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Abstract. We consider XML documents described by a document type
definition (DTD). An XML-grammar is a formal grammar that captures
the syntactic features of a DTD. We investigate properties of this family of
grammars. We show that every XML-language basically has a unique XML-
grammar. We give two characterizations of languages generated by XML-
grammars, one is set-theoretic, the other is by a kind of saturation property.
We investigate decidability problems and prove that some properties that
are undecidable for general context-free languages become decidable for
XML-languages. We also characterize those XML-grammars that generate
regular XML-languages.

Résurné. Nous consiérons des documents XMlédrits par une @finition

de type de document (DTD). Une grammaire XML est une grammaire
formelle qui retient les aspects syntaxiques d’'une DTD. Naudions les
proprietes de cette famille de grammaires. Nous montrons qu’un langage
XML a essentiellement une seule grammaire XML. Nous donnons deux car-
acérisations des langages engdérsijpar les grammaires XML, la pre@ne

est ensembliste, la dewne est par une progie de saturation. Nous exam-
inons des prol@mes de écision et nous prouvons que certaines p&psi

gui sont indkcidables pour les langages context-fréeégaux deviennent
décidables pour les langages XML. Nous caegisbnsgalement les gram-
maires XML qui engendrent des langages rationnels.
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1 Introduction

XML (eXtensible Markup Language) is aformat recommended by W3C [11]

in order to structure a document. The syntactic part of the language describes
the relative position of pairs of corresponding tags. The description we con-
sider is realized by means of a document type definition (DTD). In addition
to its syntactic part, each tag may also have attributes. If the attributes in
the tags are ignored, a DTD appears to be a special kind of context-free
grammar. The aim of this paper is to study this family of grammars.

One of the consequences will be a better appraisal of the structure of
XML documents. It will also illustrate the kind of limitations that exist in
the power of expression of XML. Consider for instance an XML-document
that consists of a sequence of paragraphs. A first group of paragraphs is
being typeset in bold, a second one in italic. It is not possible to specify, by
a DTD, that in a valid document there are as many paragraphs in bold as in
italic. This is due to the fact that the context-free grammars corresponding
to DTD's are rather restricted.

As another example, assume that, in developing a DTD for mathemati-
cal documents, we require that in a (full) mathematical paper, there are as
many proofs as statements, and moreover that proofs appear always after
statements (in other words, the sequence of occurrences of statements and
proofs is well-balanced). Again, there is no DTD for describing this kind
of requirements. Pursuing in this direction, there is of course a strong anal-
ogy of pairs of tags in an XML document and thegin{object} and
\end{object} construction for environments in Latex. The Latex com-
piler merely checks that the constructs are well-formed, but there is no other
structuring method.

The main results in this paper are two characterizations of XML-langua-
ges. The first (Theorem 4.2) is set-theoretic. It shows that XML-languages
are the biggest languages (with respect to inclusion) in a specific class of
languages. Itrelies on the fact that, for each XML-language, there is only one
XML-grammar that generates it. The second characterization (Theorem 4.4)
is syntactic. It shows that XML-languages have a kind of “saturation prop-
erty”.

As usual, these results can be used to show that some languages cannot
be XML. This means in practice that, in order to achieve some features of
pages, additional nonsyntactic techniques have to be used.

In order to simplify the presentation, we have slightly deviated from the
W3C recommendation in one point that will be detailed later.

The paper is organized as follows. The next section contains the defini-
tion of XML-grammars and their relation to DTD. Section 3 contains some
elementary results, and in particular the proof that there is a unique XML-
grammar for each XML-language. It appears that a new concept plays an
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important role in XML-languages: the notion of surface. The surface of an
opening tag: is the set of sequences of opening tags that are children of

(i. e. the tags immediately underthat may followa in a document before

the closing tagi is reached). The surfaces of an XML-language must be
regular sets, and in fact describe the XML-grammar. The characterization
results are given in Sect. 4. They heavily rely on surfaces, but the second
one also uses the syntactic concept of a context.

Section 5 investigates decision problems. It is shown that it is decidable
whether the language generated by a context-free language is well-formed,
but it is undecidable whether there is an XML-grammar for it. On the con-
trary, itis decidable whether the surfaces of a context-free grammar are finite
(Sect. 6).

Section 7 is concerned with regular XML-languages. It appears indeed
that most XML-languages used in practical applications are regular. We
show that, for a given regular language, it is decidable whether itis an XML-
language, and we give a structural description of regular XML-grammars.

The final section is a historical note. Indeed, several species of context-
free grammars investigated in the sixties, such as parenthesis grammars or
bracketed grammars are strongly related to XML-grammars. These relation-
ships are sketched.

The approach we choose in this paper is word-oriented. Clearly, a tree-
oriented approach is also possible due to the usual connection between trees
and Dyck words. This has been adopted in [10].

A more powerful model for XML documents is XML Schema [12]. A
comparison of various description models is given in [8].

A preliminary version of this paper appears in the proceeding of the
MFCS 2000 conference [1].

2 Notation

An XML document [11] is composed of text and of tags. The tags are
opening or closing. Each opening tag has a unique associated closing tag,
and conversely. There are also tags called empty tags, and which are both
opening and closing. These tags may always be replaced by an opening
tag immediately followed by its closing tag. We do so here, and therefore
assume that there are no empty tags.

Let A be a set of opening tags, and létbe the set of corresponding
closing tags. Since we are interested in syntactic structure, we ignore any
text. Thus, an XML document (again with any attribute ignored) is a word
over the alphabel = A U A.

A documentz is well-formedif the word z is a correctly parenthesized
word, that is ifz is in the set of Dyck primes ovet U A. Observe that the
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word is a prime, soitis not a product of two well parenthesized words. Also,
it is not the empty word.

