
On the Complexity of Hopcroft’s State
Minimization Algorithm

Jean Berstel1 and Olivier Carton2

1 Institut Gaspard Monge,
Université de Marne-la-Vallée

http://www-igm.univ-mlv.fr/~berstel
2 LIAFA, Université Paris 7

http://www.liafa.jussieu.fr/~carton

Abstract. Hopcroft’s algorithm for minimizing a deterministic automa-
ton has complexity O(n log n). We show that this complexity bound is
tight. More precisely, we provide a family of automata of size n = 2k

on which the algorithm runs in time k2k. These automata have a very
simple structure and are built over a one-letter alphabet. Their sets of
final states are defined by de Bruijn words.

1 Introduction

Efficient state minimization algorithms are an important issue for tools involving
finite state automata, as they arise e.g. in computational linguistics. The elemen-
tary minimization algorithm usually credited to Moore (see also [1]) has been
improved by Hopcroft [2]. In the special case of finite sets, minimal automata
can be constructed and maintained even more efficiently (see [3, 4] and [5] for
a recent survey). Extensions to more general situations of Hopcroft’s algorithm
are considered in [6, 7, 8].

Hopcroft’s algorithm is known to run in time O(n log n) for an automaton
with n states. We show here that this bound is tight, that is that this running
time is reached for an infinite family of automata. For that purpose we define
a class of automata over a unary alphabet. These automata have a very simple
structure since they are just made of a single cycle. The final states of these
automata are defined by a pattern given by de Bruijn words. The simple structure
of the automaton and the special layout of the final states allows us to control
precisely how some particular execution of the algorithm runs.

We should point out that Hopcroft’s algorithm has a degree of freedom be-
cause, in each step of its main loop, it allows a free choice of a set of states to be
processed. Hopcroft has proved that any sequence of choices can be processed
in time O(n log n). Our family of examples results in showing that there exists
some “unlucky” sequence of choices that slows down the computation to achieve
the lower bound Ω(n log n). Partial results on another family of examples have
been obtained in [9].

M. Domaratzki et al. (Eds.): CIAA 2004, LNCS 3317, pp. 35–44, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

36 J. Berstel and O. Carton

The paper is organized as follows. After some general definitions we outline
Hopcroft’s algorithm. We next present de Bruijn words, and then introduce our
family of automata. These are simply one letter automata with n = 2k states
organized as a cycle. The key property is the choice of final states. Exactly one
half of the states are final, and they are chosen according to the occurrence of
the symbol 1 in a de Bruijn word of order k.

Given such a cyclic automaton, we next present the strategy used to choose
the sets in Hopcroft’s algorithm. We then prove that this choice indeed leads to
a running time in O(n log n). It should be observed that minization of one-letter
automata can be performed in linear time by another algorithm [7].

2 Minimal Automaton

In this section, we fix some notation and we give some basic definitions.
We only use deterministic and complete automata. An automaton A over

a finite alphabet A is composed of a finite state set Q, a distinguished state
called the initial state, a set F ⊆ Q of final states, and of a next-state function
Q × A → Q that maps (q, a) to a state denoted by q · a.

A partition of a set Q is a family {Q1, . . . , Qn} of nonempty subsets of Q
that are pairwise disjoint (that is Qi ∩ Qj = ∅ for i �= j) and cover Q, (that is
Q = Q1 ∪ · · · ∪ Qn). The subsets Qi are called the classes of the partition.

If Q is the state set of an automaton A, a congruence of A is a partition
which is compatible with the transitions of A. This means that if q and q′ are
in the same class, then q · a and q′ · a are also in the same class for any q, q′ ∈ Q
and any a ∈ A.

A partition of Q saturates a subset F of Q if F is the union of some of its
classes. This also means that in a class either all elements or none belong to F . A
partition {Q1, . . . , Qn} is coarser than a partition {Q′

1, . . . , Q
′
m} if the partition

{Q′
1, . . . , Q

′
m} saturates each class Qi. This relation defines a partial order on

partitions.
It is well known that any regular set L of finite words is accepted by a unique

minimal deterministic automaton.
It should be noticed that the minimal automaton of A does not depend on

the initial state of A as long as any state is reachable from it. In what follows,
we often omit to specify the initial state since it does not matter.

