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Abstract

This survey reviews recent results on repetitions in words, with emphasis on the estimations for
the number of repetition-free words.
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1. Introduction

A repetitionis any bordered word. Quite recently, several new contributions were made
to the field of repetition-free words, and to counting repetition-free words. The aim of this
survey is to give a brief account of some of the methods and results.

The terminology deserves some commentsoletl be a rational number. A nonempty
word w is ana-powerif there exist words, x” with x” a prefix ofx and an integen, such
thatw = x"x" ando = n + |x'|/|x| = |w|/|x|. For example, the French woashtente is
a %—power, and the English wordlutshout is a%—power. Ifo = 2 or 3, we speak about a
square and a cube, like farurmur or kokoko (the examples are taken from [41]). A word
w is anoverlapif it is a a-power for somex > 2. For instancegntente is an overlap.

Let § > 1 be a real number. A word is said toavoid -powers or isf-power-freeif
it contains no factor that is anpower fora.> . A word w is f*-power-fresf it contains
no factor that is am-power foroa > f. Thus, a word is overlap-free if and only if it is
2T -power-free.
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This review reports results on the growth of the numbex-&ee words of lengtim over
ang-letter alphabet. In some cases, growth is bounded by a polynormairirother cases,
it is shown to be exponential in. We consider overlap-free words in the next section,
square-free words in Section 3 and some generalizations in the final section. For basics and
complements, the reader should consult the book of Allouche and 8gllit

2. Counting overlap-free words

We first review estimations for the number of overlap-free words over a binary alphabet.
LetVbethe setof binary overlap-free words andlet) be the number of overlap-free binary
words of lengtn. This sequence starts with2 6, 10, 14, 20 (Sloane’s sequence A007777,
see [42]).

It is clear thatV is factorial (factor-closed). It follows that, as for any factorial set, one
hasv(n + m) <v(n)v(m). Thus the sequende (n)) is submultiplicativeor the sequence
(logv(n)) is subadditive This in turn implies, by a well-known argument, that the sequence
lim,— o0 v(n)Y" has a limit, or equivalently, that the limit

1
MV) = nILmOO - logv(n)

exists. The numbef (V) is called the (topologicalgntropy of the setV. For a general
discussion about entropy of square-free words[4@he entropy of the set of square-free
words is strictly positive, as we will see later. On the contrary, the entropy of the set of
overlap-free words is zero. This is a consequence of the following result of Restivo and
Salemi [34,35].

Theorem 1. The numbemw(n) of binary overlap-free words of length n is bounded from
above by a polynomial in.n

They proved that(n) is bounded by:*. The proof is based on the following structural
property of overlap-free words which we state in the more general settifggbfRecall
first that the Thue—Morse morphism is defined by

0~ 01
1 10

Lemma 2. Let2 < o < 7/3,and let x be a word that avoidspowers. There exist words
u,y,vwithu,v € {e 0, 1,00, 11} and y avoidingz-powers such that = uu(y)v. This
factorization is unique ifx| >7.

First, observe that the lemma does not holddgr7/3 sincex = 0110110 is a 73-
power and has no factorization of the required form. Next, consider as an example the
word x = 011001100 which is a/@l-power, and contains no higher repetition. One gets
x = (01010, andy = 0101 itself avoids repetitions of exponent greater thah 9
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It follows from the lemma that an overlap-free wotthas a factorization

x = upuz) - ) )l G ) - pv)vg,

where eacly; andv; has length at most 2, ang has length at most 4. A simple computation
shows that logx| — 3 < A< log |x|. Thus, the value ofi and each:; andv; andx; may

take a finite number of values, from which the total number of overlap-free words results
to be bounded by - @'°9" = ¢ - n'°94 for some constantsandd.

Another consequence of the lemma is that the Thue—Morse wetd u®(0) is not
only overlap-free but avoids/3-powers. A clever generalization, by Ramperfa4], of a
proof of [39,40] shows that(and its opposite) is the only infinite binary word avoiding
7/3-powers that is a fixed point of a nontrivial morphism.