An XML- grammaris composed of a terminal alphati®ét= AU 4, of a
set of variabled” in one-to-one correspondence wih of a distinguished
variable called thaxiomand, for each letter € A of aregularsek, Cc V*
defining the (possibly infinite) set of productions

X, — ama, meR,, acA

We also write for short
X, — aR,a

as is done in DTD’s. An XMUanguageis a language generated by some
XML-grammar.

In the W3C recommendation, an additional property is requested: the
regular languageg,, are required to admit deterministicregular expres-
sion. This is not normative [11]. Moreover, given a regular language, this
additional property is decidable [2]. It follows that all results in the sequel
have a straightforward extension to the case where this restriction is added.
Therefore, we ignore it from now on.

It is well-known from formal language theory that non-terminals in a
context-free grammar may have infinite regular (or even context-free) sets of
productions, and that the generated language is still context-free. Thus, any
XML-language is context-free. Moreover, it can be checked that it is even a
deterministiccontext-free language in the sense that there is a deterministic
push-down automaton ([5]) recognizing it.

Example 2.1.The languagga™a™ | n > 0} is a XML-language, generated
by
X —wa(XUe)a

Example 2.2.The language dDyck primesver{a, a} is a XML-language,
generated by
X —waX"a

Example 2.3.The languag® 4 of Dyck primesverT’ = AUA is generated
by the grammar
X =D ueaXa

X, — aX*a, a€A
It is not an XML-language. However, eachy, in this grammar generates
an XML-language, which i$ N aT™a.

Inthe sequel, all grammars are assumed t@bacedthat is, every non-
terminal is accessible from the axiom, and every non-terminal produces at
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least one terminal word. Note that for a regular (or even a recursive) set of
productions, the reduction procedure is effective.

Given a gramma¢; over a terminal alphab&t and a nonterminak” we
denote by

Lo(X)={weT"| X S w}
the language generated Byin the grammar.

Remark 2.4.The definition has the following correspondence to the termi-
nology and notation used in the XML community ([11]). The grammar of

a language is called @ocument type definitiofDTD). The axiom of the
grammar is qualifiedOCTYPEand the set of productions associated to

a tag is anELEMENT The syntax of an element implies by construction
the one-to-one correspondence between pairs of tags and non-terminals of
the grammar. Indeed, an element is composed typaand of acontent
model The type is merely the tag name and the content model is a regular
expression for the set of right-hand sides of the productions for this tag. For
instance, the grammar

S — a(S|T)(S|T)a

T —bT™*b

with axiom .S corresponds to

<IDOCTYPE a |
<IELEMENT a ((alb),(a]b)) >
<IELEMENT b (b)* >

]>

Here,S andT stand for the nonterminal%¥, and X, respectively.

The regular expressions allowed for the content model are of two types:
those called children, and those called mixed [11]. In fact, since we do not
consider text, the mixed expressions are no more special expressions.

In the definition of XML-grammars, we ignoemntities both general and
parameter entities. Indeed, these may be considered as shorthand and are
handled at a lexical level.

The already mentioned restriction to languages having deterministic reg-
ular expressions appears in this context as a support for easy syntactic anal-
ysis.

Remark 2.5.In the recent specification of XML Schemas ([12]), a DTD

is called a schema. The syntax used for defining schemas is XML itself.
Among the most significant enrichment of schema is the use of types. Also
the purely syntactical part of XML schemas is more evolved than that of
DTD’s.
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3 Elementary results

We denote byD, the language dbyck primesstarting with the lettesi. This
is the language generated By, in Example 2.3. We seD 4 = UycaD,,.
This is not an XML-language il has more than one letter. We call; the
set of Dyck primes oveA and we omit the indeA if possible. The seb is
known to be aifix code, that is no word i is a proper prefix or a proper
suffix of another word irD.

Let L be any subset of the sé of Dyck primes overA. The aim of
this section is to give a necessary and sufficient conditionféo be an
XML-language.

We denote by (L) the setof factors af, and we sef, (L) = D,NF (L)
for each letters € A. ThusF, (L) is the set of those factors of words in
that are also Dyck primes starting with the letteiThese words are called
well-formedfactors.

Example 3.1.For the language
L= {ab*"v*"a | n > 1}
one hasF, (L) = L andF,(L) = {b"b" | n > 1}.
Example 3.2.Consider the language
L = {a(bb)"(ce)"a | n > 1}
ThenF,(L) = L, F,(L) = {bb}, F.(L) = {cc}.

The setsF,, (L) are important for XML-languages and grammars, as illus-
trated by the following lemma:

Lemma 3.3. LetG be an XML-grammar oved U A generating a language
L,withnonterminals{,, fora € A.Foreachs € A,thelanguage generated
by X, is the set of factors of words ih that are Dyck primes starting with
the lettera, that is

La(X,) = F,(L).

Proof. SetT = A U A. Consider first a wordy € Lg(X,). Clearly,w is

in D,. Moreover, since the grammar is reduced, there are wprde T*

such thatY — gX.d, whereX is the axiom of. Thusw is a factor ofL.
Conversely, consider a word € F,, (L) for some letter, let g, d be a

words such thagywd € L. Due to the special form of an XML-grammar,

any lettera can only be generated by a production with non-termixial

Thus, a left derivatiolX — gwd factorizes into

X 29X, qud (1)
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for some word3, wherek is the number of letters in that are inA. Next
9Xaf — gu'8 = gwd 2)

with X, — w’ andw’ € D,. None ofw andw’ can be a proper prefix of
the other, becaus® is bifix. Thusw’ = w. This shows that is in L (X,)
and proves thak, = L (X,).