3 Hopcroft’s Algorithm

Hopcroft [2] has given an algorithm that computes the minimal automaton of
a given deterministic automaton. The running time of the algorithm is O(|A| ×
n log n) where |A| is the cardinality of the alphabet and n is the number of states
of the given automaton. The algorithm has been described and re-described
several times [2, 10, 11, 12, 13, 14].

The algorithm is outlined below, and it is explained then in some more detail.

On the Complexity of Hopcroft’s State Minimization Algorithm 37

It is convenient to use the shorthand T c = Q \ T when T is a subset of the
set Q of states. We denote by min(B, C) the set of smaller size of the two sets
B and C, and any one of them if they have the same size.

1: P ← {F, F c}
2: for all a ∈ A do
3: Add((min(F, F c), a), S)
4: while S �= ∅ do
5: (C, a) ← Some(S) � takes some element in S
6: for each B ∈ P split by (C, a) do
7: B′, B′′ ← Split(B, C, a)
8: Replace B by B′ and B′′ in P
9: for all b ∈ A do

10: if (B, b) ∈ S then
11: Replace (B, b) by (B′, b) and (B′′, b) in S
12: else
13: Add((min(B′, B′′), b), S)

Algorithm 1. HopcroftMinimization

Given a deterministic automaton A, Hopcroft’s algorithm computes the
coarsest congruence which saturates the set F of final states. It starts from
the partition {F, F c} which obviously saturates F and refines it until it gets a
congruence. These refinements of the partition are always obtained by splitting
some class into two classes.

Before explaining the algorithm in more detail, some notation is needed. For
a set B of states, we note by B · a the set {q · a | q ∈ B}. Let B and C be two
sets of states and let a be a letter. We say that the pair (C, a) splits the set B if
both sets (B ·a)∩C and (B ·a)∩Cc are nonempty. In that case, the set B is split
into the two sets B′ = {q ∈ B | q · a ∈ C} and B′′ = {q ∈ B | q · a /∈ C} that we
call the resulting sets. Note that a partition {Q1, . . . , Qn} is a congruence if and
only if for any 1 ≤ i, j ≤ n and any a ∈ A, the pair (Qi, a) does not split Qj .

The algorithm proceeds as follows. It maintains a current partition P =
{B1, . . . , Bn} and a current set S of pairs (C, a) where C is a class of P and
a is a letter that remain to be processed. The set S is called the waiting set.
The algorithm stops when the waiting set S becomes empty. When it stops, the
partition P is the coarsest congruence that saturates F . The starting partition
is the partition {F, F c} and the starting set S contains all pairs (min(F, F c), a)
for a ∈ A.

The main loop of the algorithm takes one pair (C, a) out of the waiting
set S and performs the following actions. Each class B of the current partition
(including the class C) is checked whether it is split by the pair (C, a). If (C, a)
does not split B, then nothing is done. Otherwise, the class B is replaced in the
partition P by the two resulting sets B′ and B′′ of the split. For each letter b,
if the pair (B, b) is in S, it is replaced in S by the two pairs (B′, b) and (B′′, b),
otherwise only the pair (min(B′, B′′), b) is added to S.

38 J. Berstel and O. Carton

The main ingredient in the analysis of the running time of the algorithm is
that the splitting of all classes of the current partition according to a pair (C, a)
takes a time proportional to the size of C. Therefore, the global running time
of the algorithm is proportional to the sum of the sizes of the classes processed
in the main loop. Note that a pair which is added to the waiting set S is not
necessarily processed later because it can be split by the processing of another
pair before it is considered.

It should be noted that the algorithm is not really deterministic because
it has not been specified which pair (C, a) is taken from S to be processed at
each iteration of the main loop. This means that for a given automaton, there
are many executions of the algorithm. It turns out that all of them produce
the right partition of the states. However, different executions may give rise to
different sequences of splitting and also to different running time. Hopcroft has
proved that the running time of any execution is bounded by O(|A| × n log n).

