a multiset of words.

Multisets: A *nite multiset is a *nite set P with a multiplicity for each of its
elements. It can also be viewed as a polynomial with nonnegative coe<cients. We
denote by (P; w) the multiplicity of w as an element of P. It is convenient to write P

as a polynomial, each word carrying its multiplicity. Thus, P= a + 2ab means that ab
appears two times in P and a once.

The underlying set or support of P is the set of words with positive multiplicity.
As an example, the support of the multiset P= a + 2ab is {a; ab}. We will say that
a word w is an element of the multiset, or is in the multiset P, if it is an element of
the support of P.

Observe that, in our problem, the result of shu�ing a multiset is viewed as an
ordinary set without multiplicities. One could also consider the multiset obtained by
shu�ing words in P by counting the number of times each word is obtained. In the
above example, this would give 2ababa+4aba2b+8a2bab+4a2b2a+12a3b2. However,
in this paper, we only consider the ordinary sets produced by shu�ing multisets. That
is, we forget the coe<cients in the result.

The di-erence P−P′ of two multisets P and P′ is de*ned if (P; w)¿(P′; w) for
all words w. It is then given by (P−P′; w) = (P; w) − (P′; w).

Normalization: A multiset P is proper if it does not contain the empty word, that
is if (P; �) = 0. A proper multiset P is normal for the letter a if the only power
of a that is an element of P is a itself. Thus, P= 37a + 2ab is normal for a, but
P′ = � + a2 + 7a5 + 2ab is not. A normal multiset is a multiset that is proper and
normal for all letters.

The normalization of a multiset P consists in two steps. First, the empty word is
removed. Second, the powers of a letter a that are in P are “summed up” to a single
monomial H ∗ a, with H =

∑
n¿0 (P; an) ∗ n. Thus, for P′ = � + a2 + 7a5 + 2ab and

for the letter a, one obtains H = 2 + 7 ∗ 5 = 37, thus the normalization of P′ yields
P= 37a + 2ab. The normalized multiset of Q is denoted by �(Q).

The reason for doing normalization is the following. The powers of a letter a
contribute a single word in the shu�e obtained by the formula given for H . Thus,
�� (a2 + 7a5) = a37, and �� (a2 + 7a5 + Q) = �� (37a + Q) for every polynomial Q.
Therefore, replacing powers of a letter by an appropriate multiplicity of the letter will
produce the same shu�e set.

A normalized multiset P such that S = ��P, is called a shu/e root of S.

J. Berstel, L. Boasson / Theoretical Computer Science 273 (2002) 47–67 51

3. Separation

In this section, we introduce a reduction called separation. This operation reduces
a shu�e set and its shu�e root to a simpler pair, with the property that every word
in the reduced shu�e root starts with a given letter (and ends with this letter or never
ends with this letter).

Two kinds of separations will be de*ned. The *rst is applied to sets that are supposed
to be shu�e sets, the second one to multisets that are supposed to be their shu�e root.
We prove in Lemma 3.3 that the relation between a shu�e set and its shu�e root is
preserved through separation. Moreover, Proposition 3.4 shows that the shu�e root of
the initial set, if it exists, is determined by the shu�e roots of the separated sets.

A set of words S is called a-simple if S ⊂ aA∗\A∗a, that is if all its words start with
the letter a, and none of its words end with a. A set S is a-symmetric if S ⊂ aA∗ ∩A∗a,
that is if all its words start and end with the letter a. A set is simple (symmetric) if it
is a-simple (a-symmetric) for some a. A multiset is simple (symmetric) if its support
is simple (symmetric).

For instance, the set S = {a2bc; acb} is a-simple. Clearly, every set S ⊂A+ is a dis-
joint union of simple sets and symmetric sets.

Let B be a set of letters. For each word w∈A∗, we denote by 〈B〉w the longest
su<x of w starting with a letter in B, if such a su<x exists, the empty set otherwise.
Equivalently, 〈B〉w is the word that remains when the longest pre*x in (A\B)∗ is
removed from w (and is the empty set when this longest pre*x is w itself). For an
intuitive explanation, see also the comment following Eq. (2).

For instance, if B = {b; c}, one has 〈B〉a2dba2c = ba2c. This operation is extended
to multisets by linearity. Symmetrically, one de*nes w〈B〉.

Example. Consider P= a+2ab. Then 〈a〉P=P; 〈b〉P= 2b; P〈a〉= 3a; P〈b〉= 2ab;
(〈a〉P)〈b〉= 〈a〉(P〈b〉) = 2ab.

The following lemma will be used in the sequel for two special partitions. In the
*rst partition, each Ai will consist of a single letter. The second partition will have
two sets, one composed of a single letter, the other being the rest of the alphabet.

Lemma 3.1. Let A = A1 ∪A2 ∪ · · · ∪An be a partition of the alphabet A. Given nor-
malized multisets P1;P2; : : : ;Pn; there exists at most one; e=ectively computable nor-
malized multisets P such that 〈Ai〉P=Pi for i = 1; : : : ; n.

Proof. Clearly, if 〈Ai〉P=Pi then every word in Pi starts with a letter in Ai. Let
‘i be the maximal length of the words in Pi, for i = 1; : : : ; n. If ‘i = 0, then Pi = 0.
If ‘i = 1, then Pi is just a linear combination of letters: Pi =

∑
a∈Ai

(Pi ; a)a. Thus, if
‘i61 for i = 1; : : : ; n, then the multiset P=P1 + · · ·+Pn is a solution, and it is the
only solution. Arguing by induction on ‘ = max(‘1; : : : ; ‘n), consider the polynomial
Q=

∑n
i=1

∑
|x|=‘ (Pi ; x)x. Each word x in Q is also in P and conversely, each word

52 J. Berstel, L. Boasson / Theoretical Computer Science 273 (2002) 47–67

of length ‘ in P is in Q, because the support of P is contained in the union of the
supports of the Pi. Thus Q=

∑
|x|=‘ (P; x)x. Consider P′ =P − Q and P′

i =Pi −
〈Ai〉Q. Then 〈Ai〉P=Pi if and only if 〈Ai〉P′ =P′

i , and the lemma is proved by
induction.