Corollary 3.4. For any XML-languagd. C D, one hast, (L) = L.
Let w be a Dyck prime inD,,. It has a unique factorization

W = QUg, Ugy * * * Uq,, O

n

with u,, € Dg, fori = 1,...,n. Thetraceof the wordw is defined to be
the wordaqas - - - a, € A*. Itis the empty word if» = 0, i. e. if w = «aa.

If L is any subset oD, andw € L, then the words.,, are inF,,(L).
Thesurfaceof a € Ain L is the setS, (L) of all traces of words irF,(L).

Example 3.5.For the language of Example 3.1, the surfaces are easily seen
to beS, = {b} andS, = {b,<}.

Example 3.6.The surfaces of the language of Example 3.25re- {b"c" |
n > 1} andS, = S, = {¢}.

It is easily seen that the surfaces of the set of Dyck primes dvare all
equal toA*.

Surfaces are useful for defining XML-grammars. Set= {S,, | a € A}
be a family of regular languages ovdr We define an XML-grammatz
associated t& called thestandard grammanof S as follows. The set of
variables isV = { X, | a € A}. For each lettes, we set

R, ={Xo, Xay -+ Xa,, | 1020y € So}
and we define the productions to be
X, — ama, m € Ry

forall @ € A. SinceS, is regular, the set®, are regular over the alphabet
V. By construction, the surface of the language generated by a vaigble
is Sy, thatisS,(Lg(X,)) = S,. For any choice of the axiom, the grammar
is an XML-grammatr.

Example 3.7.The standard grammar for the surfaces of Example 3.1 is

Xo — aXpa ~
Xb — b(Xb|€)b

The language generated By, is {ab"b"a | n > 1} and isnotthe language
of Example 3.1.
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This construction is in some sense the only way to build XML-grammars,
as shown by the following proposition.

Proposition 3.8. For each XML-languagd., there exists exactly one re-
duced XML-grammar generating, up to renaming of the variables.

Proof. Let G be an XML-grammar generating, with nonterminals/ =
{Xq | a € A}, andR, = {m € V* | X, — ama} for eacha € A. We
claim that the mapping

Xoy Xay - Xa, —a1az- - ay (%)

is a bijection fromR, onto the surface, (L) for eacha € A. Since the
surface depends only on the language, this suffices to prove the proposition.
It is clear that(x) is a bijection fromV/* onto A*. It remains to show that its
restriction toR,, is onto S, (L).

If

Xo—aXo, Xay -+ Xa,a

is a production, thenjas - - - a,, is the trace of some wordin Ls (X, ). By
Lemma 3.3, the word is in Fi,(L), and thusias - - - a,, isin S,(L).

Conversely, ifzyas - - - a,, ISin S, (L), thenthereisaword € F,(L) =
La(X,) such that

W = auULU2 * * * Upa

with w; € D,,. Thus, there is a derivation
X, —ama “w

in G. Settingm = Y1Ys---Y, with Y7,...,Y, € V, there are words
ul, ... u such that; — v} and

However, eacmi,u; is a Dyck prime, and since the sets of Dyck primes
are codes, it follows that = k andu; = u} fori = 1,...,n. Since the
wordsu; are inF,, (L), there are derivationX,, — u;. ThusY; = X,
andm = X,, X, - - - X,,, asrequired.

Remark 3.9.0bviously, Proposition 3.8 is not longer true if entities are
allowed. Indeed, entities may be used to group sets of productions in quite
various manners.

Corollary 3.10. Let L; and L, be two XML-languages. Thay, C L iff
Sa(L1) C Su(Le) forall ain A.
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Proof. The condition is clearly necessary, and by the previous construction,
it is also sufficient.

Proposition 3.11. The inclusion and the equality of XML-languages is de-
cidable.

Proof. This follows directly from Corollary 3.10.

In particular, it is decidable if an XML-languadeis empty. Similarly,
it is decidable ifL = D,.

XML-languages are not closed under union and difference. This will
be an easy consequence of the characterizations given in the next section
(Example 4.10).

The following proposition is interesting from a practical point of view.
Indeed, it shows that a stepwise refinement technique can be used in order
to design a DTD that satisfies or at least approaches a given specification.

Proposition 3.12. The intersection of two XML-languages is an XML-lan-
guage.

Proof. Let L and L’ be XML-languages generated by XML-gramméis
andG’. We define a new grammaét x G’'with set of variable$” x V' and
productions

(X, X') — a(X1, X1) -+ (Xn, Xp)a

if and only if X—aX;---X,a in G and X' —aXj

-+ X! a. TheinclusionLgx ¢ (X, X') C Le(X) N Le/ (X') is clear. Con-
versely, assume € Lg(X) N Le(X'). ThenX — aX; - X6 — w
in G andX’—>aX{~-X7’1,c_zi>w in G'. Thusw = au; - -upa =
auy - - - ,a, whereX; —— u; and X, — /. Since the set of Dyck primes
is a code, one has = n’ andu; = u}. Thusu; € Lg(X;) N La(X)) and
the result follows by induction.

4 Two characterizations of XML-languages

In this section, we give two characterizations of XML-language. The first
(Theorem 4.2) is based on surfaces. It states that, for a given set of regular
surfaces, there is only one XML-language with these surfaces, and that it
is the maximal language in this family. The second characterization (Theo-
rem 4.4) is syntactical and based on the notion of context.

LetS = {S, | a € A} be a family of regular languages, and fix a letter
ap in A. Define L(S) to be the family of languages C D,, such that
Sa(L) = S, for all a in A. Clearly, any union of sets ig(S) is still in
L(S), so there is a maximal language (for set inclusion) in this family. The
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standardlanguage associated &is the language generated By, in the
standard grammar .

Lemma 4.1. Let L be the standard language &f For any languageV/ in
L(S), one hasF,, (M) C L.