In this paper, we show that this bound is tight. More precisely, we show that
there exist automata over a one-letter alphabet and of size n and there exist
executions on these automata that give a running time of magnitude O(n log n).
Actually, we will not give automata for all integers n but those of the form 2k.

4 De Bruijn Words

The family of automata that we use to show the lower bound on the running time
of Hopcroft’s algorithm are based of de Bruijn words. We recall their definition.

Let w = w1 . . . wm a word of length m. By a slight abuse, we use the notation
wi even if the integer i is greater than m. We denote by wi the letter wi′ where
i′ is the unique integer such that 1 ≤ i′ ≤ m and i′ = i mod m. A circular
occurrence of a word u = u1 . . . up of length p in w is an integer k in the interval
[1;m] such that wk+i−1 = ui for each i in [1; p].

A de Bruijn word of order n over the alphabet B is a word w such that each
word of length n over B has exactly one circular occurrence in w. Since there
are |B|n words of length n, the length of a de Bruijn word of order n is |B|n.

Set for instance the alphabet B = {0, 1}. The word w = 1100 is a de Bruijn
word of order 2 since each of the words {00, 01, 10, 11} has a circular occurrence
in w. The word w = 11101000 is a de Bruijn word of order 3.

De Bruijn words are widely investigated (see for instance [15]). It is well
known that for any alphabet, there are de Bruijn words for all orders. We recall
here a short proof of this fact. Let B be a fixed alphabet and let n be a fixed
integer. We recall the definition of the de Bruijn graph Bn of order n. Its vertex
set is the set Bn−1 of all words of length n − 1. The edges of Bn are the pairs
of the form (bu, ua) for u ∈ Bn−2 and a, b ∈ B. This graph is often presented
as a labeled graph where each edge (bu, ua) is labeled by the letter a. Note that
the function which maps each word w = bua of length n to the edge (bu, ua) is
one to one. Therefore, a de Bruijn word of order n corresponds to an Eulerian
circuit in Bn. Since there are exactly |B| edges entering and leaving each vertex
of Bn, the graph Bn has Eulerian circuits [15] and there are de Bruijn words

On the Complexity of Hopcroft’s State Minimization Algorithm 39

of order n. In Fig. 1 below we show the de Bruijn graph of order 4. Taking an
Eulerian circuit from it, one obtains the de Bruijn word w = 0000100110101111
of order 4.

Fig. 1. The de Bruijn graph of order 4 over the alphabet {0, 1}

5 Cyclic Automata

In what follows, we only consider de Bruijn words over the binary alphabet
B = {0, 1}. Let w be a de Bruijn word of order n. Recall that the length of w
is 2n. We define an automaton Aw over the unary alphabet {a} as follows. The
state set of Aw is {1, . . . , 2n} and the next state function is defined by i ·a = i+1
for i < 2n and 2n · a = 1. Note that the underlying labeled graph of Aw is just
a cycle of length 2n. The final states really depend on w. The set of final states
of Aw is F = {1 ≤ i ≤ 2n | wi = 1}.

For a word u over B, we define a subset Qu of states of Aw. By definition the
set Qu is the set of positions of circular occurrences of u in w. If the length of u
is n, the set Qu is a singleton since the de Bruijn word w has exactly one circular
occurrence of u. More generally, if the length of u is less than n, the cardinality
of Qu is 2n−|u| since there are as many circular occurrences of u as there are
words v such that |uv| = n. If u is the empty word, then Qu is by convention
the set Q of all states of Aw. By definition, the set F of final states of Aw is Q1
while its complement F c is Q0.

Fig. 2. Cyclic automaton Aw for w = 11101000

40 J. Berstel and O. Carton

Let w be the de Bruijn word 11101000. The automaton Aw is pictured in
Fig. 2. The sets Q1, Q01 and Q011 of states are respectively {1, 2, 3, 5}, {4, 8}
and {8}.

