Available online at www.sciencedirect.com

scuENCE@DIRECT@ Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 332 (2005) 179-198
www.elsevier.com/locate/tcs

Mixed languages

Jean Bersté] Luc Boassoh*, Michel Latteux

3Institut Gaspard Monge (IGM), Université de Marne-la-Vallée, 5, boulevard Descartes, 77454 Marne-la-Vallée
Cedex 2, France
b aboratoire dinformatique algorithmique: fondements et applications (LIAFA), Université Denis-Diderot
(Paris V), 2, place Jussieu, 75251 Paris Cedex 05, France
CLaboratoire dinformatique fondamentale de Lille (LIFL), Université des Sciences et Technologies de Lille,
59655 Villeneuve d’Ascq Cedex, France

Received 2 May 2003; received in revised form 2 May 2004; accepted 19 August 2004
Communicated by G. Rozenberg

Abstract

LetT =AU BUC be an alphabet that is partitioned into three subalphabetsniXieg producof
awordg over A U B and of a wordd over A U C is the set of words overT such that its projection
onto A U B givesg and its projection ontet U C givesd.

Let R be a regulalanguage oveT such thatbcyis in R if and only if xcbyis in R for any two
lettersb in B andc in C. In other wordsR is commutative oveB andC. Is this property “structural”
in the sense thd can then be obtained as a mixing product of a regular languagedove® and of
aregular language overU C?

This question has a rather easy answer, but there are many cases where the answer is negative.
A more interesting question is whethRrcan be represented as a finite union of mixed products of
regular languages. For the moment, we do not have an answer to this question. However, we prove
that it is decidable whether, for a givénthe languag® is a union of at mosk mixed products of
regular languages.

Résumé

Soit7T = A U B U C un alphabet partitionné en trois sous-alphabetsné&anged’'un motg sur
A U B et d'un motd surA U C est I'ensemble des mots surT dont la projection suA U B donne
le motg et surA U C donne le mot.

*Corresponding author.
E-mail addressboasson@liafa.jussieu fic. Boasson).

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.08.016

http://www.elsevier.com/locate/tcs
mailto:boasson@liafa.jussieu.fr

180 J. Berstel et al. / Theoretical Computer Science 332 (2005) 179-198

Soit R un langage rationnel sdrtel quexbcyest dansk si et seulement sicbyest dansk pour
deux lettres quelconquése B etc € C. En d'autres terme® est commutatif suB et C. Est-ce que
cette propriété est “structurelle”, c'est-a-dire peut-on alors obfReomme mélange d'un langage
rationnel surA U B et d'un langage rationnel suru C?

Cette question a une réponse plutdt facile, mais il existe de trop nombreux cas ou la réponse est
négative. Une question plus intéressante est de savoir si on peut repr&seorene une union finie
de mélanges de langages rationnels. Pour l'instant, nous n‘avons pas de réponse a cette question.
En revanche, nous montrons qu'il est décidable, pour un entienné, siR est union d'au plugk
mélanges de langages rationnels.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Formal languages; Theory of traces; Synchronized product

1. Introduction

This paper is concerned with a special case of a problem about trace languages, that we
address in a particular setting, and for which we give a partial answer. We first state the
problem and then sketch its relation to trace languages.

Let T be an alphabet that is partitioned into three pairwise disjoint alphabB{sandC,
so that

T=AUBUC A, B,C pairwise disjoint. (1)
Consider a regular languagthat is(B, C)-commutativei.e., satisfies
zbcy € R < zcby € R

for all lettersb € B, ¢ € C and wordsz, y. One may ask whethd® can be built up by
“mixing” regular language& over A U B andD over A U C. To be more precise, denote
byrng : T* — (AU B)*, andn¢ : T* — (AU C)* the projections fronT* onto(A U B)*
and(A U C)* respectively, and define theixing produciof two wordsu € (A U B)* and
ve(AUQC)* by

utv= ngl(u) N ngl(v) .
These products extend to set as usual by

GrD= U gtd=n"(G) nrH(D)
geG.deD

forG Cc (AUB)*andD C (AUC)*. The question can be stated more formally as follows:
if Ris (B, C)-commutative, does there exi{standD such thatR = G 1 D. This is easily
answered, as well shall see. A more interesting question is: is it possible toR\aiea
finite union of sets5; 1 D;. We do not know whether this problem is decidable. However,
we prove that, given an integee= 1, it is decidable wherR can be written as a union of at
mostk setsG; 1 D;.

The general framework is that of free partially commutative monoids and of trace lan-
guages (see e.g1]). Such a free partially commutative mondif{ 7', 1) over the alphabet

J. Berstel et al. / Theoretical Computer Science 332 (2005) 179-198 181

Tis defined by an independence relatioa T x T. In our case, letters iB commute with

letters INC, sol = B x C U C x B. Languages we callB, C)-commutative are precisely

trace languagesthat is subsets df * that are inverse homomorphic images of subsets in

M (T, I) by the canonical homomorphism. A trace language that is regular is the inverse
homomorphic image of a recognizable subseMdir’,). A famous theorem of Zielonka

[3] shows that recognizable trace languages are precisely those recognized by asynchronous
automata.

Duboc|[2] considers mixing products of languages (that we defined above in our spe-
cial setting) and she called weakly mixing those languages that are finite unions of mixing
languages (we will call themrmixing for short later). She observed that regular trace lan-
guages are not always weakly mixing, but she proved that every regular trace language is
the homomorphic image of some weakly mixing language.

The problemwe address can be stated in general as follows: given aregular trace language,
is it decidable if it is mixing (weakly mixing)? We consider only the very simple case of
the special independence relation given before, and give only a partial answer.