Example. Consider the alphabet A = {a; b}. We look for a multiset P such that 〈a〉P=
2a+ab and 〈b〉P= b+ba. Words of length 2 in P are ab and ba, so P= ab+ba+P′

for some P′ composed of letters. Next, we compute 〈a〉P= ab + a + 〈a〉P′, and since
〈a〉P= 2a + ab, it follows that 〈a〉P′ = a. Similarly, 〈b〉P= b + ba + 〈b〉P′, whence
〈b〉P′ = 0. Thus, P′ = a and P= a + ab + ba.

As a second example, we look for a multiset P such that 〈a〉P= a and 〈b〉P= 2ba.
The word ba is the only word of length 2 in P. Thus, P= 2ba+P′, and a = 〈a〉P= 2a
+ 〈a〉P′. Thus, the multiset we look for does not exist.

Let A be an ordered alphabet, and let B be a subset of A. Given a *nite set S,
we consider the set of words over the alphabet A\B that are pre*xes of words in S.
Among these, we choose the word p that is maximal for the radix order. We denote
by [B]S the set

[B]S = p−1S ∩ BA∗:

Symmetrically, one de*nes S[B]. The choice of p in the de*nition above is rather
arbitrary. It is only necessary, for the propositions below, that p is a pre*x of maximal
length.

Example. Let S = {ababa; aba2b; a2bab; a2b2a; a3b2}. Then [a]S = S; [b]S = (a3)−1S =
{b2}; S[a] = S(b2)−1 = {a3}; S[b] = Sa−1 = {abab; a2b2}.

The next proposition shows that, for shu�e sets, this has no consequence.

Proposition 3.2. Let S be a 9nite set; let B be a subset of A; and let p; q be words
over the alphabet A\B of maximal length that are pre9xes of words in S. If S is
a shu/e set; then p−1S = q−1S.

Proof. Assume that S = x1 �� · · · �� xn, and set xi = piyi, where pi is the longest
pre*x of xi that is in (A\B)∗ and yi ∈ �∪BA∗. Then p and q both are in the set
p1 �� · · · ��pn, and

p−1S = q−1S = y1 �� · · · ��yn:

The lemma does not hold if the set S is not a shu�e set. Indeed, the set S = {badc;
abcd} is not a shu�e set. For B = {c; d}, the pre*xes ba and ab have maximal length.
However, (ba)−1S = {dc} �= (ab)−1S = {cd}.

The next lemma shows how a pair (shu�e set, shu�e root) goes through a separa-
tion.

J. Berstel, L. Boasson / Theoretical Computer Science 273 (2002) 47–67 53

Lemma 3.3. Let A = A1 ∪A2 ∪ · · · ∪An be a partition of the alphabet A; and let S be
a 9nite set over A. If S = ��P for some multiset P; then [Ai]S = �� 〈Ai〉P for each
i = 1; : : : ; n.

Proof. As in the previous lemma, we factorize any word x in P into x = pi(x)yi(x),
where pi(x) is the longest pre*x of x that is in (A\Ai)∗ and yi(x)∈ �∪AiA∗. Then
[Ai]S = ��∑ (P; x)yi(x). Since

∑
(P; x)yi(x) = 〈Ai〉P, the lemma is proved.

The lemma can also be stated in a more compact form as follows. If P is a poly-
nomial and B is a subset of the alphabet A, then

�� 〈B〉P = [B]��P (2)

showing how the shu�e operation passes through the []-operator.
As an explanation of (2), consider three words u = pax; v = qay; w = raz, where

p; q; r do not contain the letter a. Any word in the shu�e of these words has the
form tas where t does not contain the letter a. The pre*x t is in the shu�e of some
pre*xes of u; v; w, and at least one of the words p; q; r has been “used” entirely for the
construction of t. If we look for words in the shu�e with the longest possible pre*x
t, then t is in the shu�e p�� q�� r, and as is in the shu�e ax�� ay�� az.

The next proposition is the *rst special case of partition, concerning a partition into
letters.

Proposition 3.4. Let S be a 9nite set.
(i) If S is a shu/e set; then [a]S is a shu/e set for each letter a∈A.
(ii) Conversely; if [a]S is a shu/e set with shu/e root Pa for each a∈A; then there

exists at most one; e=ectively computable multiset P such that S = ��P and
〈a〉P=Pa for a∈A.

Proof. The *rst implication is a direct consequence of Lemma 3.3. The converse
implication is just Lemma 3.1.

It is not di<cult to show that, given subsets B; C of the alphabet, and a set S of
words, the sets ([B]S)[C] and [B](S[C]) are equal. Similarly, for a polynomial P,
one has (〈B〉P)〈C〉= 〈B〉(P〈C〉). For clarity, we introduce the notation BSC = [B]S[C]
when S is a set, and BPC = 〈B〉P〈C〉 when P is a polynomial.

We will be interested in the sets aSa and aSA\a, and in the polynomials aPa and
aPA\a for a∈A.

Theorem 3.5. Let S be a 9nite set of words.
(i) If S is a shu/e set; then the sets aSa and aSA\a (a∈A) are shu/e sets.
(ii) Conversely; if the sets aSa and aSA\a (a∈A) are shu/e sets; and if polynomials

Qa and Ra are given such that aSa = ��Qa and aSA\a = ��Ra for a∈A; then
there exists at most one e=ectively computable polynomial P such that S = ��P

and aPa =Qa and aPA\a =Ra.

54 J. Berstel, L. Boasson / Theoretical Computer Science 273 (2002) 47–67

In view of this result, the computation of a shu�e root of a set can be reduced
to the cases we called a-simple and a-symmetric. In other words, a given set S for
which a shu�e root is looked for, is *rst decomposed into simple and symmetric sets
aSa and aSA\a (a∈A). For each of these sets, a shu�e root is computed, provided it
exists. There is at most one polynomial that can be constructed by composing these
roots. The initial set S is a shu�e set only if the composed polynomial exists. Even
then, the set S might not be a shu�e set. For a detailed example, see Section 6. For
further reference, we state this fact as a corollary.

