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Growth of repetition-free words—a review
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Abstract

This survey reviews recent results on repetitions in words, with emphasis on the estimations for
the number of repetition-free words.
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1. Introduction

A repetitionis any bordered word. Quite recently, several new contributions were made
to the field of repetition-free words, and to counting repetition-free words. The aim of this
survey is to give a brief account of some of the methods and results.
The terminology deserves some comments. Let� > 1 be a rational number. A nonempty

wordw is an�-power if there exist wordsx, x′ with x′ a prefix ofx and an integern, such
thatw = xnx′ and� = n + |x′|/|x| = |w|/|x|. For example, the French wordentente is
a 73-power, and the English wordoutshout is a 85-power. If� = 2 or 3, we speak about a
square and a cube, like formurmur or kokoko (the examples are taken from [41]). A word
w is anoverlapif it is a �-power for some� > 2. For instance,entente is an overlap.
Let � > 1 be a real number. A wordw is said toavoid �-powers or is�-power-freeif

it contains no factor that is an�-power for���. A wordw is �+-power-freeif it contains
no factor that is an�-power for� > �. Thus, a word is overlap-free if and only if it is
2+-power-free.
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This review reports results on the growth of the number of�-free words of lengthn over
anq-letter alphabet. In some cases, growth is bounded by a polynomial inn, in other cases,
it is shown to be exponential inn. We consider overlap-free words in the next section,
square-free words in Section 3 and some generalizations in the final section. For basics and
complements, the reader should consult the book of Allouche and Shallit[3].

2. Counting overlap-free words

We first review estimations for the number of overlap-free words over a binary alphabet.
LetVbe thesetof binaryoverlap-freewordsand letv(n)be thenumberofoverlap-freebinary
words of lengthn. This sequence startswith 2,4,6,10,14,20 (Sloane’s sequenceA007777,
see [42]).
It is clear thatV is factorial (factor-closed). It follows that, as for any factorial set, one

hasv(n + m)�v(n)v(m). Thus the sequence(v(n)) is submultiplicativeor the sequence
(logv(n)) issubadditive. This in turn implies, by a well-known argument, that the sequence
limn→∞ v(n)1/n has a limit, or equivalently, that the limit

�(V ) = lim
n→∞

1

n
logv(n)

exists. The number�(V ) is called the (topological)entropyof the setV. For a general
discussion about entropy of square-free words, see[4]. The entropy of the set of square-free
words is strictly positive, as we will see later. On the contrary, the entropy of the set of
overlap-free words is zero. This is a consequence of the following result of Restivo and
Salemi [34,35].

Theorem 1. The numberv(n) of binary overlap-free words of length n is bounded from
above by a polynomial in n.

They proved thatv(n) is bounded byn4. The proof is based on the following structural
property of overlap-free words which we state in the more general setting of[22]. Recall
first that the Thue–Morse morphism is defined by

� : 0 �→ 01
1 �→ 10

Lemma 2. Let2 < � < 7/3, and let x be a word that avoids�-powers. There exist words
u, y, v with u, v ∈ {e,0,1,00,11} and y avoiding�-powers such thatx = u�(y)v. This
factorization is unique if|x|�7.

First, observe that the lemma does not hold for��7/3 sincex = 0110110 is a 7/3-
power and has no factorization of the required form. Next, consider as an example the
word x = 011001100 which is a 9/4-power, and contains no higher repetition. One gets
x = �(0101)0, andy = 0101 itself avoids repetitions of exponent greater than 9/4.
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It follows from the lemma that an overlap-free wordx has a factorization

x = u1�(u2) · · ·�h−1(uh)�h(xh)�h−1(vh) · · ·�(v2)v1,
where eachui andvi has length atmost 2, andxh has length atmost 4. A simple computation
shows that log|x| − 3 < h� log |x|. Thus, the value ofh and eachui andvi andxh may
take a finite number of values, from which the total number of overlap-free words results
to be bounded byc · d logn = c · nlogd for some constantsc andd.
Another consequence of the lemma is that the Thue–Morse wordt = ��(0) is not

only overlap-free but avoids 7/3-powers. A clever generalization, by Rampersad[32], of a
proof of [39,40] shows thatt (and its oppositēt) is the only infinite binary word avoiding
7/3-powers that is a fixed point of a nontrivial morphism.
Restivo and Salemi’s theorem says thatv(n)�Cns for some reals. The upper bound

log 15 for s given by Restivo and Salemi has been improved by Kfoury [24] to 1.7, by
Kobayashi [25] to 1.5866 and by Lepistö in his Master thesis [26] to 1.37; Kobayashi [25]
gives also a lower bound. So

Theorem 3. There are constantsC1 andC2 such that

C1n
r < v(n) < C2n

s,

wherer = 1.155. . . ands = 1.37. . . .

