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Abstract. We consider XML documents described by a document type
definition (DTD). An XML-grammar is a formal grammar that captures
the syntactic features of a DTD. We investigate properties of this family of
grammars.We show that every XML-language basically has a uniqueXML-
grammar. We give two characterizations of languages generated by XML-
grammars, one is set-theoretic, the other is by a kind of saturation property.
We investigate decidability problems and prove that some properties that
are undecidable for general context-free languages become decidable for
XML-languages. We also characterize those XML-grammars that generate
regular XML-languages.

Résuḿe. Nous consid́erons des documents XML décrits par une d́efinition
de type de document (DTD). Une grammaire XML est une grammaire
formelle qui retient les aspects syntaxiques d’une DTD. Nousétudions les
propríet́es de cette famille de grammaires. Nous montrons qu’un langage
XMLa essentiellement une seule grammaire XML.Nous donnons deux car-
act́erisations des langages engendrés par les grammaires XML, la première
est ensembliste, la deuxième est par une propriét́e de saturation. Nous exam-
inons des problèmes de d́ecision et nous prouvons que certaines propriét́es
qui sont ind́ecidables pour les langages context-free géńeraux deviennent
décidables pour les langages XML. Nous caractérisonśegalement les gram-
maires XML qui engendrent des langages rationnels.
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1 Introduction

XML(eXtensibleMarkupLanguage) isa format recommendedbyW3C[11]
in order to structure a document. The syntactic part of the language describes
the relative position of pairs of corresponding tags. The description we con-
sider is realized by means of a document type definition (DTD). In addition
to its syntactic part, each tag may also have attributes. If the attributes in
the tags are ignored, a DTD appears to be a special kind of context-free
grammar. The aim of this paper is to study this family of grammars.

One of the consequences will be a better appraisal of the structure of
XML documents. It will also illustrate the kind of limitations that exist in
the power of expression of XML. Consider for instance an XML-document
that consists of a sequence of paragraphs. A first group of paragraphs is
being typeset in bold, a second one in italic. It is not possible to specify, by
a DTD, that in a valid document there are as many paragraphs in bold as in
italic. This is due to the fact that the context-free grammars corresponding
to DTD’s are rather restricted.

As another example, assume that, in developing a DTD for mathemati-
cal documents, we require that in a (full) mathematical paper, there are as
many proofs as statements, and moreover that proofs appear always after
statements (in other words, the sequence of occurrences of statements and
proofs is well-balanced). Again, there is no DTD for describing this kind
of requirements. Pursuing in this direction, there is of course a strong anal-
ogy of pairs of tags in an XML document and the\begin{object} and
\end{object} construction for environments in Latex. The Latex com-
piler merely checks that the constructs are well-formed, but there is no other
structuring method.

Themain results in this paper are two characterizations of XML-langua-
ges. The first (Theorem 4.2) is set-theoretic. It shows that XML-languages
are the biggest languages (with respect to inclusion) in a specific class of
languages. It relies on the fact that, for eachXML-language, there is only one
XML-grammar that generates it. The second characterization (Theorem4.4)
is syntactic. It shows that XML-languages have a kind of “saturation prop-
erty”.

As usual, these results can be used to show that some languages cannot
be XML. This means in practice that, in order to achieve some features of
pages, additional nonsyntactic techniques have to be used.

In order to simplify the presentation, we have slightly deviated from the
W3C recommendation in one point that will be detailed later.

The paper is organized as follows. The next section contains the defini-
tion of XML-grammars and their relation to DTD. Section 3 contains some
elementary results, and in particular the proof that there is a unique XML-
grammar for each XML-language. It appears that a new concept plays an
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important role in XML-languages: the notion of surface. The surface of an
opening taga is the set of sequences of opening tags that are children ofa
(i. e. the tags immediately undera that may followa in a document before
the closing taḡa is reached). The surfaces of an XML-language must be
regular sets, and in fact describe the XML-grammar. The characterization
results are given in Sect. 4. They heavily rely on surfaces, but the second
one also uses the syntactic concept of a context.

Section 5 investigates decision problems. It is shown that it is decidable
whether the language generated by a context-free language is well-formed,
but it is undecidable whether there is an XML-grammar for it. On the con-
trary, it is decidablewhether the surfaces of a context-free grammar are finite
(Sect. 6).

Section 7 is concerned with regular XML-languages. It appears indeed
that most XML-languages used in practical applications are regular. We
show that, for a given regular language, it is decidable whether it is an XML-
language, and we give a structural description of regular XML-grammars.

The final section is a historical note. Indeed, several species of context-
free grammars investigated in the sixties, such as parenthesis grammars or
bracketed grammars are strongly related to XML-grammars. These relation-
ships are sketched.

The approach we choose in this paper is word-oriented. Clearly, a tree-
oriented approach is also possible due to the usual connection between trees
and Dyck words. This has been adopted in [10].

A more powerful model for XML documents is XML Schema [12]. A
comparison of various description models is given in [8].

A preliminary version of this paper appears in the proceeding of the
MFCS 2000 conference [1].

2 Notation

An XML document [11] is composed of text and of tags. The tags are
opening or closing. Each opening tag has a unique associated closing tag,
and conversely. There are also tags called empty tags, and which are both
opening and closing. These tags may always be replaced by an opening
tag immediately followed by its closing tag. We do so here, and therefore
assume that there are no empty tags.

Let A be a set of opening tags, and letĀ be the set of corresponding
closing tags. Since we are interested in syntactic structure, we ignore any
text. Thus, an XML document (again with any attribute ignored) is a word
over the alphabetT = A ∪ Ā.

A documentx iswell-formedif the wordx is a correctly parenthesized
word, that is ifx is in the set of Dyck primes overA ∪ Ā. Observe that the
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word is a prime, so it is not a product of two well parenthesized words. Also,
it is not the empty word.

An XML-grammaris composed of a terminal alphabetT = A∪ Ā, of a
set of variablesV in one-to-one correspondence withA, of a distinguished
variable called theaxiomand, for each lettera ∈ A of a regular setRa ⊂ V ∗
defining the (possibly infinite) set of productions

Xa → amā, m ∈ Ra, a ∈ A

We also write for short
Xa → aRaā

as is done in DTD’s. An XML-languageis a language generated by some
XML-grammar.