Since any circular occurrence of u in w is followed by either 0 or 1, the equality
Qu = Qu0 ∪ Qu1 holds. If a word u = bu′ has a circular occurrence k in w, its
suffix u′ has a circular occurrence k + 1 in w. If follows that if u is factorized
u = bu′ where b ∈ B, then Qu · a ⊂ Qu′ .

6 Hopcroft’s Algorithm on Cyclic Automata

We claim that the running time of Hopcroft’s algorithm on a cyclic automa-
ton Aw may be of order n2n. Before giving the proof of this claim, we give an
example of an execution on the automaton pictured in Fig. 2. Since cyclic au-
tomata are over the unary alphabet A = {a}, we merely say that a class C splits
a class B to mean that the pair (C, a) splits the class B.

– The starting partition is P = {F, F c} = {Q0, Q1} and S = {Q1}.
– The class Q1 is processed.

• The class Q0 is split into Q00 and Q01, and Q01 is added to S.
• The class Q1 is split into Q10 and Q11, and Q11 is added to S.

Then P = {Q00, Q01, Q10, Q11} and S = {Q01, Q11}.
– The class Q01 is processed.

• The class Q00 is split into Q000 and Q001, and Q001 is added to S.
• The class Q10 is split into Q100 and Q101, and Q101 is added to S.

Then P = {Q000, Q001, Q01, Q100, Q101, Q11} and S = {Q11, Q001, Q101}.
– The class Q11 is processed.

• The class Q01 is split into Q010 and Q011, and Q011 is added to S.
• The class Q11 is split into Q110 and Q111, and Q111 is added to S.

Then P = {Q000, Q001, Q010, Q011, Q100, Q101, Q110, Q111} and
S = {Q001, Q011, Q101, Q111}.

– Classes Q001, Q011, Q101, Q111 are processed but this gives no further split-
ting since the partition is made of singletons.

Let us point out some properties of this particular execution of the algorithm.
The classes that appear during the the execution are all of the form Qu for some
word u. Every time a class Qu is split, it is split into the classes Qu0 and Qu1.
Since these two classes have the same cardinality, the algorithm may either add
one or another one to S. In this execution we have always assumed that it
chooses Qu1.

When the algorithm processes Q01, it could have chosen to process Q11 in-
stead. The algorithm would have run differently because the class Q01 would
have been split by Q11.

We now describe the worst case strategy which we use to prove that the
O(n log n) bound of Hopcroft’s algorithm is tight. Given n and the automaton

On the Complexity of Hopcroft’s State Minimization Algorithm 41

Aw, we construct a sequence (Pk,Sk) for k = 1, . . . , n where Pk and Sk are the
partition and the waiting set given by

Pk = {Qu | u ∈ B
k} and Sk = {Qv | v ∈ B

k−11}.

In particular, P1 = {Q0, Q1} is the starting partition of Hopcroft’s algorithm
and S1 = {Q1} is the starting content of the waiting set. The pair (Pk+1,Sk+1)
is obtained from the pair (Pk,Sk) by obeying to the following strategy: choose
the sets Qv of Sk in such an order that Qv does not split any set in the current
waiting set S.

More precisely, a linear order < on Sk is said to be non-splitting if whenever
Qv′ splits Qv then Qv < Qv′ . In other terms the strategy we choose is to process
sets in Sk in some order which avoids splitting. We call such a strategy a non-
splitting strategy. We will see in Proposition 1 that during this process, each
removal of an element of Sk contributes to two elements in Sk+1. It happens,
as we will prove, that the new sets are not split by the currently processed set
either. We will see in Proposition 2 that non-splitting orders do exist.

The transition from (Pk,Sk) to (Pk+1,Sk+1) involves 2k−1 iterations of the
main loop of the algorithm. Each iteration removes one set from the waiting set,
and as we will show splits exactly two sets in the current partition and adds
exactly two sets to the waiting set. These latter sets are of the form Qv for
v ∈ B

k1.