Corollary 3.6. Let S be a 9nite set of nonempty words. If, for each a∈A; the a
simple set aSa and a-symmetric set aSA\a (a∈A) is a shu/e set and has a unique
shu/e root; then the set S has at most one e=ectively computable shu/e root.

The proof of Theorem 1.1 thus reduces to the case of simple and symmetric sets.
We *nish this section with an example illustrative of the separation process. See also
Section 6.

Example. Let S be the set

aabab aabba ababa abaab abbaa
baaab baaba babaa:

Then

[a]S = {aaab; aaba; abaa}; [b]S = {bab; bba}
and

[a]S[a] = {a3}; [a]S[b] = {ab}; [b]S[a] = {ba}; [b]S[b] = {b2}:

Since these four sets are singletons, they are their own shu�es, and after normal-
ization, we get

[a]S[a] = �� 3a; [a]S[b] = �� ab; [b]S[a] = �� ba; [b]S[b] = �� 2b:

If [a]S = ��P for a polynomial P, then P= #ab + $a for some nonnegative integers
#; $. From P〈a〉= (# + $)a = 3a and P〈b〉= #ab = ab Content-Length: 22322.

From P〈a〉 = (# + $)a = 3a and P〈b〉 = #ab = ab we get P = ab + 2a.
Thus the only possibility is [a]S = �� (2a + ab). Similarly, one must have [b]S =

�� (b + ba). Next, if S = ��Q, then

Q = #a + $ab + %b + &ba

for some nonnegative integers #, $, %, &, and since

〈a〉Q = (# + &)a + $ab = 2a + ab; 〈b〉Q = ($ + %)b + &ba = b + ba

we get # = $ = & = 1; % = 0 and Q = a + ab + ba. A *nal check shows that indeed
S = a�� ab�� ba. Observe that in the seperation process, only *ve of the words in S

J. Berstel, L. Boasson / Theoretical Computer Science 273 (2002) 47–67 55

were used. This means that if we had omitted any of the unused words ababa, abaab
or abbaa, the candidate polynomial Q would have been the same. This shows that the
*nal check is mandatory.

4. Blocks

In this section, we consider a canonical decomposition of words induced by a dis-
tinguished letter a, assuming all words start with this letter. An intricate-order relation
will be de*ned that allows to order blocks. The main observation is that minimal words
(for the radix order) in a shu�e set can be computed by considering minimal words
for the block order in the shu�e root. These properties will be used in the next section.
Pivot and blocks: We *x a distinguished letter a to be the pivot and set B = A\{a}.

A block is any word in a+B∗, a regular block is a word in a+B+. A block in a+ is
irregular. Any word w in aA∗ has a unique factorization into blocks. Only the last
block of this factorization may be irregular. The initial block of x∈ aA∗ is the *rst
block in its factorization. The block degree deg(x) of a word x∈ aA∗ is the number
of blocks in its factorization.

Order: We consider any total order relation ¡ on B∗ that is compatible with the
pre*x ordering, i.e., such that x¡xy for x∈B∗, y∈B+. The radix order is an example
of such an order. We de*ne an order on blocks called block order, and also denoted by
¡, by the following requirements. First, irregular blocks are ordered by their exponent:
ap¡an i- p¡n. Next, any irregular block is greater than any regular block: apu¡an

for any n; p and every nonempty word u over B. Finally, regular blocks are ordered
*rst by the exponent of the pivot and, if these are equal, by the opposite of the order
on B∗: for u; v∈B+,

apu ¡ anv ⇔ p ¡ n or (n = p and u ¿ v):

Observe the inversion of the order on u and v.
The block order is extended on aA∗ by the lexicographic extension of the order on

blocks. For this, consider

x = $1$2 · · · $n; x′ = $′
1$

′
2 · · · $′

n′ :

We say that x is a proper block pre9x of x′ if n¡n′ and $i = $′
i for 16i6n. We next

de*ne x@ x′ if and only if there is an integer k6n; n′ such that $i = $′
i for 16i¡k

and $k¡$′
k , and we set x¡x′ if and only if x@ x′ or x is a proper block pre*x of x′.

For blocks $ and $′, one has $¡$′ i- $@ $′.

Example. Consider the block order induced by the radix order on B = {b; c} with b¡c,
and consider words x = a2b5c5ba2b3c5b, x′ = a2b3c3b; x′′ = a2b5c5ba. We get block
factorizations x = $1$2, x′ = $′

1, x′′ = $1% with $1 = a2b5c5b, $2 = a2b3c5b, $′
1 = a2b3c3b,

% = a. To show that x¡x′, we compare $1 and $′
1. They have the same initial power of

56 J. Berstel, L. Boasson / Theoretical Computer Science 273 (2002) 47–67

the letter a, namely a2. Since |$1|¿|$′
1|, we get $1¡$′

1 and consequently x¡x′. Next
consider x and x′′. The word x′′ is a pre*x of x as a word of A∗. However, $2¡% and
therefore x¡x′′.

Properties of the order: The order relation over blocks helps in reducing (frequently)
shu�e of words to rearrangements of blocks by inspection of special representatives.
Given a set X ⊂ aA∗, we denote by min(X) the smallest element in X for the block
order. We shall see that if x = $1 · · · $n and y = %1 · · · %m, then min(x��y) is the
product of $1; : : : ; $n; %1; : : : ; %m in some order.