In the W3C recommendation, an additional property is requested: the
regular languagesRa are required to admit adeterministicregular expres-
sion. This is not normative [11]. Moreover, given a regular language, this
additional property is decidable [2]. It follows that all results in the sequel
have a straightforward extension to the case where this restriction is added.
Therefore, we ignore it from now on.

It is well-known from formal language theory that non-terminals in a
context-free grammarmay have infinite regular (or even context-free) sets of
productions, and that the generated language is still context-free. Thus, any
XML-language is context-free. Moreover, it can be checked that it is even a
deterministiccontext-free language in the sense that there is a deterministic
push-down automaton ([5]) recognizing it.

Example 2.1.The language{anān | n > 0} is a XML-language, generated
by

X → a(X ∪ ε)ā

Example 2.2.The language ofDyck primesover{a, ā} is a XML-language,
generated by

X → aX∗ā

Example 2.3.The languageDA ofDyckprimesoverT = A∪Ā is generated
by the grammar

X → ∑
a∈AXa

Xa → aX∗ā, a ∈ A

It is not an XML-language. However, eachXa in this grammar generates
an XML-language, which isD ∩ aT ∗ā.

In the sequel, all grammars are assumed to bereduced, that is, every non-
terminal is accessible from the axiom, and every non-terminal produces at
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least one terminal word. Note that for a regular (or even a recursive) set of
productions, the reduction procedure is effective.

Given a grammarG over a terminal alphabetT and a nonterminalX we
denote by

LG(X) = {w ∈ T ∗ | X ∗−→w}
the language generated byX in the grammarG.

Remark 2.4.The definition has the following correspondence to the termi-
nology and notation used in the XML community ([11]). The grammar of
a language is called adocument type definition(DTD). The axiom of the
grammar is qualifiedDOCTYPE, and the set of productions associated to
a tag is anELEMENT. The syntax of an element implies by construction
the one-to-one correspondence between pairs of tags and non-terminals of
the grammar. Indeed, an element is composed of atypeand of acontent
model. The type is merely the tag name and the content model is a regular
expression for the set of right-hand sides of the productions for this tag. For
instance, the grammar

S → a(S|T )(S|T )ā
T → bT ∗b̄

with axiomS corresponds to

<!DOCTYPE a [
<!ELEMENT a ((a|b),(a|b)) >
<!ELEMENT b (b)* >

]>

Here,S andT stand for the nonterminalsXa andXb respectively.
The regular expressions allowed for the content model are of two types:

those called children, and those called mixed [11]. In fact, since we do not
consider text, the mixed expressions are no more special expressions.

In the definition of XML-grammars, we ignoreentities, both general and
parameter entities. Indeed, these may be considered as shorthand and are
handled at a lexical level.

The alreadymentioned restriction to languages having deterministic reg-
ular expressions appears in this context as a support for easy syntactic anal-
ysis.

Remark 2.5.In the recent specification of XML Schemas ([12]), a DTD
is called a schema. The syntax used for defining schemas is XML itself.
Among the most significant enrichment of schema is the use of types. Also
the purely syntactical part of XML schemas is more evolved than that of
DTD’s.
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3 Elementary results

Wedenote byDa the language ofDyck primesstarting with the lettera. This
is the language generated byXa in Example 2.3. We setDA = ∪a∈ADa.
This is not an XML-language ifA has more than one letter. We callDA the
set of Dyck primes overA and we omit the indexA if possible. The setD is
known to be abifix code, that is no word inD is a proper prefix or a proper
suffix of another word inD.

Let L be any subset of the setD of Dyck primes overA. The aim of
this section is to give a necessary and sufficient condition forL to be an
XML-language.

WedenotebyF (L) thesetof factorsofL, andwesetFa(L) = Da∩F (L)
for each lettera ∈ A. ThusFa(L) is the set of those factors of words inL
that are also Dyck primes starting with the lettera. These words are called
well-formedfactors.

Example 3.1.For the language

L = {ab2nb̄2nā | n ≥ 1}
one hasFa(L) = L andFb(L) = {bnb̄n | n ≥ 1}.
Example 3.2.Consider the language

L = {a(bb̄)n(cc̄)nā | n ≥ 1}
ThenFa(L) = L, Fb(L) = {bb̄}, Fc(L) = {cc̄}.
The setsFa(L) are important for XML-languages and grammars, as illus-
trated by the following lemma:

Lemma 3.3. LetG be an XML-grammar overA∪Ā generating a language
L,withnonterminalsXa, fora ∈ A. Foreacha ∈ A, the languagegenerated
byXa is the set of factors of words inL that are Dyck primes starting with
the lettera, that is

LG(Xa) = Fa(L) .

Proof. SetT = A ∪ Ā. Consider first a wordw ∈ LG(Xa). Clearly,w is
in Da. Moreover, since the grammar is reduced, there are wordsg, d in T ∗

such thatX ∗−→ gXad, whereX is the axiom ofG. Thusw is a factor ofL.
Conversely, consider a wordw ∈ Fa(L) for some lettera, let g, d be a

words such thatgwd ∈ L. Due to the special form of an XML-grammar,
any lettera can only be generated by a production with non-terminalXa.
Thus, a left derivationX ∗−→ gwd factorizes into

X
k−→ gXaβ

∗−→ gwd (1)
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for some wordβ, wherek is the number of letters ing that are inA. Next

gXaβ
∗−→ gw′β ∗−→ gwd (2)

with Xa
∗−→w′ andw′ ∈ Da. None ofw andw′ can be a proper prefix of

the other, becauseD is bifix. Thusw′ = w. This shows thatw is inLG(Xa)
and proves thatFa = LG(Xa).

Corollary 3.4. For any XML-languageL ⊂ Da, one hasFa(L) = L.

Letw be a Dyck prime inDa. It has a unique factorization

w = aua1ua2 · · ·uan ā

with uai ∈ Dai for i = 1, . . . , n. Thetraceof the wordw is defined to be
the worda1a2 · · · an ∈ A∗. It is the empty word ifn = 0, i. e. if w = aā.

If L is any subset ofD, andw ∈ L, then the wordsuai are inFai(L).
Thesurfaceof a ∈ A in L is the setSa(L) of all traces of words inFa(L).