Restivo and Salemi’s theorem says thé&t) < Cn® for some reak. The upper bound
log 15 for s given by Restivo and Salemi has been improved by Kfoury [24].19 by
Kobayashi [25] to 15866 and by Lepisto in his Master thesis [26] t87; Kobayashi [25]
gives also a lower bound. So

Theorem 3. There are constant§, and C» such that
Cin” < v(n) < Con®,

wherer = 1.155... ands = 1.37... .

One might ask what the “real” limitis. In fact, a result by Cassaid2¢ shows that there
is no limit. More precisely, he proves

Theorem 4. Setr = liminf 'Olg% ands = lim sup'ﬂ%#. Thenr < 1.276 and
1.332< s.

It is quite remarkable that the sequeng@) is 2-regular. This was shown by Carpi
[9] (see [3] for the definition of regular sequences). As we shall see in the next section, the
number of square-free ternary words grows exponentially. In fact, Brandenburg [6] proves
also that the number of binary cube-free words grows exponentially. The exact frontier
between polynomial and exponential growth has been shown to be the expgBdnyt 7
Karhumaki and Shallit [22].

Theorem 5. There are only polynomially many binary words of length n that avoid
7/3-powers but there are exponentially many binary words that avi@™-powers

3. Counting square-free words

We report now estimations for the number of square-free words over a ternary alphabet.
Let Sbe the set of ternary square-free words ands{e) be the number of square-free
ternary words of length.

SinceSis factorial (factor-closed), the sequerieé:)) is submultiplicative and the (topo-
logical) entropyl(S) exists. We will show that(S) is not zero, and give bounds fo¢S). The
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sequence(n) starts with 36, 12, 18, 30, 42, 60 (Sloane’s sequence A006156, $42]).
The sequence(n) is tabulated for <90 in [4] and for 9 »n <110 in [21].

3.1. Getting upper bounds

There is a simple method to get upper bounds for the number of ternary square-free
words, based on using better and better approximations by regular languages.

Clearly, any square-free word ovdr = {0, 1, 2} contains no factor 00, 11 or 22, so
S c A*\ A*{00, 11, 22} A*. Since the latter is a regular set, its generating function is a
rational function. It is easily seen to h&r) = (1 + ¢)/(1 — 2¢). Indeed, once an initial
letter is fixed in a word of this set, there are exactly two choices for the next letter (this
remembers Pansiot’s encoding [31], see also [28]}.(8p< 2" + 2"~ forn > 1. Moreover,
since a word of length at most 3 is square-free if and only if id T\, A*{00, 11, 22} A*,
the equalitys (n) = 2" + 2"~ holds forn <3, and thus (2) = 6 ands(3) = 12.

One can continue in this way: clearly none of the 6 squares of length 4; 0202 101Q
1212 202Q 2121 is afactor of aword i, and it suffices to compute the generating function
ofthe setA*\ A*X A*, whereX = {00, 11, 22,0101, 0202 1010 1212 202Q 2121} to get
better upper bound fat(n). Some of these generating functions are given explicitly in [36].
For words without squares of length 2 or 4, the serig& is 2r + 212 + 3t3) /(1 —t — 1?)

(see [36]). Again, a direct argument gives the reason: a ternary word without squares of
length 2 or 4 either ends witabafor a # b, or with abc where the letters, b, ¢ are
distinct. Denote by, (resp. byv,) the number of words of the first (of the second) type,
and bys® (n) the total number. Then it is easily seen that, #0x 4, u, = v,_1 and

v, = s@m — 1), and consequently® (n) = s@n — 1) + s@® — 2). This shows of
course that(n) < Ct", for some constar€, with t = (1 + +/5)/2 the golden ratio.

More generally, we consider any finite alphaBet finite setX and the sekK = A* \

A*X A*. We may assume that contains no proper factor of one of its elements, so it is

a code. Since the sét is a quite particular regular set, we will compute its generating
function by using special techniques. There exist at least two (related) ways to compute
these generating functions.

