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Abstract

LetT =A∪B ∪C be an alphabet that is partitioned into three subalphabets. Themixing productof
a wordg overA ∪ B and of a wordd overA ∪ C is the set of wordsw overT such that its projection
ontoA ∪ B givesg and its projection ontoA ∪ C givesd.

Let R be a regularlanguage overT such thatxbcy is in R if and only if xcby is in R for any two
lettersb in B andc in C. In other words,R is commutative overB andC. Is this property “structural”
in the sense thatRcan then be obtained as a mixing product of a regular language overA ∪ B and of
a regular language overA ∪ C?

This question has a rather easy answer, but there are many cases where the answer is negative.
A more interesting question is whetherR can be represented as a finite union of mixed products of
regular languages. For the moment, we do not have an answer to this question. However, we prove
that it is decidable whether, for a givenk, the languageR is a union of at mostk mixed products of
regular languages.

Résumé

Soit T = A ∪ B ∪ C un alphabet partitionné en trois sous-alphabets. Lemélanged’un motg sur
A ∪ B et d’un motd surA ∪ C est l’ensemble des motsw surT dont la projection surA ∪ B donne
le motg et surA ∪ C donne le motd.
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SoitR un langage rationnel surT tel quexbcyest dansR si et seulement sixcbyest dansR pour
deux lettres quelconquesb ∈ B etc ∈ C. En d’autres termes,Rest commutatif surB etC. Est-ce que
cette propriété est “structurelle”, c’est-à-dire peut-on alors obtenirR comme mélange d’un langage
rationnel surA ∪ B et d’un langage rationnel surA ∪ C?

Cette question a une réponse plutôt facile, mais il existe de trop nombreux cas où la réponse est
négative. Une question plus intéressante est de savoir si on peut représenterRcomme une union finie
de mélanges de langages rationnels. Pour l’instant, nous n’avons pas de réponse à cette question.
En revanche, nous montrons qu’il est décidable, pour un entierk donné, siR est union d’au plusk
mélanges de langages rationnels.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

This paper is concerned with a special case of a problem about trace languages, that we
address in a particular setting, and for which we give a partial answer. We first state the
problem and then sketch its relation to trace languages.

LetT be an alphabet that is partitioned into three pairwise disjoint alphabetsA, B, andC,
so that

T = A ∪ B ∪ C A,B,C pairwise disjoint. (1)

Consider a regular languageR that is(B,C)-commutative, i.e., satisfies

zbcy ∈ R ⇐⇒ zcby ∈ R

for all lettersb ∈ B, c ∈ C and wordsz, y. One may ask whetherR can be built up by
“mixing” regular languagesG overA ∪ B andD overA ∪ C. To be more precise, denote
by �B : T ∗ → (A∪B)∗, and�C : T ∗ → (A∪C)∗ the projections fromT ∗ onto(A∪B)∗
and(A ∪ C)∗ respectively, and define themixing productof two wordsu ∈ (A ∪ B)∗ and
v ∈ (A ∪ C)∗ by

u ↑ v = �−1
B (u) ∩ �−1

C (v) .

These products extend to set as usual by

G ↑ D = ⋃
g∈G,d∈D

g ↑ d = �−1
B (G) ∩ �−1

C (D)

for G ⊂ (A∪B)∗ andD ⊂ (A∪C)∗. The question can be stated more formally as follows:
if R is (B,C)-commutative, does there existG andD such thatR = G ↑ D. This is easily
answered, as well shall see. A more interesting question is: is it possible to writeR as a
finite union of setsGi ↑ Di . We do not know whether this problem is decidable. However,
we prove that, given an integerk�1, it is decidable whereRcan be written as a union of at
mostk setsGi ↑ Di .

The general framework is that of free partially commutative monoids and of trace lan-
guages (see e.g.,[1]). Such a free partially commutative monoidM(T, I) over the alphabet
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T is defined by an independence relationI ⊂ T ×T . In our case, letters inB commute with
letters inC, soI = B × C ∪ C × B. Languages we call(B,C)-commutative are precisely
trace languages, that is subsets ofT ∗ that are inverse homomorphic images of subsets in
M(T, I) by the canonical homomorphism. A trace language that is regular is the inverse
homomorphic image of a recognizable subset ofM(T, I). A famous theorem of Zielonka
[3] shows that recognizable trace languages are precisely those recognized by asynchronous
automata.

Duboc[2] considers mixing products of languages (that we defined above in our spe-
cial setting) and she called weakly mixing those languages that are finite unions of mixing
languages (we will call themmixing for short later). She observed that regular trace lan-
guages are not always weakly mixing, but she proved that every regular trace language is
the homomorphic image of some weakly mixing language.

The problem we address can be stated in general as follows: given a regular trace language,
is it decidable if it is mixing (weakly mixing)? We consider only the very simple case of
the special independence relation given before, and give only a partial answer.

For more motivation, let us consider an automata-theoretic approach. Consider two au-
tomataB andC overA ∪ B andA ∪ C respectively. Transform automatonB by adding
loops labelled by all letters inC to each state, and similarly forC. This gives automatāB
andC̄ overT. The direct product̄B × C̄ is called the mixing product by Duboc[2]. In B̄ × C̄,
choose a setF of final states, and then minimize the automaton. Call the resulting minimal
automatonA. The language recognized byA is

L(A) = L(B̄ × C̄) = ⋃
(g,d)∈F

L(g, d),

whereL(g, d) denotes the language recognized by taking(g, d) as the unique final state.
Then

L(g, d) = LB(g) ↑ LC(d),

whereLB(g) is the language recognized inB with the unique final stateg and similarly
for LC(d). This shows thatL(A) is a union of Card(F ) mixed languages. However, it may
happen, as in the example we give now, that the number� of final states in the minimal
automatonA is strictly less than the size ofF, so that the mixing decomposition cannot
be “read” from the form ofA. In fact, we do not know of an upper bound for Card(F )

expressed as a function of�.

Example 1.1. Let A = {a}, B = {b}, C = {c}, letW be the set of words of even length
over {b, c} and setR = aW . This language is recognized by the automatonA of Fig. 1.
On the other hand, consider the automataB andC of Fig. 2. No final states are specified.
Adding loops on states gives the automata of Fig.3. In the (accessible part) of the direct
product of these automata we choose final states 11̄ and 2̄2 (see Fig.4).

The language recognized is therefore

R =
(
a(b2)∗ ↑ a(c2)∗

)
∪
(
ab(b2)∗ ↑ ab(c2)∗

)
.

Minimizing the product automaton yields the automaton of Fig.1 with a unique final state,
andR is easily shown not to be representable as a unique mixing of two languages.
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Fig. 1. Minimal automaton recognizingR.
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Fig. 3. AutomataB̄ andC̄.
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Fig. 4. The direct product of̄B andC̄.