Example 3.5.For the language of Example 3.1, the surfaces are easily seen
to beSa = {b} andSb = {b, ε}.
Example 3.6.Thesurfacesof the languageofExample 3.2 areSa = {bncn |
n ≥ 1} andSb = Sc = {ε}.
It is easily seen that the surfaces of the set of Dyck primes overA are all
equal toA∗.

Surfaces are useful for defining XML-grammars. LetS = {Sa | a ∈ A}
be a family of regular languages overA. We define an XML-grammarG
associated toS called thestandard grammarof S as follows. The set of
variables isV = {Xa | a ∈ A}. For each lettera, we set

Ra = {Xa1Xa2 · · ·Xan | a1a2 · · · an ∈ Sa}
and we define the productions to be

Xa → amā, m ∈ Ra

for all a ∈ A. SinceSa is regular, the setsRa are regular over the alphabet
V . By construction, the surface of the language generated by a variableXa

isSa, that isSa(LG(Xa)) = Sa. For any choice of the axiom, the grammar
is an XML-grammar.

Example 3.7.The standard grammar for the surfaces of Example 3.1 is

Xa → aXbā
Xb → b(Xb|ε)b̄

The language generated byXa is {abnb̄nā | n ≥ 1} and isnot the language
of Example 3.1.



656 J. Berstel, L. Boasson

This construction is in somesense the onlyway to buildXML-grammars,
as shown by the following proposition.

Proposition 3.8. For each XML-languageL, there exists exactly one re-
duced XML-grammar generatingL, up to renaming of the variables.

Proof. LetG be an XML-grammar generatingL, with nonterminalsV =
{Xa | a ∈ A}, andRa = {m ∈ V ∗ | Xa −→ amā} for eacha ∈ A. We
claim that the mapping

Xa1Xa2 · · ·Xan → a1a2 · · · an (∗)

is a bijection fromRa onto the surfaceSa(L) for eacha ∈ A. Since the
surface depends only on the language, this suffices to prove the proposition.
It is clear that(∗) is a bijection fromV ∗ ontoA∗. It remains to show that its
restriction toRa is ontoSa(L).

If
Xa −→ aXa1Xa2 · · ·Xan ā

is a production, thena1a2 · · · an is the trace of some wordu in LG(Xa). By
Lemma 3.3, the wordu is in Fa(L), and thusa1a2 · · · an is in Sa(L).

Conversely, ifa1a2 · · · an is inSa(L), then there is a wordw ∈ Fa(L) =
LG(Xa) such that

w = au1u2 · · ·unā

with ui ∈ Dai . Thus, there is a derivation

Xa −→ amā
∗−→w

in G. Settingm = Y1Y2 · · ·Yk with Y1, . . . , Yk ∈ V , there are words
u′

1, . . . u
′
k such thatYi

∗−→u′
i and

u1 · · ·un = u′
1 · · ·u′

k

However, eachui, u
′
j is a Dyck prime, and since the sets of Dyck primes

are codes, it follows thatn = k andui = u′
i for i = 1, . . . , n. Since the

wordsui are inFai(L), there are derivationsXai

∗−→ui. ThusYi = Xai

andm = Xa1Xa2 · · ·Xan as required.

Remark 3.9.Obviously, Proposition 3.8 is not longer true if entities are
allowed. Indeed, entities may be used to group sets of productions in quite
various manners.

Corollary 3.10. LetL1 andL2 be two XML-languages. ThenL1 ⊂ L2 iff
Sa(L1) ⊂ Sa(L2) for all a in A.
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Proof. The condition is clearly necessary, and by the previous construction,
it is also sufficient.

Proposition 3.11. The inclusion and the equality of XML-languages is de-
cidable.

Proof. This follows directly from Corollary 3.10.
In particular, it is decidable if an XML-languageL is empty. Similarly,

it is decidable ifL = Da.
XML-languages are not closed under union and difference. This will

be an easy consequence of the characterizations given in the next section
(Example 4.10).

The following proposition is interesting from a practical point of view.
Indeed, it shows that a stepwise refinement technique can be used in order
to design a DTD that satisfies or at least approaches a given specification.

Proposition 3.12. The intersection of two XML-languages is an XML-lan-
guage.

Proof. Let L andL′ be XML-languages generated by XML-grammarsG
andG′. We define a new grammarG×G′with set of variablesV × V ′ and
productions

(X,X ′) −→ a(X1, X
′
1) · · · (Xn, X

′
n)ā

if and only if X −→ aX1 · · ·Xnā in G and X ′ −→ aX ′
1

· · ·X ′
nā. The inclusionLG×G′(X,X ′) ⊂ LG(X) ∩LG′(X ′) is clear. Con-

versely, assumew ∈ LG(X) ∩ LG′(X ′). ThenX −→ aX1 · · ·Xnā
∗−→w

in G andX ′ −→ aX ′
1 · · ·X ′

n′ ā
∗−→w in G′. Thusw = au1 · · ·unā =

au′
1 · · ·u′

n′ ā, whereXi
∗−→ui andX ′

i
∗−→u′

i. Since the set of Dyck primes
is a code, one hasn = n′ andui = u′

i. Thusui ∈ LG(Xi) ∩ LG(X ′
i) and

the result follows by induction.

4 Two characterizations of XML-languages

In this section, we give two characterizations of XML-language. The first
(Theorem 4.2) is based on surfaces. It states that, for a given set of regular
surfaces, there is only one XML-language with these surfaces, and that it
is the maximal language in this family. The second characterization (Theo-
rem 4.4) is syntactical and based on the notion of context.

Let S = {Sa | a ∈ A} be a family of regular languages, and fix a letter
a0 in A. DefineL(S) to be the family of languagesL ⊂ Da0 such that
Sa(L) = Sa for all a in A. Clearly, any union of sets inL(S) is still in
L(S), so there is a maximal language (for set inclusion) in this family. The
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standardlanguage associated toS is the language generated byXa0 in the
standard grammar ofS.
Lemma 4.1. LetL be the standard language ofS. For any languageM in
L(S), one hasFa0(M) ⊂ L.

Proof. LetG be the standard grammar ofS. ThenL = LG(Xa0). We show
thatFa(M) ⊂ LG(Xa) for a ∈ A by induction on the length of words. Let
w = auā ∈ Fa(M). If u is the empty word, then the empty word is inSa,
and the wordaā is inLG(Xa). Otherwise,u has a (unique) factorization

u = ua1 · · ·uan

with uai ∈ Fai(M) for i = 1, . . . , n. By induction hypothesis,uai ∈
LG(Xai) for i = 1, . . . , n. Sincea1 · · · an ∈ Sa, there is a production
Xa → aXa1 · · ·Xan ā in the grammar. Thusw is in LG(Xa). The result
follows.