First, given blocks $; %, one has

$6% ⇒ min($�� %) = $%:

Observe that $% might be a single block if $, % are both irregular. Next, if x has the
block decomposition x = $1$2 · · · $n for some n¿2, then

min($�� x) = $1$2 · · · $i$$i+1 · · · $n;

where i is the greatest index such that $j¡$ for j = 1; : : : ; i. For instance, if $ = a2b2

and x = ab3 · a2b3 · a2b, then min($�� x) = ab3 · a2b3 · a2b2 · a2b. The relation extends
to words in aA∗ as follows. Let x = $x′, y = %y′ for (regular) blocks $; % and words
x′; y′ ∈ aA∗. Then

min(x��y) =

{
$ min(x′ ��y) if $ ¡ %;

$ min(min(x′ ��y); min(x��y′)) if $ = %:

Indeed, assume $6% and set $ = anu and % = apv (u; v �= �). The word min(x��y)
starts with the smallest possible numbers of a’s, that is by an. This group of a’s is
followed by the longest possible word containing no a. If n¡p, this must be u. If
n = p, it is also u if $¡%, and if $ = % then it is u = v. Thus, in all cases, min(x��y)
starts with $. It is followed by the smallest possible word. This is min(x′ ��y) if
$¡%. If $ = %, the smallest possible word is either min(x′ ��y) if the initial block $
of min(x��y) is the initial block of x, or min(x��y′) if the block $ is the initial
block of y. This proves the formula. The three formulas allow to compute the minimal
word in the shu�e of two words in aA∗.

Next, for blocks $; % and the word x∈ aA∗,

$ ¡ % ⇒ x$ @ x%

and for blocks $; % and a words x; y∈ aA∗,

$ ¡ % and % regular⇒ $x @ %y:

The last relation does not hold if % is irregular. Consider for instance $ = a, % = a2 and
take x = a3 and y = a. Then $¡% and a4 = $xA a3.

Next, we show that for x; y; y′ ∈ aA∗,

y @ y′ ⇒ min(x��y) @ min(x��y′):

J. Berstel, L. Boasson / Theoretical Computer Science 273 (2002) 47–67 57

Indeed, set y = p$s, y′ = p%s′ for blocks $¡% and words p; s; s′ ∈ aA∗ ∪{�}. Consider
w′ = min(x��y′). There is a factorization x = x1x2 of x into products of blocks such
that w′ = u%v′ for words u∈ x1 ��p, v′ ∈ x2 �� s′. Consider w = u$v, for v∈ x2 �� s. If
% is regular, then w@w′. If % is irregular, then s′ is the empty word and v′ = x2. Thus,
x2 is an irregular block, because %x2 = %v′ is the last block of w′. Since x2% = %x2, we
may assume x = x1, x2 = � in the factorization of x. Thus, w = u$ and again w@w′.
Thus, min(x��y)6w@w′ = min(x��y′).

Lemma 4.1. Let Y be a subset of aA∗. If no word in Y is a proper block pre9x of
another word in Y; then for any word x in aA∗;

min(x��Y) = min(x�� min(Y)):

Proof. By de*nition, min(x��Y) = miny∈Y (x��y). Since y@y′ implies that
min(x��y)@ min(x��y′), the result follows by induction on the size of Y .

Example. Consider x = a2bab and Y = {a2bab; a2ba2b; a2ba3b; a4b}. Then min(x�� a2b
ab) = a2baba2bab, min(x�� a2ba2b) = a2baba2ba2b, min(x�� a2ba3b) = a2baba2ba3b,
min(x�� a4b) = a2baba4b, and the smallest of these words is the *rst one, which is
min(x�� min(Y)).

The lemma implies that

min(x��y�� z) = min(x�� min(y�� z))

since x��y�� z = x��Y with Y = y�� z. This formula, together with the formulas
given earlier, allow to compute the minimal word in the shu�e of any polynomial.
Observe that, up to irregular blocks, this minimal word is obtained as some permutation
of the blocks composing the words in the support, each block appearing with the
appropriate multiplicity.

Parikh vector: The Parikh vector par(x) of a word x is de*ned as usual. Let k be
the size of the alphabet A, and for each letter c∈A let |x|c be the number of c’s in x.
Then par(x) = (|x|c)c∈A. As an example, par(a2bca3ba2) = (7; 2; 1). The Parikh vector
par(P) of a polynomial P is de*ned by linearity:

par(P) =
∑
x∈P

(P; x) par(x)

For instance, par(2a2bab + a2ba2b + a2ba3b + 2a4b) = (23; 10).
If S = �� (P), then all words in S have the same Parikh vector, and this Parikh

vector is par(P).
Vectors as ordered as usual. For two vectors p; p′, we set p6p′ i- pc6p′

c for all
letters c. We will use this order for proof by induction.

58 J. Berstel, L. Boasson / Theoretical Computer Science 273 (2002) 47–67

5. Two reductions

We assume that the pivot is the letter a. Given a set of words S in aA∗, the minimal
initial block of S is the smallest of the initial blocks of the words in S. It is denoted
)S . The minimal initial block of a polynomial P is the minimal initial block of its
support. It is denoted)P.

5.1. Shadow reduction

Let $ be a block. Let x be a word in aA∗ and let x = $1$2 · · · $n be its block
decomposition. We de*ne a word *$(x) by

*$(x) = $1$2 · · · $i;

where i is the smallest index such that $i+1¿$. Of course, *$(x) = � if $1¿$, and
*$(x) = x if $1; $2; : : : ; $n6$. This construction will be used in two slightly di-erent
ways.

Let y = %1 · · · %m be a second word in aA∗. Set x = *$(x)x′ and y = *$(y)y′. Then
min(x��y) starts with min(*$(x)�� *$(y)) and more precisely

min(x��y) = min(*$(x)�� *$(y)) min(x′ ��y′):

Example. Let x = a2b3 · a2b2 · a3b and y = a2b2 · ab · a2b. For $ = a2b2, one gets *$(x)
= a2b3 · a2b2 and *$(y) = a2b2 · ab. Next min(x��y) = a2b3 · a2b2 · ab · a2b2 · a2b · a3b.
Also, min(a2b3 · a2b2 �� a2b2 · ab) = a2b3 · a2b2 · ab · a2b2.

Let S be a *nite subset of aA∗, and let) =)S be the minimal initial block of S.
Let s = $1$2 · · · $n be the smallest word in S for the block order. Clearly $1 =). We
de*ne

ˆ̂S = (*)(s))−1S ∩ aA∗:

This set of words is computed in two steps. First, only words starting with *)(s) are
kept. Next, this pre*x is removed from each of the remaining words, and the empty
word, if any, is discarded. As a *rst example, consider the set

S = {ab · ab · a; ab · aab; aab · ab; aabb · a; aaabb}:

Here s = ababa and) =)S = ab, *)(s) = abab and consequently ˆ̂S = {a}. Other exam-
ples will be given below.