The automata-theoretic description seems not to lead directly to an answer to our question.
We therefore consider in the sequel a language-theoretic approach.

The paper is organized as follows: the next section contains some notation. In Section 3,
we prove the first result we announced (Proposition3.4), namely that it is decidable whether
a language is strongly mixing. Sections 4 and 5 contain some preliminary results and
examples onk-mixing languages. The basic construction for answering the question whether
a language isk-mixing is presented in Section 6. It relates mixing to a kind of syntactic notion
called theindex: the index is, roughly speaking, the maximum number of classes of traces
that compose the inverse image of a skeleton. The construction, proved in Proposition6.5
is in fact a semi-algorithm in the sense that it yields only a bound betweenk and 4k. This
proposition heavily relies on a surprising result (Lemma6.6) showing that a certain language
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is regular. In Section 7, a second algorithm is presented that shows how a decomposition into
mixing languages can be splitted and recomposed into smaller ones, yielding the answer to
our question (Theorem7.8).

2. Mixing product

Recall thatT denotes an alphabet that is partitioned into three pairwise disjoint alphabets
A, B, andC, so that

T = A ∪ B ∪ C A,B,C pairwise disjoint. (2)

We denote by� : T ∗ → A∗, �B : T ∗ → (A ∪ B)∗, and�C : T ∗ → (A ∪ C)∗ the three
projections fromT ∗ ontoA∗, (A∪B)∗ and(A∪C)∗, respectively. Clearly,� = �B ◦�C =
�C ◦ �B . Observe also that ifu ∈ (A ∪ B)∗, then�−1

B = u��C∗, where�� denotes the
shuffle operation. The projection�(w) of a wordw ∈ T ∗ is called theskeletonof w.

Themixing productof two wordsu ∈ (A ∪ B)∗ andv ∈ (A ∪ C)∗ is defined by

u ↑ v = �−1
B (u) ∩ �−1

C (v)

There are other notations for this product: Zielonka[3] writesu‖v and Duboc[2] uses still
another notation.

Example 2.1. Let A = {a}, B = {b}, C = {c}. Thenab ↑ ac = {abc, acb}, andaba ↑
ac = ∅.

If the alphabetA is empty, then the mixing product is merely the shuffle. Observe that
u ↑ v �= ∅ if and only if�C(u) = �B(v) or equivalently if and only ifuandv have the same
skeleton. Observe also that if(u ↑ v) ∩ (u′ ↑ v′) �= ∅, thenu = u′ andv = v′. Indeed, if
w ∈ (u ↑ v) ∩ (u′ ↑ v′), then�B(w) = u becausew ∈ u ↑ v and similarly�B(w) = u′.
Symmetrically,v = v′.

3. Strongly mixing languages

As usual, the mixing product is extended to sets of words as follows. LetG ⊂ (A ∪ B)∗
andD ⊂ (A ∪ C)∗. Then

G ↑ D = ⋃
g∈G,d∈D

g ↑ d = �−1
B (G) ∩ �−1

C (D).

Observe that the union is over all pairs(g, d) ∈ G × D, but that the pair(g, d) has a non
empty contribution to the union only if�C(g) = �B(d).

A languageL overT is strongly mixingif there exist languagesG overA ∪ B andD

overA ∪ C such thatL = G ↑ D.
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Lemma 3.1. A languageL ⊂ T ∗ is strongly mixing if and only ifL = �B(L) ↑ �C(L). If
L = G ↑ D thenG ⊃ �B(L) andD ⊃ �C(L).

Proof. AssumeL is strongly mixing,L = G ↑ D. SinceL ⊂ �−1
B (G), one has�B(L) ⊂ G

and similarly�C(L) ⊂ D. This shows the second part, and also the inclusion�B(L) ↑
�C(L) ⊂ L. On the other hand, the inclusionL ⊂ �−1

B (�B(L)) ∩ �−1
C (�C(L)) always

holds, soL ⊂ �B(L) ↑ �C(L). �
Observe that equalityG = �B(L) holds in the lemma if, for everyg ∈ G, there isd ∈ D

such thatg ↑ d �= ∅. Indeed, in this case, letw ∈ L be ing ↑ d. Then�B(w) = g, so
g ∈ �B(L).

Example 3.2. Let A = {a}, B = {b} andC = {c}. The languageK = {aw | w ∈
{b, c}∗, |w|b = 1, |w|c > 0} is strongly mixing. Indeed, one hasK = ab ↑ ac+. The
language can also be written for instance asK = (ab ∪ aa+) ↑ ac+, sinceaa+ ↑ ac+ =
∅.

Example 3.3. The languageR = {aw | w ∈ {b, c}∗, |w| even} is not strongly mixing,
since�B(R) = ab∗ and�C(R) = ac∗, andR �= ab∗ ↑ ac∗.

Proposition 3.4. Given a regular language R over T, it is decidable whether R is strongly
mixing. Moreover, if R is strongly mixing, then it is the mixing product of two regular
languages.

Proof. In order to check whetherR is strongly mixing, it suffices to compute the regular
languagesG = �B(R) andD = �C(R) and to check whetherR = �−1

B (G) ∩ �−1
C (D). All

these computations are effective because the languages involved are regular. Clearly, the
languageR is strongly mixing if and only if the equality holds.�

We have the following closure property.

Proposition 3.5. The intersection of two strongly mixing languages is again strongly
mixing.

Proof. Let L = G ↑ D = �−1
B (G) ∩ �−1

C (D) andL′ = G′ ↑ D′ = �−1
B (G′) ∩ �−1

C (D′).
ThenL ∩ L′ = �−1

B (G ∩ G′) ∩ �−1
C (D ∩ D′) = (G ∩ G′) ↑ (D ∩ D′). �

4. Mixing languages

A languageL is k-mixing for some integerk if there existk strongly mixing languages
L1, . . . , Lk such thatL = L1 ∪ · · · ∪ Lk. The languageL is mixing if it is k-mixing for
somek. Clearly, 1-mixing languages are precisely the strongly mixing languages. Since the
empty set is strongly mixing, anyk-mixing language is alsok′-mixing for k′ > k.
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Example 4.1. The languageR = {aw | w ∈ {b, c}∗, |w| even}of Example3.3is 2-mixing,
since

R =
(
a(b2)∗ ↑ a(c2)∗

)
∪
(
ab(b2)∗ ↑ ab(c2)∗

)
.