Theorem 4.2. The standard language associated toS for the lettera0 is
the maximal element of the familyL(S). This language is XML, and it is the
only XML-language in the familyL(S).

Proof. The first part is just Lemma4.1 and the second part is Proposition 3.8.

Example 4.3.The standard language associated to the setsSa = {b} and
Sb = {b, ε} for the lettera of Example 3.1 is the language{abnb̄nā | n ≥ 1}
of Example 3.7. Thus, the language of Example 3.1 is not XML.

We now give amore syntactic characterization of XML-languages. For this,
we define the set ofcontextsin L of a wordw as the setCL(w) of pairs of
words(x, y) such thatxwy ∈ L.

Theorem 4.4. A languageL overA∪ Ā is an XML-language if and only if
(i) L ⊂ Dα for someα ∈ A,
(ii) for all a ∈ A andw,w′ ∈ Fa(L), one hasCL(w) = CL(w′),
(iii) the setSa(L) is regular for alla ∈ A.

Before giving the proof, let us compute one example.

Example 4.5.Consider the languageL generated by the grammar

S → aTT ā
T → aTT ā | bb̄

with axiomS. This grammar is not XML. Clearly,L ⊂ Da. Also,Fa(L) =
L. There is a unique setCL(w) for all w ∈ L, because at any place in a
word inL, a factorw inL can be replaced by another factorw′ inL. Finally,
Sa(L) = (a ∪ b)2 andSb(L) = {ε}. The theorem claims that there is an
XML-grammar generatingL.
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Proof. We writeFa,Sa andC(w), with the languageL understood.We first
show that the conditions are sufficient.

Let G be the standard XML-grammar defined by the familySa and
with axiomXα. We prove firstLG(Xa) = Fa for a ∈ A. By Lemma 4.1,
Fa ⊂ LG(Xa). Next, we prove the inclusionFa ⊃ LG(Xa) by induction on
the derivation lengthk. AssumeXa

k−→w. Thenw = auā for some word
u. If k = 1, then the empty word is inSa, which means thataā is in Fa. If
k > 1, then the derivation factorizes in

Xa → aXa1 · · ·Xan ā
k−1−→ auā

for some productionXa → aXa1 · · ·Xan ā. Thus there is a factorization
u = u1 · · ·un such thatui ∈ LG(Xai) for i = 1, . . . , n. By induction
hypothesis,ui ∈ Fai for i = 1, . . . , n. Moreover, the worda1 · · · an is in
the surfaceSa. This means that there exist wordsu′

i in Fai such that the
wordw′ = au′

1 · · ·u′
nā is in Fa. Let g, d be two words such thatgw′d is in

the languageL. Then the pair(ga, u′
2 · · ·u′

nād) is a context for the wordu
′
1.

By (ii), it is also a context foru1. Thusau1u
′
2 · · ·u′

nā is inFa. Proceeding in
this way, one strips off all primes in theu’s, and eventuallyau1u2 · · ·unā is
in Fa. Thusw is inFa. This proves the inclusion and therefore the equality.
Finally, by Corollary 3.4, one hasLG(Xα) = L, and consequently the
conditions are sufficient.

We now show that the conditions are necessary. LetG be an XML-
grammar generatingL, with productionsXa → aRaā and axiomXα.
Clearly,L is a subset ofDα. Next, consider wordsw,w′ ∈ Fa for some
lettera, and let(g, d) be a context forw. Thusgwd ∈ L. By Lemma 3.3,
we know thatFa = LG(Xa). Thus, there exist derivationsXa

∗−→w and
Xa

∗−→w′. Substituting the second to the first in

Xα
∗−→ gXad

∗−→ gwd (3)

shows that(g, d) is also a context forw′. This proves condition (ii).
Finally, sinceRa is a regular set, the setSa is also regular.

Example 4.6.Consider the languageL of Example 4.5. The construction
of the proof of the theorem gives the XML-grammar

Xa → a(Xa|Xb)(Xa|Xb)ā
Xb → bb̄

Example 4.7.The language

{a(bb̄)n(cc̄)nā | n ≥ 1}
already given above is not XML since the surface ofa is the nonregular set
Sa = {bncn | n ≥ 1}. This is the formalization of the example given in the
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introduction, if the tagb means bold paragraphs, and the tagc means italic
paragraphs.

Example 4.8.In order to formalize the example of well-formed mathemat-
ical papers given in the introduction, consider the languageL = aHā,
whereH is the language obtained from the Dyck language over a single
letterb by replacing everyb by tt̄ and everȳb by pp̄. Here, the letterst and
t̄ stand for<theorem> and</theorem> andp andp̄ for <proof> and
</proof> respectively. If one renamest asc andp asc̄, then the surface
of a in the languageL is the Dyck language overc, and it is not regular.

Example 4.9.Consider again the language

L = {ab2nb̄2nā | n ≥ 1}
of Example 3.1. FirstCL(bb̄) = {(ab2n−1, b̄2n−1ā) | n ≥ 1}. Next
CL(b2b̄2) = {(ab2n, b̄2nā) | n ≥ 0}. Thus there are factors with distinct
contexts. This shows again that the language is not XML.

Finally, we give an example showing that XML-languages are closed
neither under union nor under difference.

Example 4.10.Consider the setscLc̄ andcMc̄, whereL = D∗
{a,b} is the

set of products of Dyck primes over{a, b}, andM = D∗
{a,d} is the set of

products of Dyck primes over{a, d}. Each of these two languages is XML.
However, the unionH = L∪M is not. Indeed, thewordscabb̄āc̄andcaādd̄c̄
are both inH. The pair(c, dd̄c̄) is in the context ofaā, so it has to be in
the context ofabb̄ā, but the wordcabb̄ādd̄c̄ is not inH. Given a language
L ⊂ Da, write L̄ = Da − L for the relative complementation. Closure
under difference would imply closure under relative complementation, and
this would imply closure under union becauseL ∪ M = L̄ ∩ M̄ . Thus
XML-languages are not closed under difference.

5 Decision problems

As usual, we assume that languages are given in an effective way, in general
by a grammar or an XML-grammar, according to the assumption of the
statement.