Consider next a polynomial P. Recall that) =)P is the smallest of the initial blocks
of the words in the support of P. De*ne

P′ =
∑

(P; x)(*)(x)−1x) and P̂ = �(P′)

Here, for each word in the support of x, the pre*x *)(x) is computed and removed.
The resulting polynomial is then normalized. As a *rst example, consider P= a+2ab.
Here)P = ab, and P′ = 2� + a, whence P̂= a.

J. Berstel, L. Boasson / Theoretical Computer Science 273 (2002) 47–67 59

The operations S �→ ˆ̂S and P �→ P̂ are called shadow reductions. The *rst is the
shadow reduction of a set, the second the shadow reduction of a polynomial.

Example 1. Let

P = 2a2bab + a2ba2b + a2ba3b + 2a4b:

The initial blocks are a2b and a4b, and the *rst one is smaller, thus) =)P = a2b. We
get *)(a2bab) = a2bab, *)(a2ba2b) = a2ba2b, *)(a2ba3b) = a2b, *)(a4b) = �, whence
P′ = 2� + � + a3b + 2a4b and P̂= a3b + 2a4b. Consider the set

S = �� (P)

The smallest word s in S for the block order is s = a2baba2bab(a2b)3a3b(a4b)2. Here
*)S (s) = a2baba2bab(a2b)3. It is not di<cult to check that)P =)S . It appears moreover

that ˆ̂S = �� (P̂). This is a general fact, stated in Lemma 5.1 below.

Example 2. This is a variation of the previous example. Let

Q = 2a + 2a2baba + a2ba2ba2 + 2a4ba:

The initial blocks are a, a2b and a4b, and the second one is the smallest. Thus)Q = a2b.
We get Q′ = 2a +2a + a2 + 2a4ba. Normalization groups 2a +2a + a2 into 6a, whence
Q̂= 6a + 2a4ba. Consider T = �� (Q). The minimal word t in T for the block order
is t = a2b · ab · a2b · ab · a2b · a2b · a4b · a4b · a8. We get *)T (t) = a2baba2baba2ba2b, and
ˆ̂T = *)T (t)

−1T = �� (2a + 2a + a2 + 2a4b) = �� (Q̂).

Lemma 5.1. If S = �� (P); then ˆ̂S = �� (P̂).

Proof. Let s =)$2 · · · $n be the smallest word in S = �� (P). Then) is the smallest
of the initial blocks of words in the support P of P. Thus) =)P =)S .

Let Q be the set of words in P with initial block). Set Q=
∑

q∈Q (P; q)q and
de*ne R=P− Q. Each word q in Q is written as q = *)(q)q′ with *)(q) nonempty.
Then P̂=R + T, with

T =
∑

q∈Q;q′ �=�
(P; q)q′:

Next *)(s) = min(�� (
∑

q∈Q (P; q)*)(q))). By the discussions above, this word is a

product of blocks. It follows that ˆ̂S = �� (R + T), that is ˆ̂S = �� (P̂).

Observe that in Lemma 5.1, the Parikh vector of P̂ is strictly less than the Parikh
vector of P.

5.2. Trim reduction

For any word x = $1$2 · · · $n, we de*ne

Px = $2 · · · $n:

60 J. Berstel, L. Boasson / Theoretical Computer Science 273 (2002) 47–67

Given a polynomial P, we de*ne PP by linearity and normalization as

PP = � (
∑

(P; x) Px) :

Observe that words composed of a single block disappear. As a *rst example, consider
P= a + 2ab. Here PP= �(� + 2�) = 0.

Given a set S ⊂ aA∗, the leading block ,S of S is one of the initial blocks of words
of S. It is the initial block anu of S with n is maximal and |u| is maximal among
the initial blocks with exponent n. Observe that this choice is not related to the block
order we de*ned previously. De*ne

PPS = ,−1
S S ∩ aA∗:

The operations S �→ PPS and P �→ PP are called trim reductions. Note that these reductions
strictly again decrease the corresponding Parikh vectors.

Example 1 (continued): Let

P = 2a2bab + a2ba2b + a2ba3b + 2a4b:

We get

PP = 2ab + a2b + a3b:

Next, we consider S = �� (P) without computing it explicitly. The maximal number
of initial a’s in words in S is obtained by putting all a’s of the initial blocks of P

at the beginning of the words. This gives a16. Next, we look for a longest word over
A\a that can follow this power of a. This is obtained here by concatenating all b’s
occurring in all initial blocks, that is b6. Thus, the block we look for is ,S = a16b6.
Clearly, PPS = ,−1

S S is the shu�e of what remains of P, that is PPS = �� (PP).

Example 2 (continued): Let

Q = 2a + 2a2baba + a2ba2ba2 + 2a4ba:

We get PQ= 2aba + a2ba2 + 2a. The *rst term 2a in Q disappears, and the last term in
PQ comes from 2a4ba = 2a. Consider T = �� (Q). The maximal number of initial a’s in
words in T is a16, and the maximal number of b’s that can follow the power if a is
b5. Thus, ,T = a16b5 and ,−1

T T = �� (2aba + a2ba2 + 2a).

Lemma 5.2. If S = �� (P); then PPS =�� (PP).

Proof. Clear from the previous examples.

Observe that in Lemma 5.2, the Parikh vector of PP is strictly less than the Parikh
vector of P.

Example. The aim of this example is to illustrate the two reductions introduced earlier
and to give a feeling why these will lead to an e-ective procedure.

J. Berstel, L. Boasson / Theoretical Computer Science 273 (2002) 47–67 61

Consider three words p = a2b2ab3a3b, q = a2b2ab3a4b2 and r = a3ba2b2 and let S =
p�� q�� r be the shu�e set generated by these words.