Example 4.2. Let againA = {a}, B = {b}, C = {c}. LetW be the set of words of even
length over{b, c}. We show that the languageR = (aW)+ is not mixing. For this, we
consider, for eachn�1, the words(abc)i(ab2c2)n−i for 0� i�n. All these words are inR.

AssumeR isk-mixing. Then, ifn�k, there are two distinct wordsw = (abc)i(ab2c2)n−i

andw′ = (abc)j (ab2c2)n−j (with i < j ) which are in the same strongly mixing subset
of R, sayw,w′ ∈ G ↑ D ⊂ R. It follows that (ab)i(ab2)n−i , (ab)j (ab2)n−j ∈ G and
(ac)i(ac2)n−i , (ac)j (ac2)n−j ∈ D. But then(ab)i(ab2)n−i ↑ (ac)j (ac2)n−j ⊂ R, and
this shows in particular that the word(abc)i(ab2c)j−i (ab2c2)n−j is in R, a contradiction.

In the sequel, we shall prove that, given a regular setR overT and an integerk, it is
decidable whetherR is k-mixing. It remains open whether it is decidable that a regular
languageR is mixing. In other words, we are able to answer the question for a fixedk, but
we do not know the answer ifk is not fixed.

As a simple consequence of Proposition3.5, we have

Proposition 4.3. If L is k-mixing andL′ is k′-mixing, thenL ∩ L′ is k · k′-mixing.

Corollary 4.4. If L is a k-mixing language, thenT ∗ \ L is 2k-mixing.

Proof. If L = G ↑ D is strongly mixing, thenT ∗ \L = (Ḡ ↑ (A∪C)∗)∪((A∪B)∗ ↑ D̄),
whereḠ = (A∪B)∗ \G andD̄ = (A∪C)∗ \D, showing thatT ∗ \L is 2-mixing. Next, if
L = L1∪· · ·∪Lk withL1, . . . , Lk strongly mixing, thenT ∗\L = (T ∗\L1)∩· · ·∩(T ∗\Lk),
and the result follows from the preceding proposition.�

We introduce now a running example that will be used repeatedly to illustrate the argu-
ments developed in this paper.

Example 4.5. Let A = {a}, B = {b} andC = {c} and consider the three languages

R1 = ab ↑ ac+ = {aw | w ∈ {b, c}∗, |w|b = 1, |w|c > 0}
R2 = a(b2)+ ↑ a(c2)+

= {aw | w ∈ {b, c}∗, |w|b�2, |w|c�2, |w|b ≡ |w|c ≡ 0 mod 2}
R3 = ab3(b2)∗ ↑ ac(c2)∗

= {aw | w ∈ {b, c}∗, |w|b�3, |w|c�1, |w|b ≡ |w|c ≡ 1 mod 2}
SetR = R1 ∪ R2 ∪ R3. All words in R have the same skeletona. By construction, the
languageR is 3-mixing. It is not strongly mixing. Indeed�B(R) = ab+, �C(R) = ac+,
and for instanceabc2 is in ab+ ↑ ac+ and is not inR. However,R is 2-mixing, because

R = ab(b2)∗ ↑ ac(c2)∗ ∪ (ab ∪ a(b2)+) ↑ a(c2)+ . �
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5. Preliminary results

Consider the mapping

� : T ∗ → (A ∪ B)∗ × (A ∪ C)∗

defined by

�(w) = (�B(w),�C(w)) .

For u ∈ (A ∪ B)∗, v ∈ (A ∪ C)∗, one has�−1(u, v) = u ↑ v. If G ⊂ (A ∪ B)∗ and
D ⊂ (A ∪ C)∗, thenG ↑ D = �−1(G × D). However, sinceg ↑ d = ∅ if �(g) �= �(d), it
is natural to consider the “diagonal” composed of pairs of words with the same skeleton

� = {(u, v) ∈ (A ∪ B)∗ × (A ∪ C)∗ | �C(u) = �B(v)} .
This is a rational relation, and

G ↑ D = �−1(G × D ∩ �), �(G ↑ D) = G × D ∩ � .

A setX ⊂ T ∗ is called(B,C)-commutativeif

zbcy ∈ X ⇐⇒ zcby ∈ X

for all lettersb ∈ B, c ∈ C and wordsz, y. It is easily seen that this property is decidable for
regular languages. Indeed, one may consider the minimal automaton of a regular languages

X. ThenX is (B,C)-commutative if and only if, whenever there are edgesp
b−→ q and

q
c−→ r, there exist also edgesp

c−→ q ′ andq ′ b−→ r in this automaton.
Observe that,X is (B,C)-commutative if and only if�−1(�(X)) = X. If X is (B,C)-

commutative, thenu ↑ v ∩ X �= ∅ �⇒ u ↑ v ⊂ X. Indeed, letw ∈ u ↑ v. Then
u ↑ v = �−1(�(w)) ⊂ �−1(�(X)) = X.

For any regular setRoverT, the set�(R) is a rational relation. The relation�(R) defines
two reciprocal rational transductions�R : (A ∪ B)∗ → (A ∪ C)∗ and�R : (A ∪ C)∗ →
(A ∪ B)∗ by

�R(u) = {v ∈ (A ∪ C)∗ | (u, v) ∈ �(R)}
and

�R(v) = {u ∈ (A ∪ B)∗ | (u, v) ∈ �(R)} .
Clearly,v ∈ �R(u) if and only if u ∈ �R(v). Observe that

�R(u) = {v ∈ (A ∪ C)∗ | (u ↑ v) ∩ R �= ∅} = �C(�−1
B (u) ∩ R) .

Moreover, ifR is (B,C)-commutative, then

�R(u) = {v ∈ (A ∪ C)∗ | u ↑ v �= ∅ andu ↑ v ⊂ R} .
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Symmetric expressions hold for�R. If R is regular, then each of these sets is regular and
effectively computable. IfR is strongly mixing, i.e., ifR = G ↑ D, then foru ∈ G, one
has

�R(u) = {v | (u, v) ∈ G × D ∩ �} = D ∩ �−1
B (�C(u)) . (3)

Example 5.1. In the previous example, the transductions�R and�R are readily computed.
One has

�R(ab) = ac+,

�R(ab
2n) = a(c2)+ n�1,

�R(ab
2n+1) = ac(c2)∗ n�1,

�R(ac
2n) = ab ∪ a(b2)+ n�1,

�R(ac
2n+1) = ab(b2)∗ n�0.

We now consider the nuclear equivalences associated to these transductions. Givenu, u′ ∈
(A∪B)∗, we setu ∼�,R u′ if and only if�R(u) = �R(u

′), and symmetrically, givenv, v′ ∈
(A ∪ C)∗, we setv ∼�,R v′ if and only if �R(v) = �R(v

′). We denote the equivalence class
of u by [u]�,R and the equivalence class ofv by [v]�,R.