SomepropertiesofXML-languages, suchas inclusionorequality (Propo-
sition 3.11) are easily seen to be decidable because they reduce to decidable
properties of regular sets. The problem is different if one asks whether a
context-free grammar generates an XML-language. We have already seen
in Example 4.5 that there exist context-free grammars that generate XML-
languages without being XML-grammars. We shall prove later (Proposi-
tion 5.3) that it is undecidable whether a context-free grammar generates
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an XML-language. On the contrary, and in relation with Theorem 4.4, it is
interesting to note that it is decidable whether a context-free language is a
subset of the set of Dyck primes. The following proposition and its proof
are an extension of a result by Knuth [6] who proved it for a single letter
alphabetA.

Proposition 5.1. Given a context-free languageL over the alphabetA∪ Ā,
it is decidable whetherL ⊂ D∗

A.

We first introduce some notation. TheDyck reductionis the semi-Thue
reduction defined by the rulesaā → ε for a ∈ A. A word is reducedor
irreducibleif it cannot be further reduced, that is if it has no factor of the form
aā. Every wordw reduces to a unique irreducible word denotedρ(w). We
also writew ≡ w′ whenρ(w) = ρ(w′). If w is a factor of someDyck prime,
thenρ(w) has no factor of the formab̄, for a, b ∈ A. Thusρ(w) ∈ Ā∗A∗.
In fact,ρ(F (DA)) = Ā∗A∗.

Proof of Proposition 5.1.Let G = (V, P, S) be a (reduced) context-free
grammar (in the usual sense, that is with a finite number of productions)
overT = A ∪ Ā, with axiomS ∈ V , generating the languageL. For each
variableX, we set

Irr(X) = {ρ(w) | X ∗−→w,w ∈ T ∗}

This is the set of reducedwordsof all wordsgeneratedbyX. Testingwhether
L is a subset ofD∗

A is equivalent to testing whetherIrr(S) = {ε}.
First, we observe that ifIrr(S) = {ε}, thenIrr(X) is finite for each

variableX. Indeed, consider any derivationS ∗−→ gXd with g, d ∈ T ∗.
Any u ∈ Irr(X) is of the formu = x̄y, for x, y ∈ A∗. Sinceρ(gud) =
ρ(ρ(g)uρ(d)) = ε, the wordx is a suffix ofρ(g), andȳ is a prefix ofρ(d).
Thus|u| ≤ |ρ(g)| + |ρ(d)|, showing that the length of the words inIrr(X)
is bounded. This proves the claim.

A preliminary step in the decision procedure is to compute a candidate to
the upper bound on the length of words inIrr(X). To do this, one considers
any derivationS ∗−→ gXd

∗−→ gudwith gud ∈ T ∗, and one computes&X =
|ρ(g)| + |ρ(d)|. As just mentioned before, it is necessary that every reduced
word in Irr(X) has length at most&X .

We now inductively construct setsIrrk(X) as follows. We start with
the setsIrr0(X) = ∅, for X ∈ V , and we obtain the sets in the next step
by substituting irreducible sets of the current step in the variables of the
right-hand sides of productions. Formally,

Irrk+1(X) = Irrk(X) ∪
⋃

X→α

ρ(σk(α))
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whereσk is the substitution that replaces each variableY by the setIrrk(Y ).
This construction is borrowed from [3], with an additional use of the reduc-
tion mapρ at each step. It follows thatIrr(X) =

⋃
k≥0 Irrk(X)

For eachk, one computesIrrk(X) for allX ∈ V , and then, one checks
whetherIrrk(X) = Irrk−1(X) for all X. If so, the computation stops. The
languageL is a subset ofDA if and only if Irrk(S) = {ε}. If Irrk(X ′) �=
Irrk−1(X ′) for someX ′, then one checkswhether all words inIrrk(X) have
length smaller than&X , for allX. If so, then one increasesk. If the answer
is negative, thenL is not a subset ofDA.

Since the setsIrrk(X) are finite, and the length of its elements must be
bounded by&X in order to continue, one eventually reaches a step where the
computation stops.

Corollary 5.2. Given a context-free languageL over the alphabetA ∪ Ā
and a lettera in A, it is decidable whetherL ⊂ Da.

Proof. It is decidable whetherL ⊂ a(A∪ Ā)∗ā (for instance by computing
the set of first (last) letters of words inL. If this inclusion holds, then one
effectively computes the languageL′ = a−1Lā−1 obtained by removing
the initial a and the final̄a in all words ofL. It follows by the structure of
the Dyck set thatL ⊂ Da if and only ifL′ ⊂ D∗.

The proof of the following proposition uses standard arguments.

Proposition 5.3. It is undecidable whether a context-free language is an
XML-language.

Proof. Consider the Post Correspondence Problem (PCP) for two sets of
nonempty wordsU = {u1, . . . , un} andV = {v1, . . . , vn} over the alpha-
betC = {a, b}. Consider a new alphabetB = {a1, . . . , an} and define the
setsLU andLV by

LU={ai1 · · · aikh | h �=uik · · ·ui1}, LV ={ai1 · · · aikh | h �=vik · · · vi1}
wherek > 0 andh ranges overC∗. Recall that these are context-free, and
that the setL = LU ∪ LV is regular iffL = B+C∗. This holds iff the PCP
has no solution.

SetA = {a1, . . . , an, a, b, c}, anddefineamappinĝw fromA∗ to(A∪Ā)
by mapping each letterd to dd̄.

Consider wordŝu1, . . . , ûn, v̂1, . . . , v̂n in {aā, bb̄}+ and consider the
languages

L̂U = {ai1 āi1 · · · aik āik ĥ | h �= ûik · · · ûi1}
and

L̂V = {ai1 āi1 · · · aik āik ĥ | h �= v̂ik · · · v̂i1}
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SetL̂ = c(L̂U ∪ L̂V )c̄. The surface ofc in L̂ isSc(L̂) = LU ∪LV . If L̂ is an
XML-language, thenLU ∪LV is regular which in turn implies that the PCP
has no solution. Conversely, if the PCP has no solution,LU ∪LV is regular
which implies thatLU ∪ LV = B+C∗, which implies that̂L = cB̂+Ĉ∗ĉ,
showing that̂L is an XML-language.