For more motivation, let us consider an automata-theoretic approach. Consider two au-
tomatals andC over A U B and A U C respectively. Transform automatd@hby adding
loops labelled by all letters i€ to each state, and similarly fat. This gives automat&
andC overT. The direct producB x C is called the mixing product by Dub¢2]. In B x C,
choose a sdf of final states, and then minimize the automaton. Call the resulting minimal
automatonA. The language recognized byis

LA =LBxCO= U Lga),
(g,d)eF
whereL(g, d) denotes the language recognized by taking/) as the unique final state.
Then

L(g.d) = Lp(g) 1 Lc(d),

whereLi(g) is the language recognized Bwith the unique final statg and similarly
for Le(d). This shows thal.(A) is a union of CardF) mixed languages. However, it may
happen, as in the example we give now, that the numbErfinal states in the minimal
automatonA is strictly less than the size &, so that the mixing decomposition cannot
be “read” from the form ofA. In fact, we do not know of an upper bound for Card
expressed as a function @f

Example 1.1. Let A = {a}, B = {b}, C = {c}, let W be the set of words of even length
over{b, c} and setR = aW. This language is recognized by the automatbof Fig. 1.
On the other hand, consider the automatandC of Fig. 2. No final states are specified.
Adding loops on states gives the automata of Bign the (accessible part) of the direct
product of these automata we choose final statesnt 2 (see Fig4).

The language recognized is therefore

R= <a(b2)* 1 a(cz)*) U (ab(bz)* 1 ab(cz)*> .

Minimizing the product automaton yields the automaton of Eigith a unique final state,
andR s easily shown not to be representable as a unique mixing of two languages.

182 J. Berstel et al. / Theoretical Computer Science 332 (2005) 179-198

b,c

b,c

Fig. 1. Minimal automaton recognizirig

b c
-2 1 -~
b c

Fig. 2. Automata3 (on the left) and’ (on the right).

Fig. 4. The direct product o andC.

The automata-theoretic description seems not to lead directly to an answer to our question.
We therefore consider in the sequel a language-theoretic approach.

The paper is organized as follows: the next section contains some notation. In Section 3,
we prove the first result we announced (Proposi8af), namely that it is decidable whether
a language is strongly mixing. Sections 4 and 5 contain some preliminary results and
examples ok-mixing languages. The basic construction for answering the question whether
alanguage ik-mixing is presented in Section 6. It relates mixing to a kind of syntactic notion
called theindex the index is, roughly speaking, the maximum number of classes of traces
that compose the inverse image of a skeleton. The construction, proved in Prop@&ition
is in fact a semi-algorithm in the sense that it yields only a bound betweed 4. This
proposition heavily relies on a surprising result (Lenr@ showing that a certain language

J. Berstel et al. / Theoretical Computer Science 332 (2005) 179-198 183

isregular. In Section 7, a second algorithm is presented that shows how a decomposition into
mixing languages can be splitted and recomposed into smaller ones, yielding the answer to
our question (Theorem.8).

2. Mixing product

Recall thatl’ denotes an alphabet that is partitioned into three pairwise disjoint alphabets
A, B, andC, so that

T=AUBUC A, B,C pairwise disjoint. (2)

We denote byt : T* — A*, g : T* — (AU B)*, andn¢ : T* — (A U C)* the three
projections fronT* onto A*, (AU B)* and(A U C)*, respectively. Clearlyy = ngone =
nc o mg. Observe also that if € (A U B)*, thenng1 = ulLIC*, whereLLl denotes the
shuffle operation. The projectiot{w) of awordw € T* is called theskeletorof w.
Themixing productof two wordsu € (A U B)* andv € (A U C)* is defined by

utv= ngl(u) N nEl(v)

There are other notations for this product: Zielof®awritesu||v and Dubod2] uses still
another notation.

Example 2.1. Let A = {a}, B = {b}, C = {c}. Thenab 1 ac = {abc, acb}, andaba 1
ac=90.

If the alphabetA is empty, then the mixing product is merely the shuffle. Observe that
ut v #£@ifandonlyifnc(u) = np(v) or equivalently if and only itiandv have the same
skeleton. Observe also that(if 1 v) N (1’ 1 v') # @, thenu = u’ andv = v’. Indeed, if

w e (utv)N @ 1), thenng(w) = u becausav € u 1 v and similarlyng(w) = u’'.
Symmetricallyy = v'.

3. Strongly mixing languages

As usual, the mixing product is extended to sets of words as followsGLet(A U B)*
andD Cc (AU C)*. Then

GrD= |J gtd=r1z%G) Nnnz D).
geG,deD

Observe that the union is over all paigs d) € G x D, but that the pai(g, d) has a non
empty contribution to the union only if¢(g) = np(d).

A languageL over T is strongly mixingif there exist language§ over A U B and D
overAU C suchthatl. = G 1 D.

184 J. Berstel et al. / Theoretical Computer Science 332 (2005) 179-198

Lemma 3.1. Alanguagel. C T* is strongly mixing if and only it. = ng(L) 1 nc(L). If
L =Gt DthenG D ng(L)andD D n¢c(L).

Proof. AssumeL is strongly mixing,L = G 1 D. SinceL C ngl(G), onehasiz(L) C G
and similarlync (L) C D. This shows the second part, and also the inclugigtL) 1
nc(L) € L. On the other hand, the inclusidn c 7, (ns(L)) N nat(nc (L)) always
holds, soL. C (L) 4 nc(L). O

Observe that equality = np(L) holds in the lemma if, for every € G, thereisd € D
such thatg + d # . Indeed, in this case, let € L being 1 d. Thenng(w) = g, SO
g € np(L).

Example 3.2.Let A = {a}, B = {b} andC = {c}. The languagek = {aw | w €
(b, e}, |lwlp = 1, |lw|. > O} is strongly mixing. Indeed, one hds = ab 1 ac™t. The
language can also be written for instancekas= (ab U aa™) 1 ac™, sinceaa™ 1 act =
.

Example 3.3. The languageR = {aw | w € {b, c}*, |w| ever} is not strongly mixing,
sinceng(R) = ab* andn¢c(R) = ac*, andR # ab* 1 ac*.

Proposition 3.4. Given a regular language R over it is decidable whether R is strongly
mixing. Moreoverif R is strongly mixingthen it is the mixing product of two regular
languages.

Proof. In order to check whethdR is strongly mixing, it suffices to compute the regular
languagess = 5 (R) andD = ¢ (R) and to check whethek = 7,1(G) N w1 (D). All

these computations are effective because the languages involved are regular. Clearly, the
languageR is strongly mixing if and only if the equality holds.(J

We have the following closure property.