Finally, we define an equivalence∼R overT ∗, called theR-equivalenceby setting, for
two wordsw andw′ overT, w ∼R w′ if and only if �B(w) ∼�,R �B(w′) and�C(w) ∼�,R
�C(w′). The equivalence class ofw for theR-equivalence is denoted by[w]R. It is conve-
nient to set[K]∼ = ⋃

x∈K [x]∼, where[x]∼ denotes the equivalence class ofx for some
equivalence∼. It is easily checked that

[w]R = [�B(w)]�,R ↑ [�C(w)]�,R .

More generally, one has the implications

G ↑ D ⊂ M ⇒ [G]�,R ↑ [D]�,R ⊂ [M]R
and also

M = G ↑ D ⇒ [M]R = [G]�,R ↑ [D]�,R . (4)

Example 5.2. Let us continue our example. The equivalence∼�,R has three classes con-
tained in�B(R), namely[ab]�,R = {ab}, [ab2]�,R = a(b2)+ and[ab3]�,R = ab3(b2)∗.
Similarly, there are two equivalence classes for∼�,R, namely [ac]�,R = ac(c2)∗ and
[ac2]�,R = a(c2)+. The languageR is saturated forR-equivalence, and it is the union
of four equivalence classes:

R = [ab]�,R ↑ [ac]�,R ∪ [ab]�,R ↑ [ac2]�,R
∪ [ab2]�,R ↑ [ac2]�,R ∪ [ab3]�,R ↑ [ac]�,R (5)

giving yet another decomposition ofR.

Also, ifRis(B,C)-commutative, thenRis saturated forR-equivalence, that is[R]R = R, for
if x ∈ R andx′ ∼R x, then settingu = �B(x), u′ = �B(x′) andv = �C(x), v′ = �C(x′),
one hasu ↑ v ⊂ R becauseR is (B,C)-commutative, andu′ ↑ v ∈ R becauseu ∼�,R u′
andu′ ↑ v′ ∈ R becausev ∼�,R v′, and thusx′ ∈ R.
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6. The basic construction

TheR-equivalence introduced at the end of the previous section provides a property of
k-mixing languages that will be used as a test for termination in the construction we will
describe now.

A setX of words overT is monoskeletalif all words inX have the same skeleton. Thus,
a subsetX of R is monoskeletal if and only if it is a subset of a setR ∩ �−1(s), for some
s ∈ �(R). EachR-equivalence class is monoskeletal becauseR equivalent words have
the same skeleton. Thus, each setR ∩ �−1(s) is saturated forR-equivalence. Theindex
of R ∩ �−1(s) is the number ofR-equivalence classes it contains. More generally, for a
subsetX of R, the index of the subsetX ∩ �−1(s) is the number ofR-equivalence classes
thatX ∩ �−1(s) intersects and the index ofX is the maximum of the indices of the sets
X ∩ �−1(s), wheres ranges over the skeletons ofR.

A setR ⊂ T ∗ hasindex kif any monoskeletal subsetX of R has index at mostk, that
is intersects at mostk distinctR-equivalence classes. In other words,R has indexk if any
monoskeletal subset ofRcomposed of at leastk+1 words contains two distinctR-equivalent
words.

Proposition 6.1. If a language R is k-mixing, then it has index4k.

Proof. Set

R = R1 ∪ · · · ∪ Rk, Ri = Gi ↑ Di .

Consider a wordw ∈ R. Define theB-index set ofw by IndB(w) = {i | �B(w) ∈ Gi}. It
follow from (3) that

�R(�B(w)) = ⋃
i∈IndB(w)

Di ∩ �−1
B (�(w)) .

This shows that ifw,w′ ∈ R have same skeleton and sameB-index set, then�B(w) ∼�,R
�B(w′). Symmetrically, one defines theC-index set ofw by IndC(w) = {i | �C(w) ∈ Di},
and one shows that ifw, w′ have same skeleton and sameC-index set, then�C(w) ∼�,R
�C(w′). Thus, ifw andw′ have the same skeleton and the same pair of index sets, they
areR-equivalent. Clearly, there are at most 4k pairs of index sets. Thus, if one takes any
monoskeletal set of at least 4k + 1 words, two among them areR-equivalent. This shows
thatRhas index 4k. �

Example 6.2. Let A = {a}, B = {b}, C = {c}. LetW be the set of words of even length
over{b, c}, and consider again the languageR = (aW)+ of Example4.2.

The argument used before to show thatRhas infinite index can be rewritten as follows. We
observe that ifR isk-mixing, then by the previous proposition, the number ofR-equivalence
classes for each skeleton is bounded by 4k. However, two wordsw = (abc)i(ab2c2)n−i and
w′ = (abc)j (ab2c2)n−j (with i < j ) have the same skeletonan and are notR-equivalent,
since otherwise(ab)i(ab2)n−i ↑ (ac)j (ac2)n−j ⊂ R. Thus the number ofR-equivalence
classes for the skeletonan is at leastn + 1.
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We now prove a weak converse of the previous property.

Theorem 6.3. Let R be a(B,C)-commutative regular language over T. If R has index k,
then R is k-mixing.

This is an immediate consequence of the next proposition which gives a more precise
description of the construction used in the proof. For this, we introduce some additional
notions. Ak-mixingdecompositionof R, or ak-decomposition for short, is a decomposition

R = R1 ∪ · · · ∪ Rk, (6)

where eachRi is strongly mixing. This decomposition is calledregular if eachRi is regular.
It is called basic if each Ri is saturated for∼R and if any two words inRi with the
same skeleton areR-equivalent. In other words, a decomposition is basic if eachRi has
index 1.

The second condition deserves some comment. Letw,w′ ∈ R. If w ∼R w′, then�(w) =
�(w′), but the converse need not to be true. So what is required is precisely that the con-
verse holds for each component setRi , that is, for eachw,w′ ∈ Ri , �(w) = �(w′) �⇒
w ∼R w′.

Example 6.4. In our running example, all words inR have the same skeleton, and the
R-equivalence has four classes. The 4-decomposition (5) is basic and regular.

Proposition 6.5. Let R be a(B,C)-commutative regular language over T. If R has index
k, then R has a k-decomposition that is regular and basic.

Proof. The proof is constructive. Starting with the regular languageR, we first choose a
regular languageK ⊂ R such that�(K) = �(R) and� is injective onK. In other words,
two distinct words inK have different skeletons. The cross-section theorem ensures that a
regular languageK with these properties can be effectively constructed. Of course,K is not
(B,C)-commutative in general.