Proof. Let G be the standard grammar8f ThenL = L (X,,). We show
that F,,(M ) C Lg(X,) for a € A by induction on the length of words. Let
w = aua € F,(M). If uis the empty word, then the empty word isSg,
and the wordza is in Lg (X, ). Otherwiseu has a (unique) factorization

U= Ug, " Ug

n

with w,, € F,, (M) for i = 1,...,n. By induction hypothesisy,, €
Lg(X,,) fori = 1,...,n. Sincea; ---a, € S,, there is a production
Xy — aXgy, -+ Xg,a in the grammar. Thus is in Lg(X,). The result
follows.

Theorem 4.2. The standard language associatedSdor the letteray is
the maximal element of the familyS). This language is XML, and it is the
only XML-language in the familg(S).

Proof. The firstpartis justLemma 4.1 and the second partis Proposition 3.8.

Example 4.3.The standard language associated to the $gts {b} and
Sy = {b, e} for the lettern of Example 3.1 is the languadgeb™v"a | n > 1}
of Example 3.7. Thus, the language of Example 3.1 is not XML.

We now give a more syntactic characterization of XML-languages. For this,
we define the set afontextsn L of a wordw as the se€' (w) of pairs of
words(z, y) such thatwy € L.

Theorem 4.4. A languagel over AU A is an XML-language if and only if
() L C D, for somex € A,
(i) forall a € Aandw,w’ € F,(L), one hall(w) = C(w'),
(iii) the setS, (L) is regular for alla € A.

Before giving the proof, let us compute one example.
Example 4.5.Consider the languagk generated by the grammar

S —alTa B
T — aTTa | bb

with axiom.S. This grammar is not XML. Clearly, C D,. Also, F,(L) =

L. There is a unique se&ty (w) for all w € L, because at any place in a
word in L, a factorw in L can be replaced by another factdrin L. Finally,
S.(L) = (aUb)? andSy(L) = {e}. The theorem claims that there is an
XML-grammar generating..
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Proof. We write F,, S, andC(w), with the languagé understood. We first
show that the conditions are sufficient.

Let G be the standard XML-grammar defined by the fanmfly and
with axiom X,. We prove firstLs(X,) = F, fora € A. By Lemma 4.1,
F, C Lg(X,). Next, we prove the inclusioR, D Lg(X,) by induction on

the derivation lengtlt. AssumeX, ks w. Thenw = aua for some word
u. If K = 1, then the empty word is i, which means thata is in F,. If
k > 1, then the derivation factorizes in

_ k=1 _
Xo = aXg, - Xg,0a — aua

for some productionX, — aX,, --- X,,a. Thus there is a factorization
u = up---u, such thatu; € Lg(X,,) fori = 1,...,n. By induction
hypothesisu; € F,, fori = 1,...,n. Moreover, the wordi; - - - ay, is in
the surfaceS,. This means that there exist wordsin F,, such that the
wordw’ = au} - --ulaisin F,. Letg, d be two words such thatw'd is in
the languagé.. Then the paifga, u), - - - u/,ad) is a context for the word) .
By (ii), itis also a context for; . Thusau;u - - - ul aisin F,. Proceeding in
this way, one strips off all primes in thes, and eventuallyiuus - - - u,a is

in F,,. Thusw is in F,. This proves the inclusion and therefore the equality.
Finally, by Corollary 3.4, one haés(X,) = L, and consequently the
conditions are sufficient.

We now show that the conditions are necessary.&die an XML-
grammar generating., with productionsX, — aR,a and axiomX,,.
Clearly, L is a subset ofD,. Next, consider words, w’ € F, for some
lettera, and let(g, d) be a context fow. Thusgwd € L. By Lemma 3.3,
we know thatF, = Lg(X,). Thus, there exist derivationk, —~5w and

X, — w'. Substituting the second to the first in
X, 5 gXod > gwd (3)

shows thatg, d) is also a context fow’. This proves condition (ii).
Finally, sinceR, is a regular set, the sét, is also regular.

Example 4.6.Consider the language of Example 4.5. The construction
of the proof of the theorem gives the XML-grammar

Xy — a(Xa\Xb)(Xa\Xb)a

Xp — bb
Example 4.7.The language
{a(bb)"(ce)"a | n > 1}

already given above is not XML since the surface @ the nonregular set
Sq = {b™c™ | n > 1}. This is the formalization of the example given in the
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introduction, if the tagp means bold paragraphs, and the ¢éageans italic
paragraphs.

Example 4.8.In order to formalize the example of well-formed mathemat-
ical papers given in the introduction, consider the language aHa,
where H is the language obtained from the Dyck language over a single
letterb by replacing every by tf and every by pp. Here, the letters and

t stand for<theorem> and</theorem> andp andp for <proof> and
</proof> respectively. If one renamesasc andp asc, then the surface

of a in the languagéd. is the Dyck language ovet and it is not regular.

Example 4.9.Consider again the language
L= {ab*"v*"a | n > 1}

of Example 3.1. FirsiCr(bb) = {(ab®"1,0*""'a) | n > 1}. Next
CrL(b*v?) = {(ab®*,b*"a) | n > 0}. Thus there are factors with distinct
contexts. This shows again that the language is not XML.

Finally, we give an example showing that XML-languages are closed
neither under union nor under difference.

Example 4.10.Consider the setsLc¢ andcMc¢, whereL = Dy, ,, is the

set of products of Dyck primes ovén, b}, andM = Dfa,d} is the set of
products of Dyck primes ovdu, d}. Each of these two languages is XML.
However, the uniold = LUM is not. Indeed, the words:bbac andcaadde

are both inH. The pair(c, dde) is in the context ofia, so it has to be in

the context ofubba, but the wordcabbadde is not in H. Given a language

L C D,, write L = D, — L for the relative complementation. Closure
under difference would imply closure under relative complementation, and
this would imply closure under union becauseJ M = LN M. Thus
XML-languages are not closed under difference.