Proposition 3.5. The intersection of two strongly mixing languages is again strongly
mixing.

Proof. LetL = G + D = nz%(G) nn l(D) andL’ = G’ t D' = 1z (G') Nt (D).
ThenLNL' =n,(GNG)Nr(DND)=(GNG)+(DND). O

4. Mixing languages

A languagel is k-mixing for some integek if there existk strongly mixing languages
L1,..., Ly suchthatl. = L U---U Lg. The languagé is mixingif it is k-mixing for
somek. Clearly, 1-mixing languages are precisely the strongly mixing languages. Since the
empty set is strongly mixing, arkmixing language is alsk’-mixing for k’ > k.

J. Berstel et al. / Theoretical Computer Science 332 (2005) 179-198 185

Example 4.1. Thelanguag® = {aw | w € {b, c}*, |w| evenrj of Example3.3is 2-mixing,
since

R = (a(bz)* 4 a(cz)*) U (ab(bz)* 1 ab(cz)*> .

Example 4.2. Let againA = {a}, B = {b}, C = {c}. Let W be the set of words of even
length over{b, c}. We show that the language = (aW)* is not mixing. For this, we
consider, for each > 1, the wordSabc)’ (ab?c?)"~ for 0<i <n.All these words are iRR.
AssumeRis k-mixing. Then, ifn >k, there are two distinct words = (abc)’ (ab?c?)" "

andw’ = (abc)’ (ab?c®)™—J (with i < j) which are in the same strongly mixing subset
of R, sayw,w’ € G 1 D C R. It follows that (ab)' (ab®)"~*, (ab)! (ab®)"~/ € G and
(ac) (ac®)" 1, (ac)! (ac®"~/ e D. But then(ab) (ab®)"~" 1 (ac)!(ac®"~/ c R, and
this shows in particular that the wotdbc)! (ab?c)’~ (ab?c?)"~/ is in R, a contradiction.

In the sequel, we shall prove that, given a regularseter T and an integek, it is
decidable whetheR is k-mixing. It remains open whether it is decidable that a regular
languageR is mixing. In other words, we are able to answer the question for a kixat
we do not know the answer kfis not fixed.

As a simple consequence of Proposit&Bb, we have

Proposition 4.3. If L is k-mixing andL’ is k’-mixing thenL N L’ is k - k’-mixing
Corollary 4.4. If Lis a k-mixing languaggthen7* \ L is 2¥-mixing

Proof. If L = G 4 Dis strongly mixing, the™*\ L = (G 1 (AUC)*)U((AUB)* 1 D),
whereG = (AUB)*\ G andD = (AUC)*\ D, showing tha?"* \ L is 2-mixing. Next, if

L =L1U---ULpwith L1, ..., L strongly mixing, ther*\L = (T*\L1)N---N(T*\ Ly),
and the result follows from the preceding propositiofil

We introduce now a running example that will be used repeatedly to illustrate the argu-
ments developed in this paper.

Example 4.5. Let A = {a}, B = {b} andC = {c} and consider the three languages

Ri =ab 1 act ={aw | w e {b,c}*, |wlp =1, |w|. > 0}

Ry = a(®" ta(c*
= faw | w € {b, c}*, [w[p =2, |w|c =2, |[w|p = |w|. = 0 mod 3
R3 = ab3(b®* t ac(c?)*

= {aw |w € {b, c}*, wlp 23, |w|c 21, [wlp = |w|c =1 mod 3
SetR = R; U Ry U R3. All words in R have the same skelet@ By construction, the
languageR is 3-mixing. It is not strongly mixing. Indeedg(R) = ab™, nc(R) = ac™,
and for instancebc? is inab™ 1 act and is not inR. HoweverRis 2-mixing, because

R =ab(b®* 1 ac(c®* U @b Ua®®™) ta®. O

186 J. Berstel et al. / Theoretical Computer Science 332 (2005) 179-198
5. Preliminary results

Consider the mapping
w:T*— (AUB)* x (AUC)*
defined by
ww) = (np(w), mc(w)) .

Foru e (AUB)*, v € (AUC)*, one hasu *(u,v) = u 1 v. If G C (AU B)* and
D C (AUC)*, thenG t D = u=X(G x D). However, sincg 1 d = @ if n(g) # n(d), it
is natural to consider the “diagonal” composed of pairs of words with the same skeleton

A={u,v) e (AUB* x (AUOC)" | tc(u) = np(v)}.
This is a rational relation, and

G+ D=upYGxDn4, wWG1D)=GxDNA.
A setX c T*is called(B, C)-commutativef

zbcy € X < zcby € X

for all lettersb € B, ¢ € C andwordg, y. Itis easily seen that this property is decidable for
regular languages. Indeed, one may consider the minimal automaton of a regular languages
X. ThenX is (B, C)-commutative if and only if, whenever there are edg»esb—> g and

c . c b . .

g — r, there exist also edges— ¢’ andg’ — r in this automaton.

Observe thatX is (B, C)-commutative if and only it~ 1(u(X)) = X. If Xis (B, C)-
commutative, them + vNX # 0¥ — u 1t v C X. Indeed, letw € u 1 v. Then
wtv=p Huw)) C pHukx)) = X.

For any regular s&R overT, the sefu(R) is a rational relation. The relatiqr(R) defines
two reciprocal rational transductiorf, : (AU B)* — (AU C)* andyg : (AUC)* —
(AU B)* by

Brw) ={v e (AUC)" | (u,v) € W(R)}
and

7rR(W) = {u € (AUB)" | (u,v) € W(R)}.
Clearly,v € fz(u) ifand only ifu € y,(v). Observe that

Br) ={ve(AUC)" | (utv)NR# M) =nc(ng @) NR).
Moreover, ifRis (B, C)-commutative, then

Bruw) ={ve(AUC)" |utv#Wandu + v C R}.