SetG′
1 = �B(K) andD′

1 = �C(K). ThenK ⊂ G′
1 ↑ D′

1 ⊂ R becauseR is (B,C)-
commutative. We now consider the saturation ofG′

1 for ∼�,R and ofD′
1 for ∼�,R. Set

G1 = [G′
1]�,R andD1 = [D′

1]�,R. Then

G′
1 ↑ D′

1 ⊂ G1 ↑ D1 ⊂ R.

The first inclusion is clear. The second follows from the fact thatR is (B,C)-commutative,
and so[R]R = R. Observe thatG1 ↑ D1 is basic. Indeed, it is saturated for∼R by
construction, and any two words with the same skeleton areR-equivalent to the only word
in K having this skeleton, and so areR-equivalent.

We prove in a separate lemma (Lemma6.6below) thatG1 andD1 are regular languages.
Taking this for granted, one gets a regular languageG1 ↑ D1 contained inR. If G1 ↑ D1 =
R, the languageRis strongly mixing and therefore 1-mixing. Otherwise, setR1 = G1 ↑ D1.
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R̄1 = R \ R1. Since bothRandR1 are regular and(B,C)-commutative, the languagēR1
also is regular and(B,C)-commutative. Moreover, every skeleton ofR̄1 is a skeleton ofR,
and is also a skeleton ofR1 becauseRandR1 have the same sets of skeletons.

We now repeat the same construction onR̄1: we choose a cross-section ofR̄1 that is
injective for�, we buildG′

2, D′
2. Saturation is always with respect to the initial language

R. This yields regular languagesG2 overA ∪ B andD2 overA ∪ C such thatR2 = G2 ↑
D2 ⊂ R̄1. SetR̄2 = R̄1 \ R2 = R \ (R1 ∪ R2). Again,R̄2 may or may not be empty. This
construction is repeated at mostk times. Observe that the languagesRi = Gi ↑ Di are
pairwise disjoint.

We prove that there is an integer(�k such that

R = R1 ∪ · · · ∪ R(

showing thatR is (-mixing and thus alsok-mixing. Arguing by contradiction, assume that
the claim is false. ThenR �= R1 ∪ · · · ∪ R( for 1�(�k. Repeating the construction once
more, we get regular languagesGk+1 andDk+1 such that, settingRk+1 = Gk+1 ↑ Dk+1,

R ⊃ R1 ∪ · · · ∪ Rk ∪ Rk+1 .

Choosek + 1 wordsw1, . . . , wk+1 such thatwi ∈ Ri \ (R1 ∪ · · · ∪ Ri−1) and�(w1) =
· · · = �(wk+1). This is possible because the skeletons ofRi are skeletons ofRi−1. The
setW = {w1, . . . , wk+1} is monoskeletal. SinceRhas indexk, there are twoR-equivalent
words in this set, saywi ∼R wj with i < j . Then�B(wi) ∼�,R �B(wj ) and�C(wi) ∼�,R
�C(wj ). SinceGi is saturated for the equivalence∼�,R and�B(wi) ∈ Gi , it follows that
�B(wj ) ∈ Gi and similarly�C(wj ) ∈ Di . Thus,wj ∈ Gi ↑ Di = Ri , a contradiction.

�

Lemma 6.6. LetG′ be a regular language overA∪B such that�C is injective onG′.The
languageG = [G′]�,R obtained by saturatingG′ for the equivalence relation∼�,R is an
effectively computable regular language.

Proof. The proof is in two steps. We first show that, for a worduoverA∪B, the equivalence
class[u]�,R is a regular language. This is done by giving two rational transductions for the
complement of the language. In a second step, these transductions are used to give a regular
expression for the complement ofG (see Eq. (7)). The injectivity of�C plays a central role
in the last argument.

Let u be a word overA ∪ B. Then[u]�,R = {ū | �R(ū) = �R(u)}. We first show that
[u]�,R is a regular language for eachu. For this, we show that the set

L(u) = �−1
C (�C(u)) \ [u]�,R

is a regular language. SinceL(u) = {ū ∈ �−1
C (�C(u)) | �R(ū) �= �R(u)} it is composed

of two sets, namely thosēu for which �R(u) contains words not in�R(ū), and thosēu
for which �R(ū) contains words not in�R(u). Thus, the setL(u) is the union of two,
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not necessarily disjoint languages

L1(u) = {ū ∈ �−1
C (�C(u)) | �R(u) \ �R(ū) �= ∅}

and

L2(u) = {ū ∈ �−1
C (�C(u)) | �R(ū) \ �R(u) �= ∅} .

We claim that

L1(u) = �T ∗\R(�R(u)) and L2(u) = �R(�T ∗\R(u)) .

Consider indeed̄u ∈ L1(u). Then�C(ū) = �C(u) and there existsv ∈ �R(u) such that
v /∈ �(ū). From the first relation, it follows that�B(v) = �C(u) and so also�(v) = �C(ū).
Thus ū ↑ v �= ∅, and sincev /∈ �R(ū), one hasū ↑ v ⊂ T ∗ \ R which means that
v ∈ �T ∗\R(ū) or equivalentlyū ∈ �T ∗\R(v). Conversely, ifū ∈ �T ∗\R(�R(u)), then there
is a wordv overA ∪ C such thatv ∈ �R(u) andū ∈ �T ∗\R(v). The second relation means
thatv ∈ �T ∗\R(ū) which in turn shows that̄u ↑ v ⊂ T ∗ \ R. Again, ū ↑ v �= ∅ because
u ↑ v �= ∅. Thusv /∈ �R(ū). The proof of the second relation is symmetric. This shows
that[u]�,R is regular.

We now turn to the second step. The setsL1 = ⋃
u∈G′ L1(u) andL2 = ⋃

u∈G′ L2(u)

are regular because

L1 = �T ∗\R(�R(G
′)) and L2 = �R(�T ∗\R(G′)) .

Thus the language

L = L1 ∪ L2 = ⋃
u∈G′

�−1
C (�C(u)) \ [u]�,R

is regular. Since�C is injective onG′, each set�−1
C (�C(u)) for u ∈ G′ contains exactly

one class for∼�,R, namely[u]�,R. In other words,�−1
C (�C(u)) ∩ [u′]�,R = ∅ for u′ �= u,

u′ ∈ G′. This implies that

L = ⋃
u∈G′

�−1
C (�C(u))

∖ ⋃
u∈G′

[u]�,R (7)

Thus,L = �−1
C (�C(G′)) \ G, showing thatG is regular. �

Example 6.7. Let us perform the construction of the proof of Proposition6.5on our running
example. SinceR is monoskeletal, any word inR is a candidate for the languageK. So take
K = {abc}. ThenG′

1 = {ab}, D′
1 = {ac}, andG1 = {ab}, D1 = ac(c2)∗ andR1 = ab ↑

ac(c2)∗. SinceR1 �= R, we continue the construction. Take for instanceabc2 in R \ R1.
One getsG2 = {ab}, D2 = a(c2)+, andR2 = ab ↑ a(c2)+. Still R1 ∪ R2 is not covered.
Takew = ab2c2. ThenR3 = a(b2)+ ↑ a(c2)+. Takeab3c ∈ R \ (R1 ∪ R2 ∪ R3). This
gives a languageR4 = ab3(b2)∗ ↑ ac(c2)∗, andR = R1 ∪ R2 ∪ R3 ∪ R4. In fact, this
decomposition is precisely that of Eq. (5). Observe that the languagesRi donotcorrespond
to the languagesRi of Example4.5.