First, we consider theaemaphore cod€ = A*X \ A*XAT. Semaphore codes (see
e.g. [5]) were introduced by Schiitzenberger [38] under the nam@des. The computation
below remembers of course also recurrent events in the sense of Feller [18]. This set
the set of words that have a suffixXbut have no other factor iK. Thus the seK is also
the set of proper prefixes of elementddpand sinceC is a maximal prefix code, one has

C*K = A*. (1)
Next, one has (s€é] or [27])

Kx= )Y CyR,, (xe€X), 2
yeX C

whereC, = C N A*y andR, . is thecorrelation setof y andz, given by

Ry, = {zflx lzeSy)NPx)}.
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Here,S(y) (respP(x)) is the set of proper suffixes gf(proper prefixes ox). Of course,
c=U¢c,. (3)

yeX

Egs. ()—(3) are Card + 2 equations in Carll + 2 unknowns and allow to compute the
languages or their generating series.

As an example, consideéf = {00, 11, 22}. Denote byf the generating function of the
setZ. Then Egs. (1)—(3) translate into

1-3fk=1- fc.
fraa =12 fxk = A+ fc,. fc=3fc, (aeA)
SiNCeRuq.aa = {1, a}andRyq pp = Bfora # b. Thus 32 fx = (1+1) fc and(1—3¢) fx =
1—fc=1- %fK, whence
B 1 1+t
= T =
1-3+3& 1-2

Sk

The second technique is called the “Goulden—Jackson clustering technid@el.imhe
idea is tomark occurrences of words iX in a word, and to weight a marked word with an
indicator of the number of its marks. If a wotdhasr marks, then its weight i6—1)" ¢/,
As an example, ifX is just the singletonX = {010}, the wordw = 01001010 exist
in eight marked versions, namely 01001010, @1@ 0, 0100100, 0100101001001010,
01001010 01001010 01001010 Let us writew for a marked version ab, andp (w) for its
weight. The sum of the weights of the marked versions of a waigl if w contains a factor
in X, and is 1 otherwise. In other terms, the generating series of thie seA* \ A* X A* is

fk= 3 pw),
weA*

where the sum is over all marked versions of all words. Now, it appears that this series is
rather easy to compute when one considers clustersistéeris a marked wordv where
every position is marked, and that is not the product of two other clusters. Thus,$or
{010}, the word 0101010is not a cluster since it is the product of the two clusters 010
and01010 A marked word is a unique product of unmarked letters and of clusters. Thus,
a marked wordb is either the empty word, or its last letter is not marked, or it ends with a
cluster. Thus

fk =1+ fx @kt + fx @) p(C),
wherek is the size of the alphabet apdC) is the generating series of the gedf clusters.
It follows that

1
1—kt—pC)’
A cluster ends with a word iX. LetC, = C N A*x be the clusters ending ik Then the
generating serieg(C,) are the solutions of the system

p(C) = —t" — 3 (y: x)p(Cy), (5)
yeX

fxk@) = 4)
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wherey : x is the (strict)correlation polynomiabf y andx defined by

yix= Y tFl
ZERy x\{€}
Eq. B) is a system of linear equations, and the number of equations is the ¥iz8alf/ing
this system gives the desired expression.
Consider the exampl®& = {010} over A = {0, 1}. Then the generating series &f =
A*\ A*0104* is

1
N=—F—7>—
T 1-2t - p(Co10
andp(Co10) = —1° — 12 p(Co10), whencep(Co10) = 1;—232 and
1+1¢2
1) = = :
Y l_2t+#3t2 1-2r412—13

Both methods are just two equivalent formulations of the same computation, as pointed out
to me by Dominique Perrin. WheXi = {x} is a singleton, Eq.) indeed becomes

Kx =CR
with R = Ry ., and in noncommuting variables, EQ4) (s just
Kl—A)=1-C
S0
K1l—A)=1—KxR?!
whence
KQl-—A+xRH=1 (6)