J. Berstel et al. / Theoretical Computer Science 332 (2005) 179-198 187

Symmetric expressions hold fof. If Ris regular, then each of these sets is regular and
effectively computable. IR is strongly mixing, i.e., ifR = G 1 D, then foru € G, one
has

Br) = (v | w,v) € G x DN A} = DNrgtncu)). (3)

Example 5.1. In the previous example, the transductigipsandy , are readily computed.
One has

Br(ab) = act, yr(ac®) abUa®®t n>1,
Br@b®) = a(t n>1, yr(ac®) = ab(b?* n>0.

Br(ab®) = ac(c®* n=>1,

We now consider the nuclear equivalences associated to these transductions., @iven
(AUB)*,wesetu ~p g u’ifand only if S (u) = Br(«), and symmetrically, given, v’ €
(AUC)*, we setv ~, g v’ ifand only if yr (v) = 7, (v"). We denote the equivalence class
of uby [u]g r and the equivalence classwoby [v], .

Finally, we define an equivalenceg over T*, called theR-equivalenceby setting, for
two wordsw andw’ overT, w ~g w’ if and only if ng(w) ~p g mp(w’) andrc(w) ~y &
nc(w'). The equivalence class of for the R-equivalence is denoted w]z. It is conve-
nient to se{K]~ = (J, g [x]~, where[x]. denotes the equivalence classxdbr some
equivalence~. It is easily checked that

[wlg = [mp(w)lg g T [mc(W)])R -
More generally, one has the implications

Gt DCM = [Glgg 1 [Dlyr CIM]r
and also

M=G1D = [Mlg=I[Glgr 1 [Dlr- (4)

Example 5.2. Let us continue our example. The equivalenggy has three classes con-
tained inmg(R), namely[ablg x = {ab}, [ab?]g x = a(b®)T and[ab®]s g = ab3(b?)*.
Similarly, there are two equivalence classes forr, namely[acl, r = ac(c®* and
[acz]y,R = a(c®*. The language is saturated foR-equivalence, and it is the union
of four equivalence classes:

R = [ablg g 1 laclyr Ulablg g 1 lac?]y r
U [ab®)p g 1 lac®]y r Ulab®lp g 1 lacl, g

giving yet another decomposition Bf

(5)

Also, if Ris (B, C)-commutative, theRis saturated foR-equivalence, thatisR]z = R, for
if x € R andx’ ~y x, then settingt = np(x), u’ = np(x’) andv = ne(x), v = ne(x'),
one hast 1 v C R becausis (B, C)-commutative, and’ 1 v € R because: ~p p u’
andu’ + v" € R because ~, g v/, and thust’ € R.

188 J. Berstel et al. / Theoretical Computer Science 332 (2005) 179-198
6. The basic construction

The R-equivalence introduced at the end of the previous section provides a property of
k-mixing languages that will be used as a test for termination in the construction we will
describe now.

A setX of words ovefT is monoskeletaif all words in X have the same skeleton. Thus,

a subsek of Ris monoskeletal if and only if it is a subset of a g&n n~1(s), for some

s € m(R). EachR-equivalence class is monoskeletal becaRssquivalent words have
the same skeleton. Thus, each geh 7~ 1(s) is saturated foR-equivalence. Théndex

of R N n~1(s) is the number oR-equivalence classes it contains. More generally, for a
subsetX of R, the index of the subset N 7~ 1(s) is the number oR-equivalence classes
that X N 7~1(s) intersects and the index &f is the maximum of the indices of the sets
X Nnn~(s), wheresranges over the skeletonsRf

A setR C T* hasindex kif any monoskeletal subset of R has index at mog, that
is intersects at mo#t distinct R-equivalence classes. In other worBshas indexk if any
monoskeletal subset Bfcomposed of at least1 words contains two distin€-equivalent
words.

Proposition 6.1. If a language R is k-mixinghen it has index*.

Proof. Set
R=R1U---URy, R =G; 1 D;.

Consider a wordv € R. Define theB-index set ofw by Indg(w) = {i | np(w) € G;}. It
follow from (3) that

Brngw) = U DiNagtn(w)).

ielndp (w)

This shows that ifv, w’ € R have same skeleton and saBwndex set, them g (w) ~B.R

g (w’). Symmetrically, one defines ti@index set ofw by Indc (w) = {i | nc(w) € D;},

and one shows that ib, w’ have same skeleton and sa@éndex set, themc (w) ~, r

e (w’). Thus, ifw andw’ have the same skeleton and the same pair of index sets, they
areR-equivalent. Clearly, there are at mo$tpghirs of index sets. Thus, if one takes any
monoskeletal set of at least 4 1 words, two among them aRequivalent. This shows
thatR has index 4. [

Example 6.2. Let A = {a}, B = {b}, C = {c}. LetW be the set of words of even length
over{b, c}, and consider again the languaRe= (aW)* of Example4.2.

The argument used before to show tRaias infinite index can be rewritten as follows. We
observe that iRis k-mixing, then by the previous proposition, the numbeRefquivalence
classes for each skeleton is boundedhyHbwever, two wordsy = (abe) (ab?c?)" ! and
w’ = (abc)/ (ab®c?)"~7 (with i < j) have the same skeletafi and are noR-equivalent,
since otherwiséab)’ (ab®)"~" 1 (ac)/(ac?)"~/ c R. Thus the number dR-equivalence
classes for the skeletait is at leasi: + 1.

J. Berstel et al. / Theoretical Computer Science 332 (2005) 179-198 189
We now prove a weak converse of the previous property.

Theorem 6.3. Let R be a(B, C)-commutative regular language over T. If R has index k
then R is k-mixing

This is an immediate consequence of the next proposition which gives a more precise
description of the construction used in the proof. For this, we introduce some additional
notions. Ak-mixing decompositiof R, or ak-decomposition for short, is a decomposition

R=RiU---URy, (6)

where eacl®; is strongly mixing. This decomposition is callegtjular if eachRr; is regular.
It is called basicif each R; is saturated for~; and if any two words inR; with the
same skeleton arg-equivalent. In other words, a decomposition is basic if eRclhas
index 1.
The second condition deserves some commentwlet’ € R. If w ~x w’, thenn(w) =
n(w’), but the converse need not to be true. So what is required is precisely that the con-
verse holds for each component $gt that is, for eachw, w’ € R;, n(w) = n(w') =
w~pw.