It might be interesting to consider another example, with infinitely many skeletons.
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Example 6.8. SetA = {a}, B = {b}, andC = {c}. Let W be the set of words of even
length over{b, c}, and letW0 (W1) be the set of words inWhaving an even (odd) number
of b’s and ofc’s. The language we consider is

R = {aw1aw2 · · · awn | n�1, w1w2 · · ·wn ∈ W } .
Of course, the set of skeletons is�(R) = a+. We perform the construction of the proof
of Proposition6.5. We start with a first cross-sectionK = a+. Clearly,G′

1 = D′
1 = K,

andG1 = [G′
1]�,R = {au1au2 · · · aun | n�1, |u1u2 · · · un| ≡ 0 mod 2}, andD1 =

[D′
1]�,R = {av1av2 · · · avn | n�1, |v1v2 · · · vn| ≡ 0 mod 2}. It follows thatR1 = G1 ↑

D1 = {aw1aw2 · · · awn | n�1, w1w2 · · ·wn ∈ W0}. Next, consider a second cross-section
K2 = a+bc. ThenG′

2 = a+b andD′
2 = a+c, andG2 = [G′

2]�,R = {au1au2 · · · aun |
n�1, |u1u2 · · · un| ≡ 1 mod 2}, and similarly forD2 = [D′

2]�,R. It follows thatR2 =
G2 ↑ D2 = {aw1aw2 · · · awn | n�1, w1w2 · · ·wn ∈ W1}. SinceR = R1 ∪ R2, the
languageR is 2-mixing.

Observe that the choice of the cross-section may change the decomposition that is ob-
tained. Fori, j = 0,1, define

Vi,j = {aw1aw2 · · · awn | n ≡ i mod 2, w1w2 · · ·wn ∈ Wj } .
The languagesR1 andR2 of the previous 2-decomposition are

R1 = V0,0 ∪ V1,0, R2 = V0,1 ∪ V1,1 .

Consider now for instance the languageK ′ = (a2)+ ∪ (a2)∗abc. This is a cross-section of
R. The corresponding projections areG′

1 = (a2)+ ∪ (a2)∗ab andD′
1 = (a2)+ ∪ (a2)∗ac,

and a first component of the decomposition ofR = S1 ∪S2 isS1 = V0,0 ∪V1,1. The second
component is obtained by exchanging even and odd’s:S2 = V1,0 ∪ V0,1.

At this point, we are able to check only partially whether a languageR is k-mixing. We
proceed as follows:

1. First, we check whetherR is (B,C)-commutative. If it is not, then it is not mixing.
2. We use at most 4k steps of the construction given in the proof of theorem6.3.

(a) If the construction stops before at mostk steps, we know thatR is k-mixing.
(b) If the construction does not stop after 4k steps, we know thatR is notk-mixing

by Proposition6.1.
However, if the construction stops betweenk and 4k steps, we do not (yet) know whetherR
is k-mixing or not. We will show in Section7 that in this case, it is decidable whetherR is
k-mixing or not.

6.1. A second example

Let us consider againA = {a}, B = {b}, andC = {c}, and consider the language

R = a+ ∪ b+a+c∗ .

It is easily seen thatR is 2-mixing since

R = (a+ ↑ a+) ∪ (b+a+ ↑ a+c∗) .
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It is also easily seen thatR is not 1-mixing. Indeed�B(R) = b∗a+, �C(R) = a+c∗, and
�B(R) ↑ �C(R) �= R since�B(R) ↑ �C(R) ⊃ a+c∗.

Let us compute theR-equivalence classes. For this, we consider first the three wordsa,
ba, andbac. One gets, for the worda,

�R(a) = {a}, [a]�,R = {a}, �R(a) = b∗a, [a]�,R = {a} ,
for the wordba, one gets

�R(ba) = ac∗, [ba]�,R = b+a ,

and for the wordbac

�R(ac) = b+a, [ac]�,R = ac+ .

This shows that theR-equivalence classes of the wordsa, ba, andbacare different. In fact,
it is now easy to see that[a]R = {a}, [ba]R = b+a, and[bac]R = b+ac+. This holds also
for words containing more than one lettera. So finally, for alln�1,

[an]R = {an}, [ban]R = b+an, [banc]R = b+anc+ .

Let us apply the construction of Theorem6.3.
We start with a first cross-sectionK1 = a+. ThenG1 = a+ andD1 = a+, soR1 =

G1 ↑ D1 = a+. The remaining set is̄R1 = R \ R1 = b+a+c∗.
Consider next the cross-sectionK2 = ba+. ThenG2 = b+a+,D2 = a+ andR2 = G2 ↑

D2 = b+a+. The remaining set is̄R2 = R \ (R1 ∪ R2) = b+a+c+.
Consider the cross-sectionK3 = ba+c. ThenG3 = b+a+, D3 = a+c+ andR3 =

b+a+c+. Thus we get the basic 3-decompositionR = R1 ∪ R2 ∪ R3 with

R1 = a+,

R2 = b+a+,

R3 = b+a+c+.

(8)

Assume now that we start the construction by choosing another initial cross-section,
namelyK ′

1 = b(a2)∗a ∪ b(a2)+c instead of the setK1. ThenG1 = b+a+ andD1 =
(a2)∗a ∪ (a2)+c+. Thus one getsR1 = G1 ↑ D1 = b+(a2)∗a ∪ b+(a2)+c+, andR̄1 =
a+ ∪ b+(a2)+ ∪ b+(a2)∗ac+.