Onemight ask what the “real” limit is. In fact, a result by Cassaigne[12] shows that there
is no limit. More precisely, he proves

Theorem 4. Set r = lim inf logv(n)logn and s = lim sup logv(n)logn . Then r < 1.276 and
1.332< s.

It is quite remarkable that the sequencev(n) is 2-regular. This was shown by Carpi
[9] (see [3] for the definition of regular sequences). As we shall see in the next section, the
number of square-free ternary words grows exponentially. In fact, Brandenburg [6] proves
also that the number of binary cube-free words grows exponentially. The exact frontier
between polynomial and exponential growth has been shown to be the exponent 7/3 by
Karhumäki and Shallit [22].

Theorem 5. There are only polynomially many binary words of length n that avoid
7/3-powers, but there are exponentially many binary words that avoid7/3+-powers.

3. Counting square-free words

We report now estimations for the number of square-free words over a ternary alphabet.
Let S be the set of ternary square-free words and lets(n) be the number of square-free
ternary words of lengthn.
SinceSis factorial (factor-closed), the sequence(s(n)) is submultiplicative and the (topo-

logical) entropy�(S)exists.Wewill show that�(S) is not zero, andgivebounds for�(S). The
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sequences(n) starts with 3,6,12,18,30,42,60 (Sloane’s sequence A006156, see[42]).
The sequences(n) is tabulated forn�90 in [4] and for 91�n�110 in [21].

3.1. Getting upper bounds

There is a simple method to get upper bounds for the number of ternary square-free
words, based on using better and better approximations by regular languages.
Clearly, any square-free word overA = {0,1,2} contains no factor 00, 11 or 22, so

S ⊂ A∗ \ A∗{00,11,22}A∗. Since the latter is a regular set, its generating function is a
rational function. It is easily seen to bef (t) = (1+ t)/(1− 2t). Indeed, once an initial
letter is fixed in a word of this set, there are exactly two choices for the next letter (this
remembers Pansiot’s encoding [31], see also [28]). Sos(n)�2n+2n−1 for n�1.Moreover,
since a word of length at most 3 is square-free if and only if is inA∗ \ A∗{00,11,22}A∗,
the equalitys(n) = 2n + 2n−1 holds forn�3, and thuss(2) = 6 ands(3) = 12.
One can continue in this way: clearly none of the 6 squares of length 4: 0101,0202,1010,

1212,2020,2121 is a factor of aword inS, and it suffices to compute the generating function
of the setA∗ \A∗XA∗, whereX = {00,11,22,0101,0202,1010,1212,2020,2121} to get
better upper bound fors(n). Some of these generating functions are given explicitly in [36].
For words without squares of length 2 or 4, the series is(1+ 2t + 2t2+ 3t3)/(1− t − t2)

(see [36]). Again, a direct argument gives the reason: a ternary word without squares of
length 2 or 4 either ends withaba for a �= b, or with abcwhere the lettersa, b, c are
distinct. Denote byun (resp. byvn) the number of words of the first (of the second) type,
and bys(2)(n) the total number. Then it is easily seen that, forn�4, un = vn−1 and
vn = s(2)(n − 1), and consequentlys(2)(n) = s(2)(n − 1) + s(2)(n − 2). This shows of
course thats(n)�C�n, for some constantC, with � = (1+ √

5)/2 the golden ratio.
More generally, we consider any finite alphabetA, a finite setX and the setK = A∗ \