Example 6.4. In our running example, all words iR have the same skeleton, and the
R-equivalence has four classes. The 4-decomposifipis pasic and regular.

Proposition 6.5. Let R be a(B, C)-commutative regular language over T. If R has index
k, then R has a k-decomposition that is regular and basic.

Proof. The proof is constructive. Starting with the regular languBgee first choose a
regular languag& C R such thatt(K) = n(R) andr is injective onK. In other words,
two distinct words irkK have different skeletons. The cross-section theorem ensures that a
regular languagK with these properties can be effectively constructed. Of coHrgenot
(B, C)-commutative in general.

SetG] = np(K) andD] = nc(K). ThenK C G} + D] C R becaus®is (B, C)-
commutative. We now consider the saturationdf for ~4 and of Dj for ~, ¢. Set
G1=[G}lp.r andD1 = [D}], . Then

11Dy CG11 D1 CR.

The first inclusion is clear. The second follows from the fact BRiet(B, C)-commutative,
and so[R]g = R. Observe thatG1 1 D1 is basic. Indeed, it is saturated forg by
construction, and any two words with the same skeletoriRagguivalent to the only word
in K having this skeleton, and so &Reequivalent.

We prove in a separate lemma (Lemfébelow) thatG1 and D, are regular languages.
Taking this for granted, one gets a regular langudge! D1 containedirR. If G1 1 D1 =
R, the languagRis strongly mixing and therefore 1-mixing. Otherwise,Bet= G1 1 D1.

190 J. Berstel et al. / Theoretical Computer Science 332 (2005) 179-198

R1 = R\ R:. Since bottR and R1 are regular andB, C)-commutative, the language;
also is regular an@B, C)-commutative. Moreover, every skeleton®f is a skeleton oR,
and is also a skeleton &f; becausdr and R1 have the same sets of skeletons.

We now repeat the same construction 1 we choose a cross-section Bf that is
injective for 7, we build G, D). Saturation is always with respect to the initial language
R. This yields regular language&s, over A U B and D2 over A U C such thatR, = G» 1
Dy C R1.SetRo = R1\ Ro = R\ (R1 U R»). Again, R> may or may not be empty. This
construction is repeated at mdstimes. Observe that the languages= G; 1 D; are
pairwise disjoint.

We prove that there is an integeg k such that

R=RiU---UR,

showing thaR is £-mixing and thus als&mixing. Arguing by contradiction, assume that
the claim is false. The®R # Ry U --- U R, for 1< ¢ <k. Repeating the construction once
more, we get regular languag€s..1 and D1 such that, settin®; 11 = Giy1 1 Dra1,

RDORIU---URyURp41.

Choosek + 1 wordswy, . .., wgs1 such thatw; € R; \ (R1U--- U R;_1) andn(w1) =
- = m(wg+1). This is possible because the skeleton®Rpfare skeletons oR;_1. The
setW = {w1, ..., wrt1} IS monoskeletal. Sinck has index, there are twdr-equivalent
words in this set, say; ~g w; withi < j. Thenng(w;) ~p g ©p(w;) andnc(w;) ~y r
nc(wj). SinceG; is saturated for the equivaleneg; r andnp(w;) € G;, it follows that
ng(w;) € G; and similarlyrc(w;) € D;. Thus,w; € G; 1 D; = R;, a contradiction.
O

Lemma 6.6. LetG’ be a regular language ovet U B such thatz is injective onG’. The
languageG = [G']g r obtained by saturating;’ for the equivalence relationg x is an
effectively computable regular language

Proof. The proofis in two steps. We first show that, for a wa@ver AU B, the equivalence
class[u]g x is a regular language. This is done by giving two rational transductions for the
complement of the language. In a second step, these transductions are used to give a regular
expression for the complement@f(see Eq. 7). The injectivity of ¢ plays a central role
in the last argument.

Letu be a word oveA U B. Then[ulg g = {u | fr(it) = fr(u)}. We first show that
[u]p, & is a regular language for eaahFor this, we show that the set

L(u) = nt(me) \ [ulg &

is a regular language. Sindgu) = {ii € nEl(nc(u)) | Br(u) # Pr(u)} itis composed
of two sets, namely those for which f(u) contains words not i, (), and those:
for which S («) contains words not i, («). Thus, the sef () is the union of two,

J. Berstel et al. / Theoretical Computer Science 332 (2005) 179-198 191

not necessarily disjoint languages

Li(u) = {it € ng (ne) | Bru) \ Pri) # B)
and

Lo(u) = {it € g (ne) | Brlia) \ Pru) # B} .
We claim that

L1(u) = o\ g(Br@)) and Lo(u) = g (B«).

Consider indeed € Li(u). Thennc(it) = nc(u) and there exists € fx(u) such that
v ¢ B(u). From the first relation, it follows thatg (v) = 7¢ (1) and so alsa(v) = 7 (ir).
Thusiu 1 v # @, and sincev ¢ fr(i), one has: 1+ v C T* \ R which means that
v € By« g(@) Or equivalentlyic € yr« g(v). Conversely, ifi € y7. g(Bg(u)), then there
is a wordv overA U C such thab € g (u) andit € 77+ g(v). The second relation means
thatv € Sz« g(u) which in turn shows thai t v C 7%\ R. Again,u 1 v #) because
ut v #9P. Thusv ¢ fr(z). The proof of the second relation is symmetric. This shows
that[u]g ¢ is regular.