Take now the cross-sectionK ′
2 = b(a2)+ ∪ a(a2)∗. ThenG2 = b+(a2)+ ∪ a(a2)∗,

D2 = a+, soR2 = G2 andR̄2 = b+(a2)∗ac+ ∪ (a2)+.
Finally, we take the cross-sectionK ′

3 = b(a2)∗a ∪ (a2)+. Then we obtainG3 =
b+(a2)∗a ∪ (a2)+, againD3 = a+, andR3 = G3 ↑ D3 = R̄2. This yields another
basic 3-decompositionR = R1 ∪ R2 ∪ R3 with

R1 = b+(a2)∗a ∪ b+(a2)+c+,

R2 = b+(a2)+ ∪ (a2)∗a,
R3 = b+(a2)∗ac+ ∪ (a2)+.

(9)
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7. Complement to the basic construction

In this section, we show that it is decidable whether a regular languageR is k-mixing,
provided we know a basic regulart-mixing decomposition ofR for somet with k < t�4k.
For this, we show that ifR is k-mixing, then there exists ak-decomposition ofR that is
obtained by gluing together parts of a basict-decomposition. We moreover show that this
k-decomposition can be chosen among a finite number of candidates, proving thus the
decidability.

We start with some elementary properties of monoskeletal languages. Recall that a set
K ⊂ T ∗ is monoskeletal if the set�(K) of its skeletons is a singleton. A useful property of
monoskeletal languages is that the union of monoskeletal, strongly mixable languages with
distinct skeletons is again strongly mixable. More precisely, consider a setS ⊂ A∗ and, for
eachs ∈ S, monoskeletal languagesG(s) overA ∪ B andD(s) overA ∪ C with skeleton
s. Then

⋃
s∈S

G(s) ↑ D(s) =
(⋃

s∈S

G(s)

)
↑
(⋃

s∈S

D(s)

)
(10)

becauseG(s) ↑ D(s′) = ∅ for s �= s′.
Given an arbitraryK ⊂ T ∗, and a skeletons ∈ �(K), the setK ∩�−1(s) is monoskeletal

by construction. The skeletons is simplefor K if s ∈ �(K) andK ∩ �−1(s) is strongly
mixing.

SetKB = �B(K) andKC = �C(K). It is easy to check that, for eachs ∈ �(K),

(KB ↑ KC) ∩ �−1(s) = (KB ∩ �−1
C (s)) ↑ (KC ∩ �−1

B (s)) .

Next,s is simple if and only if

K ∩ �−1(s) = �B(K ∩ �−1(s)) ↑ �C(K ∩ �−1(s)) .

Since�B(K ∩ �−1(s)) = KB ∩ �−1
C (s) (and similarly for the other term), it follows thats

is simple if and only if

K ∩ �−1(s) = (KB ↑ KC) ∩ �−1(s) . (11)

If X ⊂ A∗ is a set of simple skeletons forK, thenK ∩ �−1(X) is strongly mixing, because

K ∩ �−1(X) = ⋃
s∈X

K ∩ �−1(x) = (KB ∩ �−1
C (X)) ↑ (KC ∩ �−1

B (X)) .

Lemma 7.1. LetK ⊂ T ∗ be a regular language. The setS(K) of simple skeletons of K is
an effectively computable, regular subset ofA∗.

Proof. SetKB = �B(K) andKC = �C(K), and setL = (KB ↑ KC) \ K. For each
s ∈ �(K), one has

KB ↑ KC ∩ �−1(s) = (K ∩ �−1(s)) ∪ (L ∩ �−1(s)) .
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In view of (11), s ∈ �(K) is simple if and only ifL ∩ �−1(s) = ∅, that is if and only if
s ∈ �(K) \ �(L). This shows thatS(K) = �(K) \ �(L) and proves the lemma.�

In the sequel, we consider a regular languageRoverT that admits a basict-decomposition

R = R1 ∪ · · · ∪ Rt ,

where theRi are strongly mixing. SetN = {1, . . . , t}. A k-cover for N is a setH =
{I1, . . . , Ik} of k subsetsI1, . . . , Ik of N such thatI1 ∪ · · · ∪ Ik = N . For any subsetI of N,
we setRI = ∪i∈I Ri . To anyk-coverH of N, we associate the regular set

S(H) = S(RI1) ∩ · · · ∩ S(RIk ) . (12)

Thuss ∈ S(H) if and only if s ∈ �(R) and eachRIj ∩ �−1(s) is strongly mixing.

Lemma 7.2. For each k-cover H, the languageR ∩ �−1(S(H)) is a regular k-mixing
language.

Proof. SetH = {I1, . . . , Ik}. In view of Eq. (12) and Lemma7.1, the languageR ∩
�−1(S(H)) is indeed regular.

SinceS(H) is a set of simple skeletons for eachRIj , each languageKj = RIj ∩
�−1(S(H)) is strongly mixing, soK1 ∪ · · · ∪ Kk is k-mixing. Next,R = RI1 ∪ · · · ∪ RIk

becauseH is ak-cover. Thus,

R ∩ �−1(S(H)) = K1 ∪ · · · ∪ Kk .

This proves the lemma.�

The same result holds for severalk-covers

Lemma 7.3. Let H1, . . . , Hn be k-covers of N. Then the union of the languagesR ∩
�−1(S(Hi)), for i = 1, . . . , n, is k-mixing.

Proof. The union is

R ∩ �−1(S(H1) ∪ · · · ∪ S(Hn)) .

SetS1 = S(H1), andSi = S(Hi) \ (S(H1) ∪ · · · ∪ S(Hi−1)) for i = 2, . . . , n. Then
S1, . . . , Sn are pairwise disjoint andS(H1)∪ · · · ∪ S(Hn) = S1 ∪ · · · ∪ Sn. Each of the sets
R ∩ �−1(Si) is k-mixing, and since the union is now over disjoint sets of skeletons, it is
againk-mixing. �

A setH1, . . . , Hn of k-covers iscompletefor R if �(R) = S(H1) ∪ · · · ∪ S(Hn), that is
if every skeleton is in at least one of the setsS(Hi).

Proposition 7.4. If R has a complete set of k-covers, then R is k-mixing.
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Proof. LetH1, . . . , Hn be a complete set ofk-covers. By the previous lemma, the union of
the setsR∩�−1(S(Hi)) isk-mixing. This union isR∩�−1(∪S(Hi)) = R∩�−1(�(R)) = R.