A∗XA∗. We may assume thatX contains no proper factor of one of its elements, so it is
a code. Since the setK is a quite particular regular set, we will compute its generating
function by using special techniques. There exist at least two (related) ways to compute
these generating functions.
First, we consider thesemaphore codeC = A∗X \ A∗XA+. Semaphore codes (see

e.g. [5]) were introduced by Schützenberger [38] under the nameJ codes. The computation
below remembers of course also recurrent events in the sense of Feller [18]. The setC is
the set of words that have a suffix inX but have no other factor inX. Thus the setK is also
the set of proper prefixes of elements inC, and sinceC is a maximal prefix code, one has

C∗K = A∗. (1)

Next, one has (see[5] or [27])

Kx = ∑
y∈X

CyRy,x (x ∈ X), (2)

whereCy = C ∩ A∗y andRy,x is thecorrelation setof y andz, given by

Ry,z = {z−1x | z ∈ S(y) ∩ P(x)}.
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Here,S(y) (respP(x)) is the set of proper suffixes ofy (proper prefixes ofx). Of course,

C = ⋃
y∈X

Cy. (3)

Eqs. (1)–(3) are CardX + 2 equations in CardX + 2 unknowns and allow to compute the
languages or their generating series.
As an example, considerX = {00,11,22}. Denote byfZ the generating function of the

setZ. Then Eqs. (1)–(3) translate into

(1− 3t)fK = 1− fC,

fKaa = t2fK = (1+ t)fCaa , fC = 3fCaa (a ∈ A)

sinceRaa,aa = {1, a} andRaa,bb = ∅ for a �= b. Thus 3t2fK = (1+t)fC and(1−3t)fK =
1− fC = 1− 3t2

1+t
fK , whence

fK = 1

1− 3t + 3t2
1+t

= 1+ t

1− 2t .

The second technique is called the “Goulden–Jackson clustering technique” in[29]. The
idea is tomarkoccurrences of words inX in a word, and to weight a marked word with an
indicator of the number of its marks. If a wordw hasr marks, then its weight is(−1)r t |w|.
As an example, ifX is just the singletonX = {010}, the wordw = 01001010 exist
in eight marked versions, namely 01001010, 01001010, 01001010, 01001010, 01001010,
01001010, 01001010, 01001010. Let us writew for amarked version ofw, andp(w) for its
weight. The sumof theweights of themarked versions of awordw is 0 ifw contains a factor
in X, and is 1 otherwise. In other terms, the generating series of the setK = A∗ \A∗XA∗ is

fK = ∑
w∈A∗

p(w),

where the sum is over all marked versions of all words. Now, it appears that this series is
rather easy to compute when one considers clusters: acluster is a marked wordw where
every position is marked, and that is not the product of two other clusters. Thus, forX =
{010}, the word 01001010is not a cluster since it is the product of the two clusters 010
and01010. A marked word is a unique product of unmarked letters and of clusters. Thus,
a marked wordw is either the empty word, or its last letter is not marked, or it ends with a
cluster. Thus

fK = 1+ fK(t)kt + fK(t)p(C),

wherek is the size of the alphabet andp(C) is the generating series of the setC of clusters.
It follows that

fK(t) = 1

1− kt − p(C) . (4)

A cluster ends with a word inX. Let Cx = C ∩ A∗x be the clusters ending inx. Then the
generating seriesp(Cx) are the solutions of the system

p(Cx) = −t |x| − ∑
y∈X

(y : x)p(Cy), (5)
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wherey : x is the (strict)correlation polynomialof y andx defined by
y : x = ∑

z∈Ry,x\{e}
t |z|.

Eq. (5) is a system of linear equations, and the number of equations is the size ofX. Solving
this system gives the desired expression.
Consider the exampleX = {010} overA = {0,1}. Then the generating series ofK =

A∗ \ A∗010A∗ is

fK(t) = 1

1− 2t − p(C010)
andp(C010) = −t3− t2p(C010), whencep(C010) = −t3

1+t2
and

fK(t) = 1

1− 2t + t3

1+t2

= 1+ t2

1− 2t + t2 − t3
.