We now turn to the second step. The seis= | J, .o L1(w) andLy = J,c L2(u)
are regular because

Li= VT*\R(ﬁR(G/)) and Ly = VR(ﬁT*\R(G/)) .
Thus the language

L=LiULy= {J nct(mc)\ [ulp x
ueG’

is regular. Sincerc is injective onG’, each setzgl(nc(u)) for u € G’ contains exactly
one class for-g g, namely[u]g g. In other WOI‘dSy‘cEl(nc(u)) N[u'lpr=0foru #u,
u’ € G'. This implies that

L= ntme@) \ U lulgr 0

ueG’ ueG’

Thus,L = 1z (nc(G") \ G, showing thaG is regular. O

Example 6.7. Letus perform the construction of the proof of ProposiBdson our running
example. Sinc®is monoskeletal, any word iRis a candidate for the langualje So take
K = {abc}. ThenG’ = {ab}, D] = {ac}, andG1 = {ab}, D1 = ac(c®)* andRy = ab 1

ac(c®)*. SinceRy # R, we continue the construction. Take for instande? in R \ R1.

One getsG, = {ab}, D> = a(c®t, andRo = ab 1 a(c®*. Still R1 U R» is not covered.
Takew = ab?c?. ThenR3 = a(b®)™ 1 a(c®)*. Takeab3c € R\ (R1 U R> U R3). This

gives a languag®s = ab®(b?)* t ac(c®*, andR = R1 U R> U R3 U R4. In fact, this
decomposition is precisely that of E&)(Observe that the languagRsdonot correspond
to the languagegR,; of Example4.5.

It might be interesting to consider another example, with infinitely many skeletons.

192 J. Berstel et al. / Theoretical Computer Science 332 (2005) 179-198

Example 6.8. SetA = {a}, B = {b}, andC = {c}. Let W be the set of words of even
length over{b, ¢}, and letWp (W1) be the set of words i having an even (odd) number
of b’'s and ofc’s. The language we consider is

R = {awiaws---aw, | n>1, wiwz---w, € W}.

Of course, the set of skeletons7igR) = a*. We perform the construction of the proof
of Proposition6.5. We start with a first cross-sectidti = a™. Clearly, G| = D] = K,
and Gy = [Gilgr = faurauz---au, | n=1, luguz---u,| = 0mod 3, andD; =
[Dily,r = {aviavz---av, | n2=1, Jvivz---v,| = 0 mod 3. It follows thatRy = G1 ¢t
D1 = {awiawz---aw, | n>1, wiw2 - - - w, € Wp}. Next, consider a second cross-section
K> = atbe. ThenG), = a™b andD), = a*c, andG, = [G5lp r = {ausauz---auy, |
n>1, |uguz---u,| = 1 mod 3, and similarly forD, = [D5], . It follows thatR, =
Gz t Dy = {awiawz---aw, | n=21, wiwz---w, € Wi}. SinceR = Ry U Ry, the
languageR is 2-mixing.

Observe that the choice of the cross-section may change the decomposition that is ob-
tained. Fori, j =0, 1, define

Vi,j = lawiawz---aw, |n =i mod 2 wiwy - - w, € W,}.
The language®; and R, of the previous 2-decomposition are
Ry = VpoU V10, Ry=Vp1UVy1.

Consider now for instance the languakie= (%)t U (a®)*abc. This is a cross-section of
R. The corresponding projections a4 = (a?)* U (a®)*ab and D} = (a®)* U (a®)*ac,
and a first component of the decompositiorRof S1U Sz is S1 = VooU V1.1. The second
component is obtained by exchanging even and odd's: V10U Vg 1.

At this point, we are able to check only partially whether a languRgek-mixing. We
proceed as follows:
1. First, we check wheth&is (B, C)-commutative. If it is not, then it is not mixing.
2. We use at most‘4steps of the construction given in the proof of theoi@B
(a) If the construction stops before at misteps, we know thaR is k-mixing.
(b) If the construction does not stop aftérgteps, we know thaR is notk-mixing
by Propositiort.1
However, if the construction stops betwdeand 4 steps, we do not (yet) know whetHer
is k-mixing or not. We will show in Sectioid that in this case, it is decidable whetteis
k-mixing or not.

6.1. A second example
Let us consider agaid = {a}, B = {b}, andC = {c}, and consider the language
R=a"UbtaTc*.
It is easily seen thaR is 2-mixing since

R= (@ " taHu®tat +atch).

J. Berstel et al. / Theoretical Computer Science 332 (2005) 179-198 193

It is also easily seen th& is not 1-mixing. Indeecdtz(R) = b*a™, nc(R) = a*c*, and
ng(R) 1 mc(R) # R sinceng(R) 1 ne(R) D a™c*.

Let us compute th&-equivalence classes. For this, we consider first the three vaprds
ba, andbac. One gets, for the word,

Br(a) = {a}, lalg g = {a}, yg(a) =D"a, lal,r = {a},
for the wordba, one gets
Br(ba) = ac*, [balg g =b"a,

and for the wordac

yrlac) = bta, laclyr = acT.
This shows that thR-equivalence classes of the worl$a, andbacare different. In fact,
it is now easy to see thét]z = {a}, [balg = bTa, and[bac]lg = bTac™. This holds also

for words containing more than one letgerSo finally, for alln > 1,
[a"lg = {d"}, [ba"]lg =b%d", [ba"clg=bTa"c".

Let us apply the construction of Theordh8.

We start with a first cross-sectidki, = a™. ThenG1 = at andD1 = a, SOR; =
G114 D1 =at. The remaining seti®, = R\ Ry = bta™c*.

Consider next the cross-secti&ia = ba*. ThenG, = bta*, D, =a™ andRy = G, ¢
Dy = btat. The remaining seti®> = R\ (R1U Ry) = btate™.

Consider the cross-sectidkis = ba™c. ThenGsz = bTa™, D3 = atc™ andR3 =
bTatct. Thus we get the basic 3-decompositi®nr= R; U Ry U R3 with

Ry =at,
Ry = bta™, (8)

Rz = btatet.

Assume now that we start the construction by choosing another initial cross-section,
namely K] = b(a®)*a U b(a®)*c instead of the seK;. ThenGy, = bTa™ and Dy =
(@®*a U (a®Tct. Thus one getRy = G1 + Dy = bt (@®*a U bt (@®Tct, andRy =
at Ubt @t ubt@®*act.

Take now the cross-sectioki, = b(a?®)* U a(a®)*. ThenG, = b*(a®)* U a(a?)*,
Dy =at,s0Ry = G andRs = b (a®)*act U (a®)*.