5 Decision problems

As usual, we assume that languages are given in an effective way, in general
by a grammar or an XML-grammar, according to the assumption of the
statement.

Some properties of XML-languages, such as inclusion or equality (Propo-
sition 3.11) are easily seen to be decidable because they reduce to decidable
properties of regular sets. The problem is different if one asks whether a
context-free grammar generates an XML-language. We have already seen
in Example 4.5 that there exist context-free grammars that generate XML-
languages without being XML-grammars. We shall prove later (Proposi-
tion 5.3) that it is undecidable whether a context-free grammar generates
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an XML-language. On the contrary, and in relation with Theorem 4.4, it is
interesting to note that it is decidable whether a context-free language is a
subset of the set of Dyck primes. The following proposition and its proof
are an extension of a result by Knuth [6] who proved it for a single letter
alphabetA.

Proposition 5.1. Given a context-free languadeover the alphabeti U A,
it is decidable whethef. C D7.

We first introduce some notation. TByck reductioris the semi-Thue
reduction defined by the rulesi — ¢ for a € A. A word is reducedor
irreducibleif it cannot be further reduced, thatis if it has no factor of the form
aa. Every wordw reduces to a unique irreducible word denog¢d). We
also writew = w’ whenp(w) = p(w'). If wis afactor of some Dyck prime,
thenp(w) has no factor of the formb, for a,b € A. Thusp(w) € A* A*.

In fact, p(F(D,)) = A* A*.

Proof of Proposition 5.1.Let G = (V, P, S) be a (reduced) context-free
grammar (in the usual sense, that is with a finite number of productions)
overT = AU A, with axiomS € V, generating the languagde For each
variableX, we set

Irr(X) = {p(w) | X > w,w € T*}

Thisisthe set of reduced words of all words generatell bjesting whether
L is a subset oD?, is equivalent to testing whethér(S) = {¢}.

First, we observe that ifrr(S) = {e}, thenlrr(X) is finite for each

variable X. Indeed, consider any derivatigh— gXd with g,d € T*.
Any u € Irr(X) is of the formu = zy, for z,y € A*. Sincep(gud) =
p(p(g)up(d)) = €, the wordz is a suffix ofp(g), andy is a prefix ofp(d).
Thus|u| < |p(g)| + |p(d)|, showing that the length of the wordslin(X)
is bounded. This proves the claim.

A preliminary step in the decision procedure is to compute a candidate to
the upper bound on the length of worddin(.X ). To do this, one considers
any derivatiors —— ¢ X d —— gud with gud € T*, and one computes; =
lp(9)] +|p(d)|. As just mentioned before, it is necessary that every reduced
word inIrr(X) has length at mogty.

We now inductively construct sefsr;(X) as follows. We start with
the setdrro(X) = 0, for X € V, and we obtain the sets in the next step
by substituting irreducible sets of the current step in the variables of the
right-hand sides of productions. Formally,

Irrp1(X) = Irrg (X)) U U plog(a))

X—a
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whereoy, is the substitution that replaces each variabley the sefrry(Y).
This construction is borrowed from [3], with an additional use of the reduc-
tion mapp at each step. It follows thdtr(X) = J;~q Irre(X)

For eachk, one computedr, (X) for all X € V, and then, one checks
whetherIrr, (X) = Irr,_1 (X) for all X. If so, the computation stops. The
languageL is a subset oD 4 if and only if Irrx(S) = {e}. If Irrp(X') #
Irry_1 (X’) for someX’, then one checks whether all worddin, (X ) have
length smaller thadx, for all X. If so, then one increasés If the answer
is negative, therd is not a subset aD 4.

Since the sethr; (X)) are finite, and the length of its elements must be
bounded by x in order to continue, one eventually reaches a step where the
computation stops.

Corollary 5.2. Given a context-free languagdeover the alphabe#i U A
and a lettera in A, it is decidable whethet C D,.

Proof. It is decidable whethek C a(A U A)*a (for instance by computing
the set of first (last) letters of words i If this inclusion holds, then one
effectively computes the languadé = «—'La~' obtained by removing
the initial « and the finak in all words of L. It follows by the structure of
the Dyck set thal. C D, ifand only if L’ C D*.

The proof of the following proposition uses standard arguments.

Proposition 5.3. It is undecidable whether a context-free language is an
XML-language.

Proof. Consider the Post Correspondence Problem (PCP) for two sets of
nonempty word$/ = {u4,...,u,} andV = {vy,...,v,} over the alpha-
betC = {a,b}. Consider a new alphab& = {ay,...,a,} and define the
setsLy and Ly by

Lu={ai, - -~ ay. b | hug, - - -wi }, Ly={aq, -~ ay b | hvi, - --vy }

wherek > 0 andh ranges ovet’*. Recall that these are context-free, and
that the sef. = Ly U Ly is regular iff L = BTC*. This holds iff the PCP
has no solution.

SetA = {ay, ..., an,a,b,c}, and define amappingfrom A* to (AUA)
by mapping each letter to dd.

Consider wordsiy, . . . , iy, 91, . . . , 0, in {aa,bb}™ and consider the
languages ) X
Ly = {ailah e 'aikaikh | h 7& ﬁlk e ’IAL“}
and )

Ly = {ai,ai, - - ai,agh | h # 04 -+ 0; }
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Setl = ¢(Ly ULy )e. The surface of in Lis S.(L) = Ly ULy If Lisan
XML-language, therl.;; U Ly is regular which in turn implies that the PCP
has no solution. Conversely, if the PCP has no solutigny Ly is regular
which implies thatLy; U Ly, = B+ C*, which implies thatl = ¢cBTC*é,
showing thatl is an XML-language.