Both methods are just two equivalent formulations of the same computation, as pointed out
to me by Dominique Perrin. WhenX = {x} is a singleton, Eq. (2) indeed becomes

Kx = CR

with R = Rx,x , and in noncommuting variables, Eq. (1) is just

K(1− A) = 1− C

so

K(1− A) = 1− KxR−1

whence

K(1− A + xR−1) = 1. (6)

Now, the coefficients of the series−xR−1 are precisely the weights of the cluster ofx.
So Eq. (6), converted to a generating series, yields precisely Eq. (4)! In the general case
one considers the (row) vectors�X = (x)x∈X and �C = (Cx)x ∈ X and theX × X matrix

R = (Rx,y)x,y∈X. Then Eq. (2) isK �X = �CR and the same computation as above gives

K =
(
1− A + ∑

x∈X
( �XR−1)x

)
= 1.

The computation of the generating functions for setsK of the form above, or more generally
of the series

∑
w∈K�(w)t |w|, where� is a probability distribution onA∗, is an important

issue both in concrete mathematics[20], in the theory of codes [5] and in computational
biology (see e.g. chapters 1, 6 and 7 in [27]). Extensions are in [30,33].
In their paper [29], Nanoon and Zeilberger present a package that allows to compute the

generating functions and their asymptotic behaviour for the regular sets of words without
squaresyy of length|y| = % for % up to 23. Richard and Grimm [36] go one step further,
to % = 24. The entropy�(S) of the set of square-free ternary words is now known to be at
most 1.30194.
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3.2. Getting lower bounds

In order to get an exponential lower bound on the number of ternary square-free words,
there are two related methods, initiated by Brandenburg[6] and Brinkhuis [7]. The first
method is used for instance in [22], the second one, which gives now sharper bounds, was
recently used in [2]. Both rely on the notion of afinite square-free substitutionfrom A∗
into B∗, for some alphabetB. Let us recall that asubstitutionin formal language theory
is a morphismf from some free monoidA∗ into the monoid of subsets ofB∗ that is a
function satisfyingf (e) = {e} andf (xy) = f (x)f (y), where the product on the right-
hand side is the product of the setsf (x) andf (y) in B∗. The substitution isfinite if f (a)

is a finite set for each lettera ∈ A (and so for each wordw ∈ A∗), it is calledsquare-
free if each word inf (w) is square-free wheneverw is a square-free word onA. For an
overview of recent results about power-free morphisms in connection with open problems,
see [36].
Brandenburg’s method goes as follows. LetA = {0,1,2} and letB = {0,1,2, 0̄, 1̄, 2̄}.

Let g : B∗ → A∗ be the morphism that erases bars. Define a substitutionf by f (a) =
g−1(a). Clearly,f is finite and square-free. Also each square-free wordw of lengthn over
A is mapped onto 2n square-free words of lengthn overB.
The second step consists in finding a square-free morphismh from B∗ into A∗.

Assume thath is uniform of length r. Then each square-free wordw of length n
over B is mapped into a square-free word of lengthrn over A by the morphismh.
It follows that there are 2n square-free words of lengthrn for each square-free word of
lengthn, that is

s(rn)�2ns(n).

Sinces(n) is submultiplicative, one hass(rn)�s(n)r . Reporting in the previous equation
yieldss(n)�2n/(r−1) and proves that growth is exponential.
It remains to give a square-freemorphismh fromB∗ intoA∗, whereB = {0,1,2, 0̄, 1̄, 2̄}.

It appears that

h :

0 �→ 0102012021012102010212

1 �→ 0102012021201210120212

2 �→ 0102012102010210120212

0̄ �→ 0102012102120210120212

1̄ �→ 0102012101202101210212

2̄ �→ 0102012101202120121012

is a square-free morphism. Herer = 22, and consequentlys(n)�2n/21. The following is a
slight variation of Brandenburg’s result:

Theorem 6. The numbers(n) of square-free ternary words of length n satisfies the inequal-
ity s(n)�6 · 1.032n.
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A more direct method was initiated by Brinkhuis[7]. He considers a 25-uniform substi-
tution f fromA∗ into itself defined by

f :
0 �→ {U0, V0}
1 �→ {U1, V1}
2 �→ {U2, V2}

whereU0 = x1x̃, V0 = y0ỹ andx = 012021020102 andy = 012021201021. The words
U1, . . . , V2 are obtained by applying the circular permutation(0,1,2). He proves thatf is
square-free, and thus every square-free wordw of lengthn is mapped onto 2n square-free
words of length 25n. His bound is only 2n/24.
The substitutionf can be viewed as the composition of an inverse morphism and a mor-

phism, whenU0, . . . , V2 are considered as letters and then each of these letters is mapped
to the corresponding word. However, the second mapping is certainly not square-free since
the image ofU0V0 contains the square 00. Thus, the construction of Brinkhuis is stronger.
Indeed, Ekhad and Zeilberger[17] found 18-uniform square-free substitution of the same
form than Brinkhuis’ and thus reduced the bound from 2n/24 to 2n/17. A relaxed version of
Brinkhuis’ construction is used by Grimm [21] to derive the better bound 65n/40, and by
Sun [43] to improve this bound to 110n/42.