Corollary 5.4. Given a context-free subset of the Dyck set, it is undecidable
whether its surfaces are regular.

Proof. With the notation of the proof of Proposition 5.3, the surfaceSc(L̂)
of the languagêL is the languageL, andL is regular iff the associated PCP
has no solution.

Despite the fact that regularity of surfaces is undecidable, it appears that
finiteness of surfacesisdecidable. This is themain result of the next section.

6 Finite surfaces

There are several reasons to consider finite surfaces. First, the associated
XML-grammar is then a context-free grammar in the strict sense, that is
with a finite number of productions for each nonterminal.

Second, the question arises quite naturally within the decidability area.
Indeed, we have seen that it is undecidable whether a context-free language
is an XML-language. This is due basically to the fact that regularity of
surfaces is undecidable. On the other side, itisdecidable whether a context-
free language is contained in a Dyck language, and we will prove that it is
also decidable whether the surfaces are finite. So, the basic undecidability
result is the regularity of surfaces.

Finally, XML-grammars with finite surfaces are very close to families
of grammars that were studied a long time ago. They will be considered in
the concluding section.

Theorem 6.1.Given a context-free languageL that is a subset of a set of
Dyck primes, it is decidable whetherL has all its surfaces finite.

Corollary 6.2. Given a context-free languageL that is a subset of a set
of Dyck primes, it is decidable whetherL is a XML-language with finite
surfaces.

In the rest of this section, we consider a reduced context-free grammar
G with nonterminal alphabetV , and terminal alphabetT = A ∪ Ā. The
languageL generated byG is supposed to be a subset of some setDα of
Dyck primes. Recall thatD =

⋃
a∈ADa. If N is an integer such thatF (L)

is contained inD(N) = ε∪D∪D2 ∪ · · · ∪DN , we say thatL hasbounded
width.



664 J. Berstel, L. Boasson

First, observe thatL has finite surfaces iff it has bounded width. Indeed,
if the surfaceSa(L) is infinite for somea ∈ A, then there are words of the
form au1 · · ·unā in F (L) for infinitely many integersn, and clearlyF (L)
is not contained in anyD(N). Conversely, ifu1 · · ·un ∈ F (L), then there
are wordsw,w′ ∈ D∗ such thatawu1 · · ·unw

′ā ∈ F (L). But then the trace
of this word has length at leastn. Thus ifF (L) is not contained inD(N), at
least one surface is infinite.

For the proof of the theorem, we investigate iterating pairs inG. We start
with a lemma of independent interest.

Lemma 6.3. If X +−→ gXd for some words ing, d ∈ (A ∪ Ā)∗, then there
exist wordsx, y, p, q ∈ A∗ such that

ρ(g) = x̄px, ρ(d) = ȳq̄y

and moreoverp andq are conjugate words.

Proof. Thewordsg anddare factorsofD. Thus, thereexistwordsx, y, z, t ∈
A∗ such thatg ≡ x̄z, d ≡ t̄y. There is a wordv such thatgnvdn is a factor
of D for eachn ≥ 0. Fromg2vd2 ≡ x̄zx̄zvt̄yt̄y, one gets thatx is a suffix
of z or z is a suffix ofx, and similarly fort andy. If z is a suffix ofx, set
x = pz. But thenz̄p̄n is a prefix ofρ(gnvdn) for all n, contradicting the
fact thatIrr(X) is finite. Thusx is a suffix ofz and similarlyy is a suffix
of t. Setz = px andt = qy. Thenρ(g) = x̄px andρ(d) = ȳq̄y. Since
gnvdn ≡ x̄pnxvȳq̄ny andIrr(X) is finite, one has|p| = |q| and moreover
p is a factor ofq2.

A pair (g, d) such thatX +−→ gXd is a lifting pair if the wordp in
Lemma 6.3 is nonempty, it is aflat pair if p = ε.

Lemma 6.4. If X +−→ g1Xd1 or X +−→ g2Xd2 is a lifting pair, then the

compound pairX +−→ g1g2Xd2d1 is a lifting pair.

Proof. According to Lemma 6.3,g1 ≡ x̄1p1x1 andg2 ≡ x̄2p2x2. Assume
the compound pair is flat. Then̄x1p1x1x̄2p2x2 ≡ z̄z for somewordz ∈ A∗.
Thus the number of barred letters is the same as the number of unbarred
letters at both sides. This implies thatp1 andp2 are the empty word.

Lemma 6.5. The languageL has bounded width iffG has no flat pair.

Proof. If there is a flat pair(g, d) in G, thenL has an infinite surface.
Indeed,ugnvdnw ∈ L for all n and for someu, v, and sinceg ≡ x̄x, there
is a conjugate ofg inD. Thusgn has a factor inDn−1, andL has unbounded
width.
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Conversely, assume thatL has unboundedwidth. LetK be themaximum
of the lengths of the right-hand sides of the productions inG. Letm be an
integer that is strictly greater than the maximum of the length of the words
in the (finite) setsIrr(X) forX ∈ V . Consider a wordzu1u2 · · ·uNz

′ ∈ L
with u1, . . . , uN ∈ D, for some large integerN to be fixed later. In a deriva-
tion tree for this word, letX0 be the deepest node such that the tree rooted at
X0 generates a word containing the factoru1u2 · · ·uN . The production ap-
plied at that node has the formX → Y1 · · ·Yk with Y1, . . . , Yk ∈ V ∪T and
k ≤ K. By the pigeon-hole principle, at least one ofY1, . . . , Yk generates a
word containing a factor that is a product of at leastN/k − 1 ≥ N/K − 1
consecutiveui’s. Denote this nonterminalX1. If N is large enough, one con-
structs a sequenceX0, X1, . . . , Xh of nonterminals, and ifh ≥ m ·CardV ,
there are at leastm of these variables that are the same. A straightforward
computation shows thatN ≥ K +K2 + · · ·Km· Card V is convenient. We
get pairs

Y
∗−→ s1w1p1Y d1

Y
∗−→ s2w2p2Y d2

· · ·
Y

∗−→ smwmpmY dm

where each ofw1, . . . , wm is in D∗, thesi andpi are suffixes (resp. pre-
fixes) of words inD, andp1s2, p2s3, . . . , pm−1sm are Dyck primes. For
eachi, definexi ∈ A∗ by settingx̄i = ρ(si). Fromρ(pisi+1) = ε, it fol-
lows thatρ(pi) = xi+1. Thussiwipi ≡ x̄ixi+1. In view of Lemma 6.3,
there are wordsyi ∈ A∗ such thatxi+1 = yi+1xi for i = 1, . . . ,m − 1,
and eachsiwipi is equivalent tōxiyi+1xi, which in turn is equivalent to
x̄1ȳ2 · · · ȳiyi+1yi · · · y2x1. All x̄1ȳ2 · · · ȳi are prefixes of words inIrr(Y ),
and since this set is finite, one of theyi is the empty word because of the
choice ofm. This shows that one of the pairs is flat.