�

Example 7.5. Let us illustrate the preceding proposition with the 3-decomposition (9).
We consider the two 3-coversH1 = {{1,3}, {2}} andH2 = {{1}, {2,3}}. Consider the
first one. ThenR{1,3} = R1 ∪ R3 = b+(a2)∗ac∗ ∪ b+(a2)+c+ ∪ (a2)+ and it follows
that S(R{1,3}) = (a2)∗a. Assume indeed thatan is a simple skeleton ofR{1,3} for some
even integern. ThenR{1,3} ∩ �−1(an) must be the mixing product of its projections, that
is must be equal tob∗an ↑ anc∗, and this does not hold. Clearly,S(R3) = a+ because
R3 is strongly mixing. SoS(H1) = (a2)∗a. A similar computation shows thatR{2,3} =
b∗(a2)∗ ∪ b+(a2)∗ac+ ∪ (a2)∗a and thatS(R{2,3}) = (a2)+. So S(H2) = (a2)+, and
the setH1, H2 is a complete set of 3-covers. According to the construction given in the
previous proof, it suffices to compute the union of the languagesR ∩ �−1((a2)∗a) and
R∩�−1((a2)+). One getsR∩�−1((a2)∗a) = b+(a2)∗ac∗ ∪(a2)∗a andR∩�−1((a2)+) =
b+(a2)+c+ ∪ b∗(a2)+ and finallyR = b∗a+ ∪ b+a+c+.

Conversely, one has the following.

Proposition 7.6. If R is k-mixing, then for any basic t-decompositionR = R1 ∪ · · · ∪ Rt ,
there exists a complete set of k-covers.

Proof. If R is k-mixing, then

R = M1 ∪ · · · ∪ Mk

with M1, . . . ,Mk strongly mixing. SinceR is saturated forR-equivalence, we may assume
that eachMj is saturated, i.e.,Mj = [Mj ]R. Assume another, basict-decomposition

R = R1 ∪ · · · ∪ Rt

exists. SetN = {1, . . . , t}. Let s ∈ �(R) be a skeleton. For eachj ∈ {1, . . . , k}, consider
the setI ′

j ⊂ N of integersi ∈ N such thatMj ∩ �−1(s) ∩ Ri �= ∅. Clearly,

k⋃
j=1

I ′
j = {i ∈ N | Ri ∩ �−1(s) �= ∅} .

This set may be a strict subset ofN, so that{I ′
1, . . . , I

′
k} is not necessarily ak-cover. Define

Ij = I ′
j ∪ {i ∈ N | Ri ∩ �−1(s) = ∅}. ThenH(s) = {I1, . . . , Ik} is ak-cover. In this way,

we associated ak-coverH(s) to each skeletons. We claim thats ∈ S(H(s)). Assume this
for granted. Then,

�(R) = ⋃
s∈�(R)

S(H(s)) . (13)

Observe that there are only finitely manyk-covers. Thus, the union on the right-hand side
of (13) is finite, showing that the finite set(S(H(s)))s∈�(K) is complete.
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It remains to prove the claim, namely thats ∈ S(H(s)) for each skeletons ∈ �(K). This
is equivalent to show thats ∈ S(RIj ) for j = 1, . . . , k, which in turn means that the set
(
⋃

i∈Ij
Ri) ∩ �−1(s) is strongly mixing. For this, it suffices to show that

( ⋃
i∈Ij

Ri

)
∩ �−1(s) = Mj ∩ �−1(s) . (14)

If w ∈ Mj ∩ �−1(s), thenw ∈ R1 ∪ · · · ∪ Rt , sow ∈ Ri for somei. This indexi is in
I ′
j . Conversely, letw ∈ (

⋃
i∈Ij

Ri) ∩ �−1(s). Thenw ∈ Ri ∩ �−1(s) for somei ∈ I ′
j

(becauseRi ∩�−1(s) = ∅ for i ∈ Ij \ I ′
j ). Consider any wordz ∈ Mj ∩Ri ∩�−1(s). Then

�(z) = �(w) = s, and because the languagesRi are basic, one hasz ∼R w. Sincez ∈ Mj

andMj is saturated for theR-equivalence, alsow ∈ Mj . Thus,w ∈ Mj ∩ �−1(s). This
completes the proof. �

Proposition 7.7. Given a t-decomposition of R, and an integer k, it is decidable whether a
complete set of k-covers exists.

Proof. Any k-coverH = {I1, . . . , Ik} of N = {1, . . . , t} yields a languageS(H). This
language is regular and effectively computable by Lemma7.1. There are only finitely
manyk-covers, so only finitely manyS(H). It suffices to test whether their union is equal
to �(R). �

Theorem 7.8. Let R be a regular language over T. Given an integer k, it is decidable
whether R is k-mixing.

Proof. The algorithm goes as follows.
1. Check whetherR is (B,C)-commutative. If not,R is not mixing.
2. Try to construct a basic representation ofR by the method given in the proof of

Proposition6.5.
(a) If the construction succeeds in at mostk steps,R is k-mixing.
(b) If the construction fails after 4k steps, thenR is notk-mixing.
(c) If the construction succeeds int steps withk < t < 4k, go to the next step.

3. Check whether a complete setk-covers exists for thet-decomposition of the previous
step. This is done by simple (but time-consuming!) computation of the finitely many
k-covers enumeration of allk-cover, and by trying all combinations. If a complete set
exists, thenR is k-mixing, otherwise it is not. �

Let us mention some additional facts.

Proposition 7.9. If R = M1∪· · ·∪Mk is any k-mixingdecomposition of a regular language
R, then the R-equivalence closures[M1]R, . . . , [Mk]R are regular languages.

Proof. If R = M1 ∪ · · · ∪ Mk, thenR = [M1]R ∪ · · · ∪ [Mk]R, so we may assume that
Mj = [Mj ]R for j = 1, . . . , k.With the notation of the proof of Proposition7.6, assume that
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there existk-coversH1, . . . , Hn that are complete for some basic regulart-decomposition,
so that

�(R) = S(H1) ∪ · · · ∪ S(Hn)

according to Eq. (13). Givenm ∈ {1, . . . , n}, let Hm = {I1, . . . , Ik}. In view of Eq. (14),
one has

Mj ∩ �−1(S(Hm)) =
( ⋃

i∈Ij

Ri

)
∩ �−1(S(Hm)) .

This set is regular by Lemma7.1. SinceMj = ⋃n
m=1 Mj ∩ �−1(S(Hm)), the proposition

is proved. �

Corollary 7.10. If R is a k-mixing regular language R, then R has a regular k-mixing
decomposition.

Proof. Indeed, ifR = M1∪· · ·∪Mk, thenR = [M1]R∪· · ·∪[Mk]R and[M1]R, . . . , [Mk]R
are regular languages.�

8. Concluding remarks

We have shown that for a given integerk, it is decidable whether a regular languageR
is k-mixing. It still remains an open question if one can decide whetherR is k-mixing for
somek.

The case we have studied here is a partition of the alphabetT into 3 subalphabet. This
is a special case of a more general case, namely a partition intom + 1 subsetsT =
A ∪ B1 ∪ · · · ∪ Bm, where closure under permutation of letters from different subalphabet
Bi is permitted. The question whether our result extend to this case is open.
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