4. Other bounds

We review briefly other bounds on the number of repetition-free words. Concerning
cube-free binary words, already Brandenburg [6] gave the following bounds.

Theorem 7. The numberc(n) of binary cube-free words of length n satisfies2 · 1.080n <

2 · 2n/9�c(n)�2 · 1251(n−1)/17 < 1.315· 1.522n.

The upper bound was improved by Edlin[16] to B · 1.4576n for some constantB by
using the “cluster” method.
Next, we consider Abelian repetitions. AnAbelian squareis a nonempty worduu′, where

uandu′ are commutatively equivalent, that isu′ is a permutation ofu. For instance, 012102
is an Abelian square. It is easy to see that there is no infinite Abelian square-free word over
three letters. The existence of an infinite word over four letters without Abelian squares was
demonstrated by Keränen [23]. Also, the question of the existence of exponentially many
quaternary infinite words without Abelian squares was settled by Carpi [10] positively. He
uses an argument similar to Brinkhuis’ but much more involved. Square-free morphisms
from alphabets with more than four letters into alphabets with four letters seem not to
exist [8]. He shows

Theorem 8. The numberd(n) of quaternary words avoiding Abelian squares satisfies
d(n)�C · 219n/(853−85) for some constant C.

This result should be compared to the following, concerning ternary words without
Abelian cubes[2].
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Theorem 9. The numberr(n) of ternary words avoiding Abelian cubes grows faster than
2n/24.

The number of ternary words avoiding Abelian cubes is 1,3,9,24,66,180, . . . . It is the
sequence A096168 in[42]. The authors consider the 6-uniform substitution

h :
0 �→ 001002
1 �→ 110112
2 �→ 002212,122002

This doesnot preserve Abelian cube-free words since the word

0010|02110|11200|10021|10112
which contains an Abelian cube is inh(0101). However, the set{hn(0) : n�0} is shown to
avoid Abelian cubes.
There is an interesting intermediate situation between the commutative and the noncom-

mutative case which is the case where, for the definition of squares, only some of the letters
are allowed to commute. To be precise, consider a set� of commutation relations of the
form ab = ba for a, b letters, and define the relationu ∼ vmod� as the transitive closure
of the relationuabv ∼ ubav for all wordsu, v andab = ba in�. A�-squareis a worduu′
such thatu ∼ u′mod�. If � is empty, a�-squareis just a square, and if� is the set of all
ab = ba for a �= b, a�-squareis an Abelian square. Since there is an infinite quaternary
word that avoids Abelian squares, the same holds for�-squares. For 3 letters, the situation
is on the edge since ther exist infinite square-free words, but no infinite Abelian square-free
word. The result proved by Cori and Formisano[13] is:

Theorem 10. If the set� of commutation relations contains at most one relation, then the
set of ternary words avoiding�-squares is infinite, otherwise it is finite.

It has been proved by the same authors[14] that the number of words grows only poly-
nomially with the length.
This result is different from [11] where square-free words in partially commutative

monoids are investigated.
Another variation concerns circular words. A circular word avoids�-powers if all its

conjugates avoid�-powers. For instance, 001101 is a circular 2+-power free word because
each word in the set

{001101,011010,110100,101001,010011,100110}
is a 2+-power free word. On the contrary, the word 0101101 is cube-free but its conjugate
1010101 is not cube-freeandnot even3+-power free; so, viewedasacircularword, 0101101
is not 3+-power free. It is proved in[1] that there exist infinitely many 5/2+-power free
binary circular words, whereas every circular word of length 5 either contains a cube or
a 5/2-power. This improves a previous result [15] showing that there are infinitely many
cube-free circular binary words, see also [19]. No informations is available about the growth
of the number of these words.
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