Finally, we take the cross-secticki; = b(a?)*a U (a®)*. Then we obtainGs =
bt@®*a U (@®*, againD3 = a™, andRs = G3 + D3 = R». This yields another
basic 3-decompositioR = R1 U R U R3 with

R1 = bt (@®*aUbt(@®*ct,
Ry = bt(@®* U (a®)*a, (9)
Rz = bt (@®*act U @®t.

194 J. Berstel et al. / Theoretical Computer Science 332 (2005) 179-198
7. Complement to the basic construction

In this section, we show that it is decidable whether a regular langRag&-mixing,
provided we know a basic regulamixing decomposition oR for somet with k < ¢ <4,

For this, we show that iR is k-mixing, then there exists kdecomposition oR that is
obtained by gluing together parts of a bas@ecomposition. We moreover show that this
k-decomposition can be chosen among a finite number of candidates, proving thus the
decidability.

We start with some elementary properties of monoskeletal languages. Recall that a set
K c T*is monoskeletal if the set(K) of its skeletons is a singleton. A useful property of
monoskeletal languages is that the union of monoskeletal, strongly mixable languages with
distinct skeletons is again strongly mixable. More precisely, considersacetr™ and, for
eachs € S, monoskeletal languages(s) over A U B and D(s) over A U C with skeleton
s. Then

US G(s) 1t D(s) = (US G(S)) 1 <US D(S)) (10)

becausé&s(s) 1 D(s') = @ fors # s'.

Given an arbitrank c T7*, and a skeleton € 7(K), the setk N7~1(s) is monoskeletal
by construction. The skeletanis simplefor K if s € n(K) and K N 7~ 1(s) is strongly
mixing.

SetKp = np(K) andK¢ = nc(K). Itis easy to check that, for eaghe 7(K),

(Kg t Ko) N ts) = (Kg Nagt(s) 1 (Ke Nagh(s).
Next, sis simple if and only if
KNnts) =ng(K N 1)) 1 ne(K N i(s)).

Sinceng (K N7 1(s)) = Kz N nEl(s) (and similarly for the other term), it follows that
is simple if and only if

KNna i) =(Ks 1t Ke)Nn(s). (11)
If X c A*is a set of simple skeletons f, thenk N n~1(X) is strongly mixing, because

KNnraiX) = UX K Nn) = (Kp Nngt(X)) 1 (Ke Nagh(X)).
se

Lemma 7.1. Let K C T* be aregular language. The s&tK) of simple skeletons of K is
an effectively computableegular subset ofi*.

Proof. SetKp = ng(K) andK¢c = nc(K), and setL = (Kg 1 K¢) \ K. For each
s € n(K), one has

Kt Kennis)=EKnNna) U@LNa).

J. Berstel et al. / Theoretical Computer Science 332 (2005) 179-198 195

In view of (11), s € n(K) is simple if and only ifL N 7~ 1(s) = ¢, that is if and only if
s € ©(K) \ m(L). This shows thaf(K) = n(K) \ n(L) and proves the lemma.[]

Inthe sequel, we consider a regular langugeerT that admits a bastedecomposition
R=R1U---URy,

where therR; are strongly mixing. SeNV = {1,...,t}. A k-coverfor N is a setH =
{I1, ..., I;} of ksubsetd, ..., Iy of Nsuch that’1 U---U I = N. For any subsdtof N,
we setR; = U;¢; R;. To anyk-coverH of N, we associate the regular set

S(H)=SRp)N---NS(Ry) . (12)
Thuss € S(H) if and only if s € n(R) and eachk;; N n~1(s) is strongly mixing.

Lemma 7.2. For each k-cover Hthe languageR N n~1(S(H)) is a regular k-mixing
language

Proof. SetH = {I1,..., I}. In view of Eq. (L2) and Lemma7.1, the languageR N
n~Y(S(H)) is indeed regular.

Since S(H) is a set of simple skeletons for eaéh;, each languagk'; = R;; N
nL(S(H)) is strongly mixing, sak1 U - - - U Ky is k-mixing. Next,R = R;; U--- U Ry,
becauséH is ak-cover. Thus,

RN Y S(H)) = K1U-- UK.
This proves the lemma.[]
The same result holds for sevekatovers

Lemma 7.3. Let Hy, ..., H, be k-covers of N. Then the union of the languages
1 Y(S(H;)), fori =1, ..., n,is k-mixing

Proof. The union is
RN YS(HY) U---US(H,)).

SetS1 = S(H1), andS; = S(H;) \ (S(H1) U---U S(H;_1)) fori = 2,...,n. Then
S1, ..., S, are pairwise disjointanf(H1) U---U S(H,) = S1U---US,. Each of the sets
R N n~1(S;) is k-mixing, and since the union is now over disjoint sets of skeletons, it is
againk-mixing. O
A setHs, ..., H, of k-covers iscompletefor Rif n(R) = S(H1) U--- U S(H,), thatis
if every skeleton is in at least one of the s&tg7;).

Proposition 7.4. If R has a complete set of k-covgitsen R is k-mixing

196 J. Berstel et al. / Theoretical Computer Science 332 (2005) 179-198

Proof. Let Hy, ..., H, be a complete set éfcovers. By the previous lemma, the union of
the setRNn~1(S(H,)) isk-mixing. This unioniskNrt~Y(US(H;)) = RNn—(n(R)) = R.
U]

Example 7.5. Let us illustrate the preceding proposition with the 3-decomposi®n (
We consider the two 3-coverd; = {{1, 3}, {2}} and H> = {{1}, {2, 3}}. Consider the
first one. ThenR1.3 = Ry U Rz = bT(a®)*ac* U bt (a®)tct U (@™ and it follows
that S(Ry1,3)) = (a®)*a. Assume indeed that" is a simple skeleton ORy1,3 for some
even integen. ThenR1 3 N n~1(a™) must be the mixing product of its projections, that
is must be equal td*a" 1 a"c*, and this does not hold. Clearl§(R3) = a™ because
Rz is strongly mixing. SaS(H1) = (a®)*a. A similar computation shows thap 3 =
b*(a?)* U bt (a®)*act U (a®)*a and thatS(Rp2.3) = (a®)*. S0S(Hz) = (a®*, and
the setH1, H» is a complete set of 3-covers. According to the construction given in the
previous proof, it suffices to compute the union of the langua®esn—1((a?)*a) and
RN 1((a® ™). One getk N 1((a?)*a) = bt (@®)*ac*U(a®)*a andRN7~1((a®)) =
bt@®tet Ub*(@®T and finallyR = b*at Ubtatet.