Proposition 1. If Hopcroft’s algorithm starts from (Pk,Sk) and processes the
sets in Sk in a non-splitting order, it yields the pair (Pk+1,Sk+1).

Proposition 2. Each Sk admits non-splitting orders.

We start with several lemmas. Some properties of the splitting of the sets of
the form Qu are needed. They are stated in the following lemma.

Lemma 1. Let u and v be two words of length smaller than n. The pair (Qv, a)
splits Qu if and only if there are b ∈ B and s ∈ B

+ such that us = bv. If (Qv, a)
splits Qu, the resulting sets are Qus and Qu \Qus. In particular if |u| > |v|, then
Qv does not split Qu.

Proof. Assume that u = bu′ where b ∈ B. Then the inclusion Qu ·a ⊂ Qu′ holds.
Therefore if v is not equal to u′s for some s ∈ B

∗, the intersection (Qu · a) ∩ Qv

is empty and (Qv, a) does not split Qu. Assume now that v = u′s for some s.
If s is the empty word, the intersection (Qu · a) ∩ Qc

v is empty and (Qv, a) does
not split Qu. It follows that s is not empty and that us = bv.
�
Corollary 1. If u and v are two words of the same length, the pair (Qv, a) splits
Qu if and only if there are b, b′ ∈ B such that ub′ = bv. If (Qv, a) splits Qu, the
resulting sets are Qu0 and Qu1.

In other terms, if u and v are two words of the same length k, then Qv splits
Qu iff there is an edge (u, v) in the de Bruijn graph Bk+1.

We are now ready for the proof of Proposition 1.

42 J. Berstel and O. Carton

Proof. (of Proposition 1) We consider how the execution goes according to our
non-splitting strategy from the pair (Pk, Sk) to the pair (Pk+1,Sk+1). We denote
by P and S the current values of the partition and of the waiting set when we
process the classes in Sk in a fixed non-splitting order. At the beginning of the
execution, P = Pk and S = Sk and at the end P = Pk+1 and S = Sk+1. By
Corollary 1, each class Qu of Pk is split by exactly one class Qv in Sk and each
class Qv splits two classes Qu and Qu′ in Pk. Moreover, Qv does not split any
other class in the current partition. By the choice of the ordering, both classes
Qu and Qu′ do not belong to S when Qv is processed. The class Qu is split
into the classes Qu0 and Qu1. Since these two classes have the same cardinality,
either Qu0 or Qu1 may be added to S. Similarly the class Qu′ is split into the
classes Qu′0 and Qu′1. The execution of our strategy adds the classes Qu1 and
Qu′1 to the set S. The execution continues until all classes in Sk have been
processed. While this is done, classes Qu1 for u ∈ B

k are added to S. When all
classes Qu from Sk have been processed, the partition P and the set S are Pk+1
and Sk+1.
�

We now proceed to proof of the existence of non-splitting orders on Sk.

Proof. (of Proposition 2) Let Gk = (Vk, Ek) be the graph where the vertex set is
Vk = B

k−11 and the set of edges is Ek = {(u, v) | Qv splits Qu}. By Corollary 1,
the graph Gk is actually the subgraph of the de Bruijn Bk+1 defined by the set
Vk of vertices. The main property of that graph Gk is to be almost acyclic: For
each k ≥ 0, the only cycle in Gk is the edge (1k, 1k).

It is easy to see that if there is a path of length � from some node to v
in G, then the word v belongs to B

k−�−11�+1. It follows from the claim that the
vertex 1k is the only vertex which can appear in a cycle.

Since this graph is acyclic, the words of B
k−11 can be topologically ordered.

Thus a non-splitting order on Sk is defined by Qu < Qv iff u < v in the previous
topological order.
�

The graph G3 of the previous proof is pictured in Fig. 3.