The maximum number of letters a at the beginning of a word in S is clearly 2 +
2 + 3 = 7. Among the words in S starting with a7, those which have the maximum
number of b following a7 will clearly begin with b2+2+1 = b5. In order to get these
words in S, we have to use the three initial blocks of the words p; q; r. Hence, the set
(a7b5)−1S is a simpler shu�e set. More precisely, setting p′ = ab3a3b, q′ = ab3a4b2

and r′ = a2b2, we have (a7b5)−1S = p′ �� q′ �� r′. The set (a7b5)−1S is precisely what
has been de*ned as PPS, and the polynomial p′ + q′ + r′ is the trimmed reduction of
p + q + r.

Now, we look for words in S beginning with the minimum number of a. These are
the words beginning with a2. Among these words, those which have the maximum
number of b following a2 will clearly begin with a2b2. These are the words in S
beginning with the smallest initial block. However, the set (a2b2)−1S is not a shu�e
set. It is the union of two shu�e sets, obtained by removing the block a2b2 either
from word p or from word q. In other words, one of the shu�e sets is p′ �� q�� r
and the other is p�� q′ �� r.

Let us repeat the process of looking for “minimal” blocks of words in S un-
til a block appears that is greater than a2b2. We have to repeat the process four
times, giving raise to the word h = a2b2ab3a2b2ab3 composed of four blocks. Then
the quotient h−1S is a shu�e set: indeed, the word h has used all blocks less or
equal to a2b2 which is the minimal initial block in the root of S; so the quotient
is exactly the set obtained by shu�ing the remaining su<xes of the original words,
that is h−1S = a3b�� a4b2 �� r. With the previous notation, h = *)(s), where) = a2b2

and s is the smallest word in S. The quotient is precisely what has been

de*ned as ˆ̂S.
Both of these operations lead to a simpler shu�e set. The rest of the proof fol-

lows from the fact that, given the solutions of each subproblem, there is at most one
(computable) solution of the original problem.

Degree: The block degree deg(x) of a word x∈ aA∗ was de*ned to be the num-
ber of blocks in its decomposition. For a polynomial P, the block degree deg(P)
is the maximum of the degrees of the words in its support. As an example, the
polynomial of Example 1 has degree 2, and the polynomial of Example 2 has de-
gree 3. It will be convenient to denote Pk the homogeneous component of degree k
of P, that is Pk =

∑
deg(x) = k (P; x)x. A normalized polynomial P of degree d then

writes as P=P1 + P2 + · · ·+Pd.
A polynomial P is simple if no word in its support contains an irregular block, it

is symmetric if every word in its support contains (and thus ends with) an irregu-
lar block. The polynomial in Example 1 is simple, the polynomial in Example 2 is
symmetric, the polynomial a +2ab is neither simple nor symmetric. The shadow poly-
nomial and the trim polynomial of a simple (symmetric) polynomial are again simple
(symmetric).

62 J. Berstel, L. Boasson / Theoretical Computer Science 273 (2002) 47–67

For any polynomial P of degree d¿1, the polynomial P̂ has degree d or less, and
the trim polynomial PP has degree d − 1.

Proposition 5.3. Given two simple normalized polynomials H and T; a vector p;
and a block); there is at most one simple normalized e=ectively computable (simple)
polynomial P such that P̂=H; PP=T;)P =) and par(P) = p.

Proof. By induction on the degree of T. If deg(T) = 0, then T= 0 because T is
proper. If P exists and P �= 0, then deg(P) = 1. Set P= h)+Q with h = (P;)). Since
P̂=H, the support of P does not contain an irregular block. Since) =)P, all blocks
in Q are greater than), and consequently P̂=Q, hence Q=H. Thus, if P exists, it
is of the form

P = h ∗) + H:

Finally, since p = h par()) + parH, the number h can be computed. If it is a positive
integer, then P is uniquely determined, otherwise the polynomial P does not exist.

Assume next that deg(T) = d − 1¿1. If a polynomial P exists with PP=T and
P̂=H, then deg(P) = d = 1+deg(T) and deg(P)¿ deg(H). Write P=P′+Pd, with
P′ =P1 + · · ·+Pd−1. Set P′ =)C+N, Pd =)D+M, such that the initial blocks of
the words of the supports of N and M are greater than). Also, C has degree at most
d−2, D has degree of degree d−1 and M has degree d. From P=)C+N+)D+M,
it follows that T= PP=C + PN + D + PM and H= P̂= Ĉ + N + D̂ + M. Thus
Hd =M, and Td−1 =D + PM. This determines D=Td−1 − Hd. If the di-erence has
negative coe<cients, the polynomial P does not exist. Otherwise, since M and D are
determined, the homogeneous component Pd is uniquely determined, and we repeat the
process.

Example 1 (continued): Let T= 2ab + a2b + a3b, H= a3b + 2a4b, p = (23; 10) and
) = a2b. The polynomial P has degree 2. Set P2 = a2bD+M. Since H has degree 1,
M= 0. Next, D=P2 =T. Thus P2 = 2a2bab+a2ba2b+a2ba3b. Set P1 = h∗a2b+Q.
From P̂=Q + a3b =H, one gets Q= 2a4b. Content-Length: 12 821.

From P̂ = Q + a3b = H, one gets Q = 2a4b. Thus, P = h ∗ a2b + 2a2bab +
a2ba2b + a2ba3b + 2a4b, whence par(P) = h ∗ (2; 1) + (23; 10). Thus h = 0 and
P = 2a2bab + a2ba2b + a2ba3b + 2a4b.

We now consider the symmetric case, which is more involved. We will consider both
polynomial and their reversals. More precisely, for any polynomial Q,
we denote Q̃ the polynomial Q̃=

∑
(Q; x)x̃. Observe that neither the shadow nor the

trim reduction commutes with reversal. As an example, consider the polynomial

Q = 2a + 2a2baba + a2ba2ba2 + 2a4ba

of Example 2 above. We get

Q̃ = 2a + 2ababa2 + a2ba2ba2 + 2aba4

J. Berstel, L. Boasson / Theoretical Computer Science 273 (2002) 47–67 63

from which)Q = a2b,)Q̃ = ab. Also PQ= 2aba + a2ba2 + a4, P̃Q= 2aba2 + a2ba2 + a10

and Q̂= a6 + 2a4ba; ˆ̃Q= a14 + a2ba2ba2.