Conversely, one has the following.

Proposition 7.6. If R is k-mixing then for any basic t-decompositidgh= R1 U --- U Ry,
there exists a complete set of k-covers.

Proof. If Ris k-mixing, then
R=MU---UM;

with M1, ..., M} strongly mixing. Sinc&R is saturated foR-equivalence, we may assume
that eachV; is saturated, i.eM; = [M;]z. Assume another, basi@ecomposition

R=R1U---UR;

exists. SetV = {1, ..., t}. Lets € n(R) be a skeleton. For eaghe {1, ..., k}, consider
the setIJ’. C N ofintegers € N such thatV; N n~1(s) N R; # @. Clearly,

k
U lj={ieN|Rnxs) #0).
j=1

This set may be a strict subsetNfso that{/;, . . ., I,Q} is not necessarily k-cover. Define
Ij = Ij/, U{i e N|R NnL(s)=0}). ThenH(s) = {I1, ..., I}} is ak-cover. In this way,
we associated kcover H (s) to each skeletor. We claim thats € S(H (s)). Assume this
for granted. Then,

nR)= U S(H(). (13)

sen(R)

Observe that there are only finitely makigovers. Thus, the union on the right-hand side
of (13) is finite, showing that the finite S€S(H (s)))sen(k) iS complete.

J. Berstel et al. / Theoretical Computer Science 332 (2005) 179-198 197

It remains to prove the claim, namely tha& S(H (s)) for each skeletom € n(K). This
is equivalent to show that S(Rp;) for j = 1, ..., k, which in turn means that the set

Urer, RO N n~1(s) is strongly mixing. For this, it suffices to show that

(U R,~> N ts) =M N). (14)

i€l

If weM;N n1(s), thenw € R{U--- U R;, sow € R; for somei. This indexi is in
1. Conversely, lew € (U;e;, Ri) N n-1(s). Thenw € R; N n~1(s) for somei e I
(becauser; N7 1(s) = Wfori e I\ Ij’.). Consider any word € M; N R; N n=1(s). Then
n(z) = n(w) = s, and because the languaggsare basic, one has~ w. Sincez € M;
and M is saturated for th®equivalence, alse € M;. Thus,w € M; N n~1(s). This
completes the proof.

Proposition 7.7. Given a t-decomposition of, Rnd an integer kit is decidable whether a
complete set of k-covers exists

Proof. Any k-coverH = {I1,..., I} of N = {1,...,t} yields a languag&(H). This
language is regular and effectively computable by Lenifria There are only finitely
manyk-covers, so only finitely mang(H). It suffices to test whether their union is equal
ton(R). O

Theorem 7.8. Let R be a regular language over T. Given an integeit ks decidable
whether R is k-mixing

Proof. The algorithm goes as follows.

1. Check whetheRis (B, C)-commutative. If notR is not mixing.

2. Try to construct a basic representationRoby the method given in the proof of
Proposition6.5.

(a) If the construction succeeds in at mkstepsR is k-mixing.
(b) If the construction fails after’4steps, themR is notk-mixing.
(c) If the construction succeedstisteps withk < r < 4, go to the next step.

3. Check whether a complete $etovers exists for thedecomposition of the previous
step. This is done by simple (but time-consuming!) computation of the finitely many
k-covers enumeration of dttcover, and by trying all combinations. If a complete set
exists, therR is k-mixing, otherwise it is not. [J

Let us mention some additional facts.

Proposition 7.9. If R = M1U- - -UM;, is any k-mixing decomposition of a regular language
R, then the R-equivalence closuligds], ..., [My]r are regular languages.

Proof. If R = M1 U ---U My, thenR = [M1]g U --- U [M]r, SO we may assume that
M; =[M;lgforj =1,..., k.Withthe notation of the proof of Propositidrg, assume that

198 J. Berstel et al. / Theoretical Computer Science 332 (2005) 179-198

there exisk-coversH, ..., H, that are complete for some basic regutdecomposition,
so that

n(R) = S(Hy) U---US(Hy)

according to Eq.13). Givenm € {1, ...,n}, letH, = {I1, ..., I;}. In view of Eq. (L4),
one has

M; N (S(Hy)) = (U Ri) N Y (S(Hp)) .

lEI_/'

This set is regular by LemmaLl SinceM; = | J;,,_; M; N n~1(S(H,,)), the proposition
is proved. [

Corollary 7.10. If R is a k-mixing regular language ,Rhen R has a regular k-mixing
decomposition

Proof. Indeed, ifR = M1U- - - UM, thenR = [M1]grU- - -U[My]g and[M1]g, ..., [Mi]g
are regular languages]

8. Concluding remarks

We have shown that for a given intederit is decidable whether a regular langudge
is k-mixing. It still remains an open question if one can decide whdgierk-mixing for
somek.

The case we have studied here is a partition of the alphalmb 3 subalphabet. This
is a special case of a more general case, namely a partitionmintol subsetsl’ =
AUB1U---U By, where closure under permutation of letters from different subalphabet
B; is permitted. The question whether our result extend to this case is open.

References

[1] V. Diekert, G. Rozenberg (Eds.), The Book of Traces, World Scientific, Singapore, 1995.
[2] C. Duboc, Mixed product and asynchronous automata, Theoret. Comput. Sci. 1986.
[3] W. Zielonka, Notes on finite asynchronous automata, Theoret. Inform. Appl. 21 (2) (1987) 99-135.

	Mixed languages
	Introduction
	Mixing product
	Strongly mixing languages
	Mixing languages
	Preliminary results
	The basic construction
	A second example

	Complement to the basic construction
	Concluding remarks
	References