Corollary 5.4. Given a context-free subset of the Dyck set, itis undecidable
whether its surfaces are regular.

Proof. With the notation of the proof of Proposition 5.3, the surfaggl)
of the languagé. is the languagé,, andL is regular iff the associated PCP
has no solution.

Despite the fact that regularity of surfaces is undecidable, it appears that
finiteness of surfacds decidable. This is the main result of the next section.

6 Finite surfaces

There are several reasons to consider finite surfaces. First, the associated
XML-grammar is then a context-free grammar in the strict sense, that is
with a finite number of productions for each nonterminal.

Second, the question arises quite naturally within the decidability area.
Indeed, we have seen that it is undecidable whether a context-free language
is an XML-language. This is due basically to the fact that regularity of
surfaces is undecidable. On the other sidis,decidable whether a context-
free language is contained in a Dyck language, and we will prove that it is
also decidable whether the surfaces are finite. So, the basic undecidability
result is the regularity of surfaces.

Finally, XML-grammars with finite surfaces are very close to families
of grammars that were studied a long time ago. They will be considered in
the concluding section.

Theorem 6.1. Given a context-free languagethat is a subset of a set of
Dyck primes, it is decidable whethérhas all its surfaces finite.

Corollary 6.2. Given a context-free language that is a subset of a set
of Dyck primes, it is decidable whethéris a XML-language with finite
surfaces.

In the rest of this section, we consider a reduced context-free grammar
G with nonterminal alphabel’, and terminal alphabéf = A U A. The
languagel generated by~ is supposed to be a subset of some3gtof
Dyck primes. Recall thab = (J,c 4 D,. If N is an integer such that(L)
is contained inD®) = cUDUD?U---U DN, we say thaf., hasbounded
width.
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First, observe that has finite surfaces iff it has bounded width. Indeed,
if the surfaceS, (L) is infinite for somez € A, then there are words of the
form au; - - - u,a in F(L) for infinitely many integers:, and clearlyF'(L)
is not contained in anyp("). Conversely, ifu; - - -u, € F(L), then there
are wordsw, w’ € D* such thatwu, - - - u,w’'a € F(L). Butthen the trace
of this word has length at least Thus if /(L) is not contained itD(") at
least one surface is infinite.

For the proof of the theorem, we investigate iterating pairs.ikVe start
with a lemma of independent interest.

Lemma 6.3. If X — g X d for some words iy, d € (AU A)*, then there
exist wordse, i, p, g € A* such that

p(g) = Zpz, p(d) = yqy

and moreovep andq are conjugate words.

Proof. The wordgy andd are factors oD. Thus, there existwords v, z,t €
A* such thayy = 7z, d = ty. There is a word such thay™vd" is a factor
of D for eachn > 0. Fromg?vd? = zzZzvtyty, one gets that is a suffix
of z or z is a suffix ofx, and similarly fort andy. If z is a suffix ofz, set
x = pz. But thenzp” is a prefix ofp(g"vd™) for all n, contradicting the
fact thatlrr(X) is finite. Thusz is a suffix ofz and similarlyy is a suffix
of t. Setz = px andt = qy. Thenp(g) = zpx andp(d) = yqy. Since
g"vd™ = Zp"zvyq"y andIrr(X) is finite, one hagp| = |¢| and moreover
p is a factor ofg?.

A pair (g,d) such thatXi>ng is alifting pair if the wordp in
Lemma 6.3 is nonempty, it isftat pair if p = ¢.

Lemma 6.4. If X — g1 Xd; or X - g, Xd, is a lifting pair, then the
compound paitX —— g1 g» X d2d, is a lifting pair.

Proof. According to Lemma 6.3 = Z1pi1z1 andgs = Topoxo. ASSUME

the compound pair is flat. Then piz1Zopoxs = Zz for some word: € A*.

Thus the number of barred letters is the same as the number of unbarred
letters at both sides. This implies thatandp, are the empty word.

Lemma 6.5. The languagd. has bounded width ifff has no flat pair.

Proof. If there is a flat pair(g,d) in G, then L has an infinite surface.
Indeed,ug"vd™w € L for all n and for someu, v, and sincegy = zx, there
is a conjugate of in D. Thusg™ has a factor itD”~!, andL has unbounded
width.
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Conversely, assume thathas unbounded width. L& be the maximum
of the lengths of the right-hand sides of the productionSiLet m be an
integer that is strictly greater than the maximum of the length of the words
in the (finite) setdrr(X) for X € V. Consider awordujus - --uyz’ € L
withuy,...,uy € D, forsome large intege¥ to be fixed later. In a deriva-
tion tree for this word, lef be the deepest node such that the tree rooted at
Xo generates a word containing the factgt; - - - u. The production ap-
plied at that node has the forfd — Y7 - - - Y with Yy, ..., Y, € VUT and
k < K. By the pigeon-hole principle, at least one}af . . . , Y, generates a
word containing a factor that is a product of at leAstk — 1 > N/K — 1
consecutivey;’s. Denote this nontermindl(; . If IV is large enough, one con-
structs a sequencéy, X1, ..., X}, of nonterminals, and it > m - CardV/,
there are at least of these variables that are the same. A straightforward
computation shows that’ > K + K2 + - .- K™ ©ardV is convenient. We
get pairs

Y L) Slw1p1Yd1
Y i> SQwQPQYdQ

y X SmWmPmY dm,

where each ofuvy, ..., w,, is in D*, thes; andp; are suffixes (resp. pre-
fixes) of words inD, andpiso, p2ss, ..., Pm—15n are Dyck primes. For
eachi, definex; € A* by settingz; = p(s;). Fromp(p;s;+1) = ¢, it fol-
lows thatp(p;) = zi+1. Thuss;w;p; = Z;x;41. In view of Lemma 6.3,
there are wordg; € A* such thate; 1 = y;p1z; fori =1,....m — 1,
and eachs;w;p; is equivalent taz,y;12z;, which in turn is equivalent to
T1Y2 -+ YiYi+r1Vi - - - yox1. All 19 - - - y; are prefixes of words ifrr(Y),
and since this set is finite, one of theis the empty word because of the
choice ofm. This shows that one of the pairs is flat.