Proposition 5.4. Given symmetric normalized polynomials H;H∼ and T;T∼; a vec-
tor p; and two blocks);)∼; there is at most one symmetric normalized e=ectively
computable polynomial P such that P̂=H; ˆ̃P=H∼; PP=T; P̃P=T∼;)P =);)P̃

=)∼ and par(P) = p.

Proof. The proof is by induction as for Proposition 5.3. However, the initial step of
the induction is di-erent.

If deg(T) = 0, then deg(P) = 1 and P= h ∗ a, where h is given by the vector p.
Assume deg(T) = 1. Then deg(P) = 2, and) has to be a regular block. Set

P = h ∗ a +)C + N;

where the polynomial C has degree 1, the polynomial N is homogeneous of degree
2 and all initial blocks of words in N are greater than). One gets P̂= H ∗ a + N,
where H ∗ a is obtained from normalization of the shadow reduction of h ∗ a +)C.
This determines N to be H2. Similarly, write

P̃ = h ∗ a +)∼D + M:

By the same argument, M is the homogeneous component of degree 2 of H∼. Taking
the reversal of the *rst relation, we get

C̃)̃ +Ñ =)∼D + M: (3)

Set) = aN u, and)∼ = aM v for nonempty words u; v over A − {a}. By the de*ni-
tion of) and)∼, every word of degree 2 in the support of P is of the form
anwam with n¿N , m¿M and w a word over A − {a}. Set also C=

∑
m¿M cmam,

D=
∑

n¿N dnan, where the coe<cients cn and dn are nonnegative integers.
Then

C̃)̃ = cM aM ũaN +
∑

m¿M
cmamũaN ;)∼D = dN aM vaN +

∑
n¿N

dnaM van;

whence

Ñ + cM aM ũaN +
∑

m¿M
cmamũaN = dN aM vaN +

∑
n¿N

dnaM van + M:

This entirely determines the coe<cients cm for m¿M and dn for n¿N . Moreover, if
the polynomial P exists, then cM = dN . If ũ �= v, then cM = dN = 0.

Thus, assume ũ = v. It remains to compute the coe<cients h and cM . From PP=T,
one gets for the coe<cient t:

t = h +
∑

m¿M
cm ∗ m (4)

64 J. Berstel, L. Boasson / Theoretical Computer Science 273 (2002) 47–67

Finally, the a-component pa of the Parikh vector p = par(P) has the expression

pa = h +
∑

m¿M
cm ∗ (m + N) + par(N)a: (5)

These two equations allow to compute h and cM .
If deg(T)¿1, the homogeneous parts of degree at least 3 are obtained as in

Proposition 5.3, and the homogeneous parts of degree at most 2 are obtained as above.

Example 2 (continued): Consider the following data: H= 6a + 2a4ba, H∼ = 14a +
a2ba2ba2, T= 4a + 2aba + a2ba2, T∼ = 10a + 2aba2 + a2ba2,) = a2b,)∼ = ab,
p = (26; 8). Since T has degree 2, the polynomial P we look for has degree 3. We
set

P = h ∗ a +)C + N +)E + R

with deg(R) = 3, deg(E) = deg(N) = 2, deg(C) = 1. From P̂= · · ·+R=H, we get
R= 0, and from PP= · · ·+E=T we get E= 2aba + a2ba2, thus the component
P3 =)E + R=)E is P3 = 2a2baba + a2ba2ba2. Consider again P̂= h ∗ a + �(C) +
N + 4a =H. The coe<cient 4a comes from 4a =)̂E. Thus N= 2a4ba. Set P̃= h ∗
a +)∼ D+M+ P̃3. Then ˆ̃P= h ∗ a + �(D)+M+4a + a2ba2ba2 =H∼ showing that
M= 0. It follows that Ñ + C̃)̃ =)∼ D. This gives the equation

2aba4 + c1aba2 +
∑

m¿1
cmamba2 = d2aba2 +

∑
n¿2

dnaban

which implies C= c1a, D= d2a2 + 2a4 and P= h ∗ a + c1a2ba + 2a4ba + 2a2baba +
a2ba2ba2. The coe<cient of a in PP is h+c1 +2, and since (P; a) = (T; a) = 4, we get
h + c1 = 2. Next, the a-coordinate of the Parikh vector par(P) is h + 3c1 + 10 + 8 + 6
and must be 26. This gives the equation 2 = h + 3c1. It follows that h = 2 and c1 = 0.
Thus, our solution is precisely the polynomial Q of the example.

5.3. Proof of the main theorem

We are now able to give the proof of Theorem 1.1.
Let P and Q be normalized polynomials such that �� (P) =�� (Q), and set S =

�� (P) =�� (Q). In view of Corollary 3.6, we may assume that S is simple or sym-
metric. It follows that P and Q are simple or are symmetric. Also, it is clear that
par(P) = par(Q).

Assume *rst that P and Q are a-simple. The proof is by induction on this Parikh vec-
tor. By Lemma 5.1, one gets �� (P̂) =�� (Q̃), and by Lemma 5.2, one gets �� (PP) =
�� (PQ). As observed, the Parikh vectors of PP and of P̂ are less than the Parikh vector
of P. By induction, P̂= Q̂ and PP= PQ. By Proposition 5.3, P=Q.

The same argument holds if P and Q are symmetric, using Proposition 5.4. This
completes the proof.