Now, the coefficients of the seriesx R~1 are precisely the weights of the clusterof
So Eg. 6), converted to a generating series, yields precisely Eq. (4)! In the general case
one considers the (row) vectaks = (x),cx andC = (Cy)x € X and theX x X matrix

R = (Ry.,)xyex- Then Eq. (2) isk X = CR and the same computation as above gives

K = (1— A+ Y ()?Rl)x) -1
xeX

The computation of the generating functions for $ets the form above, or more generally

of the serieszweKn(w)Hw', wherer is a probability distribution om*, is an important

issue both in concrete mathematj2€], in the theory of codes [5] and in computational

biology (see e.g. chapters 1, 6 and 7 in [27]). Extensions are in [30,33].

In their paper [29], Nanoon and Zeilberger present a package that allows to compute the
generating functions and their asymptotic behaviour for the regular sets of words without
squaregy of length|y| = ¢ for £ up to 23. Richard and Grimm [36] go one step further,
to ¢ = 24. The entropyl(S) of the set of square-free ternary words is now known to be at
most 130194.
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3.2. Getting lower bounds

In order to get an exponential lower bound on the number of ternary square-free words,
there are two related methods, initiated by Branden@f@nd Brinkhuis [7]. The first
method is used for instance in [22], the second one, which gives now sharper bounds, was
recently used in [2]. Both rely on the notion offiaite square-free substitutiofnom A*
into B*, for some alphabeB. Let us recall that @ubstitutionin formal language theory
is a morphisnf from some free monoidt* into the monoid of subsets d* that is a
function satisfyingf (e) = {e} and f(xy) = f(x)f(y), where the product on the right-
hand side is the product of the sgtéx) and f (y) in B*. The substitution ifinite if f(a)
is a finite set for each letter € A (and so for each wordh € A*), it is calledsquare-
freeif each word inf(w) is square-free whenever is a square-free word ofl. For an
overview of recent results about power-free morphisms in connection with open problems,
see [36].

Brandenburg’s method goes as follows. let= {0, 1, 2} and letB = {0, 1, 2,0, 1, 2}.

Letg : B* — A* be the morphism that erases bars. Define a substitfifignf (a) =
g (a). Clearly,f is finite and square-free. Also each square-free wonf lengthn over
Ais mapped onto’2square-free words of lengthoverB.

The second step consists in finding a square-free morphishom B* into A*.
Assume thath is uniform of lengthr. Then each square-free wond of length n
over B is mapped into a square-free word of length over A by the morphismh.

It follows that there are’2square-free words of lengtim for each square-free word of
lengthn, that is

s(rn)>=2"s(n).

Sinces(n) is submultiplicative, one hagrn) <s(n)". Reporting in the previous equation
yieldss(n) >2"/=D and proves that growth is exponential.

It remains to give a square-free morphisfrom B* into A*, whereB = {0, 1, 2, 0, 1, 2}.
It appears that

0 — 0102012021012102010212
1 — 0102012021201210120212
2 — 0102012102010210120212
" 0 ~ 0102012102120210120212
1 — 0102012101202101210212
2 + 0102012101202120121012

is a square-free morphism. Here= 22, and consequentlyn) >2"/?1, The following is a
slight variation of Brandenburg’s result:

Theorem 6. The numbes (n) of square-free ternary words of length n satisfies the inequal-
ity s(n) >6-1.032".
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A more direct method was initiated by Brinkh{ig. He considers a 25-uniform substi-
tution f from A* into itself defined by

0 — {Uo, Vo}
f: 1l {Ug, Vi)
2 = {Uz, Vo}

whereUp = x1%, Vp = y0y andx = 012021020102 and = 012021201021. The words
Ui, ..., Vo are obtained by applying the circular permutat{énl, 2). He proves thatis
square-free, and thus every square-free womf lengthn is mapped onto’2square-free
words of length 2b. His bound is only 2/24,

The substitutiorf can be viewed as the composition of an inverse morphism and a mor-
phism, whenly, ..., V> are considered as letters and then each of these letters is mapped
to the corresponding word. However, the second mapping is certainly not square-free since
the image of/gVy contains the square 00. Thus, the construction of Brinkhuis is stronger.
Indeed, Ekhad and Zeilberggr7] found 18-uniform square-free substitution of the same
form than Brinkhuis’ and thus reduced the bound frai?2to 2*/17. A relaxed version of
Brinkhuis’ construction is used by Grimm [21] to derive the better bourtd*85and by
Sun [43] to improve this bound to 1142,

4. Other bounds

We review briefly other bounds on the number of repetition-free words. Concerning
cube-free binary words, already Brandenburg [6] gave the following bounds.