Fig. 3. The graph G3

Let us come back to the execution given at the beginning of that section. After
Q1 is processed, the partition P and the set S are P = {Q00, Q01, Q10, Q11} and
S = {Q01, Q11}. The class Q11 splits the class Q01 while the class Q01 does not
split the class Q11. A non-splitting order on S2 is given by Q01 < Q11. The class

On the Complexity of Hopcroft’s State Minimization Algorithm 43

Q01 is therefore processed before the class Q11. The partition P and the set S
become P = {Qu | u ∈ B

3} and S = {Qu1 | u ∈ B
2}.

We finally analyze the running time of the algorithm. The following result
shows that the O(n log n) upper bound of the running time of Hopcroft’s algo-
rithm is tight.

Theorem 1. The non-splitting strategy requires n2n operations for the mini-
mization of the automaton Aw of size 2n for any de Bruijn word w of order n.

Proof. The time needed to process a class C is proportional to the size of C. In
the execution that we give the algorithm processes all classes Qu1 for |u| < n.
Summing all the sizes, we get that the running time of the algorithm is n2n

whereas the size of the automaton Aw is 2n.
�

7 Conclusion

We have shown that Hopcroft’s algorithm may have executions running in time
O(n log n). These executions run on the cyclic automata that we have defined. It
is not very difficult to see that there are also executions that run in linear time
for the same automata. It is still open whether there are automata on which all
executions of Hopcroft’s algorithm do not run in linear time.

These different executions depend on the choice of the class which is processed
at each iteration of the main loop of the algorithm. Defining strategies which
specify which class is processed might be of interest from a theoretical and
practical point of view.

Acknowledgment. We would like to thank Luc Boasson and Isabelle Fagnot for
fruitful discussions and the anonymous referees for their helpful comments.

References

1. Hopcroft, J.E., Ullman, J.D.: Formal Languages and their Relation to Automata.
Addison-Wesley (1969)

2. Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automaton.
In Kohavi, Z., Paz, A., eds.: Theory of Machines and Computations, Academic
Press (1971) 189–196

3. Krivol, S.L.: Algorithms for minimization of finite acyclic automata and pattern
matching in terms. Cybernetics 27 (1991) 324– 331 translated from Kibernetika,
No 3, May-June 1991, pp. 11–16.

4. Revuz, D.: Minimisation of acyclic deterministic automata in linear time. Theoret.
Comput. Sci. 92 (1992) 181–189

5. Daciuk, J.: Comparison of construction algorithms for minimal, acyclic, determin-
istic finite-state automata from sets of strings. In Champarnaud, J.M., Maurel,
D., eds.: 7th Implementation and Application of Automata (CIAA 2002). Volume
2608 of Lect. Notes in Comput. Sci., Springer Verlag (2002) 255–261

6. Cardon, A., Crochemore, M.: Partitioning a graph in O(|A| log2 |V |). Theoret.
Comput. Sci. 19 (1982) 85–98

44 J. Berstel and O. Carton

7. Paige, R., Tarjan, R.E., Bonic, R.: A linear time solution for the single function
coarsest partition problem. Theoret. Comput. Sci. 40 (1985) 67–84

8. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput.
18 (1987) 973–989

9. Gai, A.T.: Algorithmes de partionnement : minimisation d’automates et applica-
tions aux graphes. Mémoire de DEA, Université Montpellier II (2003)

10. Gries, D.: Describing an algorithm by Hopcroft. Acta Inform. 2 (1973) 97–109
11. Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algo-

rithms. Addison-Wesley (1974)
12. Beauquier, D., Berstel, J., Chrétienne, P.: Éléments d’algorithmique. Masson

(1992)
13. Blum, N.: A O(n log n) implementation of the standard method for minimizing

n-state finite automata. Inform. Proc. Letters 57 (1996) 65–69
14. Knuutila, T.: Re-describing an algorithm by Hopcroft. Theoret. Comput. Sci. 250

(2001) 333–363
15. Tutte, W.T.: Graph Theory. Volume 21 of Encyclopedia of Mathematics and its

Applications. Addison-Wesley (1984)

	Introduction
	Minimal Automaton
	Hopcroft’s Algorithm
	De Bruijn Words
	Cyclic Automata
	Hopcroft’s Algorithm on Cyclic Automata
	Conclusion