We now need to prove that it is decidable whether there exists a flat pair.

Lemma 6.6. Assume thatX +−→ &1Y r1, Y
+−→ gY d andY +−→ &2Xr2. If

the pairX +−→ &1g&2Xr2dr1 is flat, then the pairY
+−→ gY d is flat.

Proof. According toLemma6.3,&1g&2 ≡ z̄z andg ≡ x̄px for somez, x, p ∈
A∗. Thus,&1g&2 has the same number of barred and of unbarred letters,
and g has more (or as many) unbarred letters than barred letters. Next,
X

+−→ &1&2Xr2r1 is an iterating pair, and therefore&1&2 has more unbarred
letters than barred letters. Thusg has as many unbarred letters as it has
barred letters. It follows thatp is the empty word.

Proof of Theorem 6.1. In view of Lemma 6.5, it suffices to check whether
the grammar has a flat pair. For this, consider the derivation tree associated
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to a pairX +−→ gXd. We call this tree (and the pair)elementaryif there
is no variable that is repeated on the path from the rootX to the leafX.
Lemmas 6.4 and 6.6 shows that if there is a flat pair, then there is also an
elementary flat pair.

To each elementary pair, we associate a skeleton defined as follow. Con-
sider the pathX = X0, X1, . . . , Xn = X from the rootX to the leafX.
Each of theXi+1 is in the right-hand side of some productionXi → ωi.
The skeleton is the derivation obtained by composing these productions. It
results in a derivationX +−→UXU ′, for someU,U ′ ∈ (V ∪ T )∗. There
are only a finite number of skeletons because each skeleton is built from an
elementary pair.

ForeachskeletonX +−→UXU ′,weconsider thesetofpairsX +−→uXu′
for all u ∈ Irr(U), u′ ∈ Irr(U ′) (Irr(U) denotes the set of reduced words of
words deriving fromU ). Since allIrr(U) is finite, the set of pairs obtained
is finite. It suffices to check whether there is a flat pair among them.

As a final remark, we consider grammars and languages similar toparen-
thesis grammarsand languages studied by McNaughton [9] and by
Knuth [6]. Wewill saymore about them in Sect. 8. Apolyparenthesis gram-
mar is a grammar with a terminal alphabetT = A ∪ Ā, and where every
production is of the formX −→ amā, with m ∈ V ∗, a ∈ A, ā ∈ Ā. A
polyparenthesis language is a language that has a polyparenthesis gram-
mar. Thus, polyparenthesis grammars differ from XML-grammars in two
aspects: there are only finitely many productions, and the non-terminal need
not to be unique for each pair(a, ā) of letters.

Proof of Corollary 6.2. LetG be a context-free grammarG overA ∪ Ā
generatingL = L(G). It is decidable whetherL ⊂ Da for some letter
a ∈ A (Corollary 5.2). If this holds, we check whetherL has finite surfaces.
This is decidable (Theorem 6.1). If this holds, we proceed further. A gen-
eralization of an argument of Knuth [6] shows that it is decidable whether
L is a polyparenthesis language, and it is possible to effectively compute a
polyparenthesis grammarG′ for it. On the other hand, letG′′ be the stan-
dard grammar obtained from the (finite) surfaces. The languageL is XML
if and only ifL = L(G′′), thus if and only ifL(G′) = L(G′′). This equality
is decidable. Indeed, any XML-grammar with finite set of productions is
polyparenthetic, and equality of polyparenthesis grammars is decidable [9].

7 Regular XML languages

Most of the XML languages encountered in practice are in fact regular.
Therefore, it is interesting to investigate this case. The main result is that,
contrary to the general case, it is decidable whether a regular language
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is XML. Moreover, XML-grammars generating regular languages will be
shown to have a special form: they aresequentialin the sense that its nonter-
minals can be ordered in such away that the nonterminal in the lefthand side
of a production is always strictly less than the nonterminals in the righthand
side. The main result of this section is

Theorem 7.1. LetK ⊂ DA be a regular language. It is decidable whether
K is an XML-language.

One obtains the following structure theorem.

Proposition 7.2. LetK be an XML-language, generated by an XML-gram-
marG. ThenK is regular if and only if the grammarG is sequential.

We shall give two proofs of Theorem 7.1, based on the two character-
izations of XML-languages given above (Theorem 4.2 and Theorem 4.4).
Both proofs require the effective computation of surfaces.

Lemma 7.3. LetK ⊂ DA be a regular language. The surfaces ofK are
effectively computable regular sets.

Proof. LetA be a finite automaton with no useless states recognizingK.
For each pair(p, q) of states, letKp,q be the regular language composed of
the labels of paths starting inp and ending inq. A pair (p, q) of states is
good for the lettera in A, if Kp,q ∩ Da �= ∅. This property is decidable.
A pair is good if it is good for some letter. LetG be the set of good pairs,
considered as a new alphabet, and consider the setM(a) overG composed
of all words

(p0, p1)(p1, p2) · · · (pn−1, pn)

such that there is an edge ending inp0 in the automatonA and labeled bya
and there is an edge starting inpn labeled bȳa. Clearly,M(a) is a (local)
regular language overG.

Consider now the finite substitutionf fromG∗ intoA∗ defined by

f(p, q) = {a ∈ A | (p, q) is a-good}
Thenf(M(a)) is the surface ofa in K, that isf(M(a)) = Sa(K). This
proves the lemma.