We now need to prove that it is decidable whether there exists a flat pair.

Lemma 6.6. Assume that{ — (1Y 7, Y - gVd andY -5 0 X ry. If
the pair X i l1g¢2 X rodr is flat, then the paiy” -+ gYdis flat.

Proof. Accordingto Lemma6.3; gfs = Zzandg = Zpzforsomez, z,p €
A*. Thus, 4, g¢> has the same number of barred and of unbarred letters,
and g has more (or as many) unbarred letters than barred letters. Next,

Xt l145 X rory is an iterating pair, and therefofel, has more unbarred
letters than barred letters. Thyshas as many unbarred letters as it has
barred letters. It follows thai is the empty word.

Proof of Theorem 6.1. In view of Lemma 6.5, it suffices to check whether
the grammar has a flat pair. For this, consider the derivation tree associated
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to a pairX i>ng. We call this tree (and the paielementaryif there
is no variable that is repeated on the path from the fodb the leafX.
Lemmas 6.4 and 6.6 shows that if there is a flat pair, then there is also an
elementary flat pair.

To each elementary pair, we associate a skeleton defined as follow. Con-
sider the pathX = Xy, X1,...,X,, = X from the rootX to the leafX.
Each of theX;, is in the right-hand side of some productidf) — w;.
The skeleton is the derivation obtained by composing these productions. It

results in a derivatiodX —— UXU", for someU, U’ € (V U T)*. There
are only a finite number of skeletons because each skeleton is built from an
elementary pair.

Foreach skeletoX —— U XU’, we consider the set of paifé — uX v’
forallu € Irr(U), v € Irr(U’) (Irr(U) denotes the set of reduced words of
words deriving fron/). Since alllrr(U) is finite, the set of pairs obtained
is finite. It suffices to check whether there is a flat pair among them.

As afinal remark, we consider grammars and languages simparén-
thesis grammarsand languages studied by McNaughton [9] and by
Knuth [6]. We will say more about them in Sect. 8pAalyparenthesis gram-
mar is a grammar with a terminal alphatiEt= A U A, and where every
production is of the formX — ama, withm € V*,a € A,a € A. A
polyparenthesis language is a language that has a polyparenthesis gram-
mar. Thus, polyparenthesis grammars differ from XML-grammars in two
aspects: there are only finitely many productions, and the non-terminal need
not to be unique for each pdit, a) of letters.

Proof of Corollary 6.2. LetG be a context-free gramma¥ over A U A
generatingL = L(G). It is decidable whethef, C D, for some letter

a € A (Corollary 5.2). If this holds, we check whethkihas finite surfaces.
This is decidable (Theorem 6.1). If this holds, we proceed further. A gen-
eralization of an argument of Knuth [6] shows that it is decidable whether
L is a polyparenthesis language, and it is possible to effectively compute a
polyparenthesis gramma¥ for it. On the other hand, le&”’ be the stan-
dard grammar obtained from the (finite) surfaces. The langiiage<ML

ifand only if L = L(G"), thusif and only ifL(G") = L(G"). This equality

is decidable. Indeed, any XML-grammar with finite set of productions is
polyparenthetic, and equality of polyparenthesis grammars is decidable [9].

7 Regular XML languages

Most of the XML languages encountered in practice are in fact regular.
Therefore, it is interesting to investigate this case. The main result is that,
contrary to the general case, it is decidable whether a regular language
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is XML. Moreover, XML-grammars generating regular languages will be
shown to have a special form: they aegjuentialn the sense that its nonter-
minals can be ordered in such a way that the nonterminal in the lefthand side
of a production is always strictly less than the nonterminals in the righthand
side. The main result of this section is

Theorem 7.1. Let K C D4 be aregular language. It is decidable whether
K is an XML-language.

One obtains the following structure theorem.

Proposition 7.2. Let K be an XML-language, generated by an XML-gram-
mar G. ThenK is regular if and only if the grammat is sequential.

We shall give two proofs of Theorem 7.1, based on the two character-
izations of XML-languages given above (Theorem 4.2 and Theorem 4.4).
Both proofs require the effective computation of surfaces.

Lemma 7.3. Let K € D4 be aregular language. The surfacesigfare
effectively computable regular sets.

Proof. Let A be a finite automaton with no useless states recogni&ing
For each paifp, ¢) of states, lef<, , be the regular language composed of
the labels of paths starting imand ending in;. A pair (p, q) of states is
goodfor the lettera in A, if K,, N D, # (. This property is decidable.
A pair is good if it is good for some letter. Lét be the set of good pairs,
considered as a new alphabet, and consider th&/$e} over G composed

of all words

(po, p1)(P1,p2) -+ (Pn—1,Pn)

such that there is an edge endinginin the automatomd and labeled by
and there is an edge startingyip labeled bya. Clearly, M (a) is a (local)
regular language over.

Consider now the finite substitutighfrom G* into A* defined by

f(p.q) ={a € A| (p,q) is a-good}

Then f(M (a)) is the surface of in K, thatisf(M(a)) = S,(K). This
proves the lemma.