Theorem 7. The numbeer(n) of binary cube-free words of length n satisfResl.080" <
2. 29 e(n)<2- 12517 D/17 - 1.315. 1.522".

The upper bound was improved by Ed[it6] to B - 1.4576' for some constanB by
using the “cluster” method.

Next, we consider Abelian repetitions. Afelian squarés a nonempty wordu’, where
uandu’ are commutatively equivalent, thatiSis a permutation ofi. For instance, 012102
is an Abelian square. It is easy to see that there is no infinite Abelian square-free word over
three letters. The existence of an infinite word over four letters without Abelian squares was
demonstrated by Kerénen [23]. Also, the question of the existence of exponentially many
guaternary infinite words without Abelian squares was settled by Carpi [10] positively. He
uses an argument similar to Brinkhuis’ but much more involved. Square-free morphisms
from alphabets with more than four letters into alphabets with four letters seem not to
exist [8]. He shows

Theorem 8. The numberd(n) of quaternary words avoiding Abelian squares satisfies
d(n)>C - 219/85-89 for some constant C

This result should be compared to the following, concerning ternary words without
Abelian cubeg$2].
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Theorem 9. The number (n) of ternary words avoiding Abelian cubes grows faster than
2}1/24_

The number of ternary words avoiding Abelian cubes 3 D, 24, 66, 180, ... . Itisthe
sequence A096168 [d2]. The authors consider the 6-uniform substitution

0 — 001002
h:1+— 110112
2 — 002212122002

This doesot preserve Abelian cube-free words since the word
00100211Q91120Q1002110112

which contains an Abelian cube iski0101). However, the seth” (0) : n >0} is shown to
avoid Abelian cubes.

There is an interesting intermediate situation between the commutative and the noncom-
mutative case which is the case where, for the definition of squares, only some of the letters
are allowed to commute. To be precise, consider a&sef commutation relations of the
formab = ba for a, b letters, and define the relatian~ v mod® as the transitive closure
of the relatioruabv ~ ubav for allwordsu, v andab = ba in . A @-squareis a worduu’
such that: ~ u’ mod@®. If ® is empty, a@-squareis just a square, and @ is the set of all
ab = ba for a # b, a®@-squareis an Abelian square. Since there is an infinite quaternary
word that avoids Abelian squares, the same holdé&f@quares. For 3 letters, the situation
is on the edge since ther exist infinite square-free words, but no infinite Abelian square-free
word. The result proved by Cori and Formisdt8] is:

Theorem 10. If the set® of commutation relations contains at most one relatiben the
set of ternary words avoidin@-squares is infiniteotherwise it is finite

It has been proved by the same autHa# that the number of words grows only poly-
nomially with the length.

This result is different from [11] where square-free words in partially commutative
monoids are investigated.

Another variation concerns circular words. A circular word avaigsowers if all its
conjugates avoid-powers. For instance, 001101 is a circuldr@ower free word because
each word in the set

{00110101101011010010100101001110011Q

is a 2" -power free word. On the contrary, the word 0101101 is cube-free but its conjugate
1010101 is not cube-free and not evenBower free; so, viewed as a circular word, 0101101

is not 3"-power free. It is proved iiil] that there exist infinitely many /&2*-power free
binary circular words, whereas every circular word of length 5 either contains a cube or
a 5/2-power. This improves a previous result [15] showing that there are infinitely many
cube-free circular binary words, see also [19]. No informations is available about the growth
of the number of these words.
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