First proof of Theorem 7.1.We use Theorem 4.2. LetK be a regular subset
ofDA. It is decidablewhetherK ⊂ Da0 for some lettera0. If this holds, then
by Lemma 7.3, the familyS of surfacesSa(K) is effectively computable.
From this family, one constructs the standard languageL associated toS.
This is effective. We know thatK ⊂ L, and consequentlyK is an XML-
language if and only ifL ⊂ K or equivalently if and only ifL ∩ K ′ = ∅,
whereK ′ = (A ∪ Ā)∗ \K is the complement ofK. This is decidable.
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Second proof of Theorem 7.1.We use Theorem 4.4. LetA be the minimal
finite automaton with no useless states recognizingK, with initial statei
and set of final statesT . For each pair(p, q) of states, letKp,q be the regular
language composed of the labels of paths starting inp and ending inq. For
each lettera in A, the setFa,p,q = Kp,q ∩ Da is the set of well-formed
factors ofK starting with the lettera that are labels of paths fromp to q.
Clearly,Fa,p,q ⊂ Fa(K), for all p, q. We show that all words inFa(K) have
same context if and only ifFa,p,q = Fa(K), for all p, q such thatFa,p,q �= ∅.

Assume first that all words inFa(K) have same context. Letp, q such
thatFa,p,q �= ∅, and consider a wordw ∈ Fa,p,q. There exist wordsx and
y such thati · x = p, andq · y ∈ T . The pair(x, y) is a context forw. Let
w′ be a word inFa(K). Then there is a successful path with labelxw′y.
Thus there is a stateq′ such thatp · w′ = q′ andq′ · y ∈ T . If q �= q′, there
is a wordz separatingq andq′, becauseA is minimal. Thusq · z ∈ T and
q′ · z /∈ T or vice versa. However, this means that(x, z) is a context forw
and is not a context forw′ or vice-versa. Thusq = q′ andw′ ∈ Fa,p,q. This
prove thatFa(K) ⊂ Fa,p,q.

Conversely, assume thatFa,p,q = Fa(K), for allp, q such thatFa,p,q �= ∅.
The contexts of any wordw ∈ Fa(K) is the union of setsKi,p ×Kq,t over
all pairs(p, q) with Fa,p,q �= ∅. Thus all words have same contexts.

It follows from the preceding claim thatK is a XML-language if and
only if Fa,p,q = Fa,p′,q′ for all pairs for which the languages are not empty.
Although equality of context-free languages in not decidable in general, this
particular equality is decidable becauseFa,p,q = Fa,p′,q′ iff

Da ∩ (Kp,q \Kp′,q′ ∪Kp′,q′ \Kp,q) = ∅
For the proof of Proposition 7.2 we use the following notation and result.

For any wordw ∈ (A ∪ Ā)∗, theweightof w is the number|w|A − |w|Ā.
Here,|u|A is the number of occurrences of letters inA in the wordu. The
heightof w is the number

h(w) = max{|u|A − |u|Ā | uv = w}
that is the maximum of the weights of its prefixes. The height of a language
is the maximum of the heights of its words. This is finite or infinite.

Proposition 7.4. LetK ⊂ DA be a language overA ∪ Ā. If K is regular,
then it has finite height.

Proof. This result is folklore. We just sketch its proof. Given an automaton
recognizingK, the weight|u|A − |u|Ā of the labelu of a circuit must be
zero for every circuit, by the pumping lemma. Thus, the height ofK is the
maximum of the heights of the labels on all acyclic successful paths in the
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automaton augmented by the sum of the heights of all its simple cycles.
Since the automaton is finite, this number is finite.

Proof of Proposition 7.2.Consider an XML-grammarG, and construct a
graph with an edge(Xa, Xb) wheneverXb appears in the righthand side
of a production withXa as lefthand side. Nonterminals can be ordered to
fulfill the condition of a sequential grammar if and only if the graph has no
cycle. If the graph has no cycle, then the language generated by a variable
of index i is a regular expression of languages of higher indices. Thus,
the language generated by the grammarG is regular. On the contrary, if
there is a cycle through some variableXa, then there is a derivation of the
formXa

∗−→ auXavā for some wordsu, v. By iterating this derivation, one
constructs words of arbitrary height inK, and soK is not regular.

Note that the languageFa(K) of well-formed factors is regular whenK
is a regular XML-language, becauseFa(K) is the language generated by
the nonterminalXa in a sequential grammar.

8 Historical note

There exist several families of context-free grammars related to XML-gram-
mars that have been studied in the past. In the sequel, the alphabet of non-
terminals is denoted byV .

Parenthesis grammars

These grammars have been studied in particular by McNaughton [9] and
by Knuth [6]. Aparenthesis grammaris a grammar with terminal alphabet
T = B∪{a, ā}, andwhere every production is of the formX −→ amā, with
m ∈ (B ∪ V )∗. A parenthesis grammar ispure if B = ∅. In a parenthesis
grammar, every derivation step is marked, but there is only one kind of tag.

Bracketed grammars

These were investigated by Ginsburg and Harrison in [4]. The terminal
alphabet is of the formT = A ∪ B̄ ∪ C and productions are of the form
X −→ amb̄, withm ∈ (V ∪C)∗. Moreover, there is a bijection betweenA
and the set of productions. Thus, in a bracketed grammar, every derivation
step is marked, and the opening tag identifies the production that is applied
(whereas in an XML-grammar they only give the nonterminal).
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Very simple grammars

These grammarswere introduced byKorenjak andHopcroft [7], and studied
in depth later on. Here, the productions are of the formX −→ am, with
a ∈ A andm ∈ V ∗. In a simple grammar, the pair(a,m) determines the
production, and in a very simple grammar, there is only one production for
eacha in A.

Chomsky-Scḧutzenberger grammars

These grammars are used in the proof of the Chomsky-Schützenberger the-
orem (see e. g. [5]), even if they were never studied for their own. Here the
terminal alphabet is of the formT = A ∪ Ā ∪ B, and the productions are
of the formX −→ amā. Again, there is only one production for each letter
a ∈ A.

XML-grammars differ from all these grammars by the fact that the set
of productions is not necessarily finite, but regular. However, one could
consider a common generalization, by introducingbalanced grammars. In
such a grammar, the terminal alphabet isT = A ∪ Ā ∪B, and productions
are of the formX −→ amā, withm ∈ (V ∪ B)∗. Each of the parenthesis
grammars, bracketed grammars, Chomsky-Schützenberger grammars are
balanced. IfB = ∅, such apure grammar covers XML-grammars with
finite surfaces. If the set of productions of each nonterminal is allowed to
be regular, one gets a new family of grammars with interesting properties.
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