J. Berstel, L. Boasson / Theoretical Computer Science 273 (2002) 47–67 65

6. A large example

Over the alphabet A = {a; b}, consider the following set S of 58 words given in
alphabetical order (for the moment, forget about the marks ∗ and +):

+ aaaaababbb aaaaabbabb aaaaabbbab
+ aaaabaabbb aaaabababb aaaababbab ∗aaaababbba aaaabbaabb

aaaabbabab ∗aaaabbabba aaaabbbaab ∗aaaabbbaba
+ aaabaaabbb aaabaababb aaabaabbab ∗aaabaabbba aaababaabb

aaabababab ∗aaabababba aaababbaab ∗aaababbaba aaabbaaabb
aaabbaabab ∗aaabbaabba aaabbabaab ∗aaabbababa

+ aabaaaabbb aabaaababb aabaaabbab ∗aabaaabbba aabaabaabb
aabaababab ∗aabaababba aabaabbaab ∗aabaabbaba aababaaabb
aababaabab ∗aababaabba aabababaab ∗aababababa aabbaaabab
aabbaabaab ∗aabbaababa
abaaaababb abaaaabbab abaaabaabb abaaababab ∗abaaababba
abaaabbaab ∗abaaabbaba abaabaaabb abaabaabab ∗abaabaabba
abaababaab ∗abaabababa ababaaabab ababaabaab ∗ababaababa:

We start by some preliminary observations:
• All words of S contain 6 letters a and 4 letters b.
• All words of S start with the letter a.
• Some words end with a letter a, others with a b.

So, we do not need to split S according to the *rst letter; letter a will be the pivot.
On the other hand, we have to split S into an a-simple set, say T = S[b] and an
a-symmetric set, say U = S[a]. In view of the de*nition in Section 3, we look at the
maximal number of a’s at the end of words in S. This number is 1, hence T = Sa−1.
This set is exactly the set of the 19 words marked with a ∗ in S.

Similarly, we look at the maximal number of b’s at the end of words in S. This
number is 3, hence U = Sb−3. This set is exactly the set of four words marked with
a + in S. In view of Theorem 3.5, we consider separately these two sets. If they are
shu�e sets, then we get shu�e roots for them. These will be later composed to get
the unique candidate for a shu�e root for S.

6.1. Computing the shu/e root of U

The set U is

aaaaaba aaaabaa aaabaaa aabaaaa:

We look for a polynomial U such that U =�� (U). For this, we apply shadow and trim
reduction, as described in Section 5.1. The minimal initial block of U is)U = aab.

Since there is only one word in U beginning by), the set ˆ̂U is composed of the
single word aaaa. Similarly, the leading block ,U is a5b; it gives raise to PU = {a}.
Hence, the polynomial U associated to U will look like U= aabai + ja with i + j = 4

66 J. Berstel, L. Boasson / Theoretical Computer Science 273 (2002) 47–67

(= the number of a in words of U minus the number of a in)). In order to compute
i and j, we look at the reversal of U . The minimal initial block is)Ũ = ba. This yields
PP̃U = {aaaaa}. The leading block ,Ũ of Ũ is aaaab, giving raise to

ˆ̂̃
U = {aa}. So, we

get the new description of U as akba + sa with k + s = 5. So, we get immediately

U = aaba + 3a:

6.2. Computing the shu/e root of T

Here is the set T again:

aaaababbb aaaabbabb aaaabbbab
aaabaabbb aaabababb aaababbab aaabbaabb aaabbabab
aabaaabbb aabaababb aabaabbab aababaabb aabababab aabbaabab
abaaababb abaaabbab abaabaabb abaababab ababaabab :

Again, we look for a polynomial T such that T =��T. In order to construct PPT , we
look for the leading block in T ; it is ,T = a4b3. The left quotient by this block yields
PPT = {ab}. Hence, PT= ab.

In order to construct ˆ̂T , we look for the minimal initial block in T ; it is) = ab.

The pre*x used then to quotient T is abab yielding ˆ̂T = {aabab}. Hence, T̂= aabab.
Knowing), PT and T̂, we construct T. It has the form T= aabab + h ∗ ab for some
integer h. Using the Parikh vector par(T) = (5; 4) of T , we get h = 2; hence,

T = aabab + 2ab:

6.3. Constructing the polynomial S

Knowing U= aaba + 3a and T= aabab + 2ab, we may try now to construct S.
The longest word is aabab; it is in S and is responsible for aaba in U. So, we are
left with 3a and 2ab. This implies that 2ab is in S and leaves a alone in U. Hence,

S = aabab + 2ab + a:

The *nal step is now to compute the shu�e of S and to check that it is precisely S.
Note that this last step must be performed. Indeed, if you suppress from S any un-
marked word, the resulting polynomial S remains unchanged. Similarly, if you add to
S a word such as aaabbbaab, then
• it has the correct Parikh vector,
• it does not end by a, so it will not appear in T ,
• it does not end by bbb, so that it will not appear in U .

Hence, the computations of U, T and S will be the same as above.

J. Berstel, L. Boasson / Theoretical Computer Science 273 (2002) 47–67 67

References

[1] C. Allauzen, Calcul e<cace du shu�e de k mots, Tech. Report IGM2000-02, Institut Gaspard Monge,
UniversitUe Marne-la-VallUee, 2000.

[2] M. Lothaire, Combinatorics on Words, Encyclopaedia of Mathematics and its Applications, vol. 17,
Addison-Wesley, Reading, MA, 1983 (Reprinted in the Cambridge Mathematical Library, Cambridge
University Press, Cambridge, 1997).

[3] M. Nivat, G.D. Ramkumar, C. Pandu Rangan, A. Saoudi, R. Sundaram, E<cient parallel shu�e
recognition, Parallel Process. Lett. 4 (1994) 455–463.

[4] B. Pradeep, C. Murthy, A constant time string shu�e algorithm on recon*gurable meshes, Internat. J.
Comput. Math. 68 (1998) 251–259.

[5] D.E. Radford, A natural ring basis for the shu�e algebra and an application to group schemes, J. Algebra
58 (1979) 432–454.

[6] C. Reutenauer, Free Lie Algebras, London Mathematical Society Monographs, Oxford Science
Publications, Oxford, 1993.

[7] J.-C. Spehner, Le calcul rapide des mUelanges de deux mots. (Fast computing of the shu�e of two words),
Theoret. Comput. Sci. 47 (1986) 181–203.