First proof of Theorem 7.1We use Theorem 4.2. L& be a regular subset
of D 4. Itis decidable whethek C D, for some lettety. If this holds, then
by Lemma 7.3, the familys of surfacesS, (K) is effectively computable.
From this family, one constructs the standard languagssociated tc&.
This is effective. We know thak’ C L, and consequentl is an XML-
language if and only if. C K or equivalently if and only ifL N K’ = {),
whereK’ = (AU A)* \ K is the complement ok’. This is decidable.
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Second proof of Theorem 7.We use Theorem 4.4. Let be the minimal
finite automaton with no useless states recogniZingwith initial state:
and set of final states. For each paifp, ¢) of states, lef), , be the regular
language composed of the labels of paths startingand ending iry. For
each lettera in A, the setF;,,, = K,, N D, is the set of well-formed
factors of K starting with the letter; that are labels of paths fromto q.
Clearly,F,  , C F,(K), forall p, g. We show that all words i, (K') have
same context if and only if,, ,, , = F,(K), for all p, g such thatt, ,, , # 0.

Assume first that all words i, (K) have same context. Let ¢ such
thatF, , , # 0, and consider a word € Fy,, ,. There exist words and
y such that - x = p, andq - y € T. The pair(z, y) is a context forw. Let
w' be a word inF,,(K). Then there is a successful path with label'y.
Thus there is a statg such thap - w’ = ¢’ andq’ -y € T. If ¢ # ¢, there
is a wordz separating; andq’, becaused is minimal. Thusg - z € T and
q - z ¢ T or vice versa. However, this means tliat ) is a context forw
and is not a context far’ or vice-versa. Thug = ¢’ andw’ € F, , ;. This
prove thatF, (K) C F,pq-

Conversely, assumeth&f , , = F,,(K), forallp, g suchthaty, ,, , # 0.
The contexts of any worth € F,(K) is the union of seté(; , x K, over
all pairs(p, q) with F ;, , # 0. Thus all words have same contexts.

It follows from the preceding claim thakt™ is a XML-language if and
only if F,, , 4 = Fy v o for all pairs for which the languages are not empty.
Although equality of context-free languages in not decidable in general, this
particular equality is decidable becausg, , = F, ,/ o iff

D, N (Kp,q \ Kp’,q’ U Kp’,q’ \ prq) =0

For the proof of Proposition 7.2 we use the following notation and result.
For any wordw € (A U A)*, theweightof w is the numbefw|4 — |w| 5.
Here,|u| 4 is the number of occurrences of lettersdrin the wordu. The
heightof w is the number

h(w) = max{|u|a — |u| 5 | vv = w}

that is the maximum of the weights of its prefixes. The height of a language
is the maximum of the heights of its words. This is finite or infinite.

Proposition 7.4. Let K Cc D4 be a language oved U A. If K is regular,
then it has finite height.

Proof. This result is folklore. We just sketch its proof. Given an automaton
recognizingK, the weight|u|4 — |u| 5 of the labelu of a circuit must be
zero for every circuit, by the pumping lemma. Thus, the heighit'a$ the
maximum of the heights of the labels on all acyclic successful paths in the
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automaton augmented by the sum of the heights of all its simple cycles.
Since the automaton is finite, this number is finite.

Proof of Proposition 7.2.Consider an XML-grammafz, and construct a
graph with an edge¢X,, X;) wheneverX, appears in the righthand side
of a production withX, as lefthand side. Nonterminals can be ordered to
fulfill the condition of a sequential grammar if and only if the graph has no
cycle. If the graph has no cycle, then the language generated by a variable
of index ¢ is a regular expression of languages of higher indices. Thus,
the language generated by the grammfais regular. On the contrary, if
there is a cycle through some varialXg, then there is a derivation of the
form X, — auX,va for some words:, v. By iterating this derivation, one
constructs words of arbitrary height id, and saok is not regular.

Note that the languagg, (K) of well-formed factors is regular wheld
is a regular XML-language, becausg(K) is the language generated by
the nonterminalX, in a sequential grammar.

8 Historical note

There exist several families of context-free grammars related to XML-gram-
mars that have been studied in the past. In the sequel, the alphabet of non-
terminals is denoted by .

Parenthesis grammars

These grammars have been studied in particular by McNaughton [9] and
by Knuth [6]. A parenthesis grammas a grammar with terminal alphabet

T = BU{a,a}, and where every production is of the fo&n— ama, with

m € (BUV)*. A parenthesis grammar gureif B = (). In a parenthesis
grammar, every derivation step is marked, but there is only one kind of tag.

Bracketed grammars

These were investigated by Ginsburg and Harrison in [4]. The terminal
alphabet is of the formi’ = A U B U C and productions are of the form

X — amb, withm € (V U C)*. Moreover, there is a bijection between

and the set of productions. Thus, in a bracketed grammar, every derivation
step is marked, and the opening tag identifies the production that is applied
(whereas in an XML-grammar they only give the nonterminal).
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Very simple grammars

These grammars were introduced by Korenjak and Hopcroft [7], and studied
in depth later on. Here, the productions are of the foxra— am, with

a € Aandm € V*. In a simple grammar, the pajea, m) determines the
production, and in a very simple grammar, there is only one production for
eacha in A.

Chomsky-Sdltzenberger grammars

These grammars are used in the proof of the Chomskyi3ehberger the-
orem (see e. g. [5]), even if they were never studied for their own. Here the
terminal alphabet is of the forfi = A U A U B, and the productions are

of the form X — ama. Again, there is only one production for each letter

a € A.

XML-grammars differ from all these grammars by the fact that the set
of productions is not necessarily finite, but regular. However, one could
consider a common generalization, by introdudidanced grammardn
such a grammar, the terminal alphabef’is- AU A U B, and productions
are of the formX — ama, with m € (V U B)*. Each of the parenthesis
grammars, bracketed grammars, ChomskyeBmmberger grammars are
balanced. IfB = (), such apure grammar covers XML-grammars with
finite surfaces. If the set of productions of each nonterminal is allowed to
be regular, one gets a new family of grammars with interesting properties.
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