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Abstract. The Crochemore factorization was introduced by Croche-
more for the design of a linear time algorithm to detect squares in a word.
We give here the explicit description of the Crochemore factorization for
some classes of infinite words, namely characteristic Sturmian words,
(generalized) Thue-Morse words, and the period doubling sequence.

1 Introduction

In a seminal paper, Ziv and Lempel [7] defined several factorizations of finite
words related to information theory and text processing. Several years later,
Crochemore ([2,4,3]) introduced a similar factorization of words as a key tool in
the design of a linear algorithm checking words for square freeness.

We study here both Ziv-Lempel and Crochemore factorization of special
classes of infinite words, such as Sturmian words and some automatic words.
It appears that these factorizations can be expressed by a closed formula in
many significant examples. The proof of these formulas require some insight in
the combinatorial structure of the infinite words considered.

Some factorizations are quite surprising. As an example, the Ziv-Lempel fac-
torization of the Fibonacci word will be shown to be

f = a|b|aa|bab|aabaa| · · ·

This is precisely the so called singular factorization introduced by Wen and Wen
([8], see also [1]) in a completely different context.

Ziv-Lempel and Crochemore factorizations have similar properties. Both can
be computed in linear time by preprocessing the suffix tree of the word. Fur-
thermore, the number of factors in both factorizations are closely related: the
number of factors of the Crochemore factorization is at most twice the num-
ber of factors of the Ziv-Lempel factorization. However, there are examples of
factorizations which differ significantly infinitely many times.

In this paper we study the behavior of the Crochemore factorization in the
case of some of the most known classes of words, i.e., characteristic Sturmian
words, the Thue-Morse word, and the period doubling sequence.
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As we shall see, the Crochemore factorization (or c-factorization for short) of
special infinite words can be described explicitly, and it reflects the structure of
these words.

The c-factorization c(x) of a word x is defined as follows. Each factor of c(x)
is either a fresh letter, or it is a maximal factor of x already occurring in the
prefix of the word; more formally, the c-factorization c(x) of a word x is

c(x) = (x1, x2, . . . , xm, xm+1, . . .)

where xm is the longest prefix of xmxm+1 · · · occurring twice in x1x2 · · · xm, or
xm is a letter a if a does not occur in x1 · · · xm−1. For example, the c-factorization
of x = ababaab is (a, b, aba, ab), since aba occurs twice in ababa.

Note that the the c-factorization of a word differs slightly from the well known
Ziv-Lempel factorization [7] (or z-factorization), so that these two factorizations
are in general not comparable. The z-factorization z(x) of a word x is

z(x) = (y1, y2, . . . , ym, ym+1, . . .)

where ym is the shortest prefix of ymym+1 · · · which occurs only once in the word
y1y2 · · · ym.

For example, let x be the word x = aabaaccbaabaabaa. The c-factorization
and the z-factorization of x are:

c(x) = (a, a, b, aa, c, c, baa, baabaa)
z(x) = (a, ab, aac, cb, aabaab, aa).

We shall discuss the relation between these factorizations in more detail in
the final section.

The c-factorization has an interesting behavior in all of the well known infinite
words we have considered. For example, take the Fibonacci word

f = abaababaabaab · · ·

defined inductively by f−1 = b, f0 = a, and fn+2 = fn+1fn. The c-factorization
of f is

c(f) = (a, b, a, aba, baaba, . . .) = (a, b, a, ˜f2, ˜f3, . . .)

Observe that each of the factors (except the first three) is the reverse the finite
Fibonacci word fn. We will see that a similar result holds for characteristic
Sturmian words (Theorem 1 below).

The c-factorization is closely related to two other factorizations of the Fi-
bonacci word. The first is the factorization into factors which are exactly the
prefixes fn, that is

h(f) = (a, b, a, ab, aba, abaab, . . .) = (a, f−1, f0, f1, f2, . . .)

The other is the Wen and Wen factorization (also called the singular factoriza-
tion), in which the ith factor has the same length as fi−1, thus resulting

w(f) = (a, b, aa, bab, aabaa, . . .) = (a, w0, w1, w2, w3, . . .)
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Note that in the Wen and Wen factorization the ith factor is a palindrome, and
is the only factor of f of length |fi−1| that is not a conjugate of fi−1.

The three factorizations can be visualized through the following scheme:

h : a b a a b a b a a b a a b · · ·
w : a b a a b a b a a b a a · · ·
c : a b a a b a b a a b a · · ·

The relation between these factorizations is the following. Factors of h and w
satisfy

bf2i = w2ia and af2i+1 = w2i+1b,

while factors of w and c satisfy

aw2i = ˜f2ib and bw2i+1 = ˜f2i+1a.

The c-factorization on Fibonacci word is a particular case of a more general
result we obtained for the c-factorization on standard Sturmian words.

Theorem 1. Let s be the standard Sturmian word defined as the limit of

s−1 = b, s0 = a, and sn = sdn
n−1sn−2,

where di > 0 for each i. Then

c(s) = (a, ad1−1, b, ad1 s̃ d2−1
1 , s̃ d3

2 , s̃ d4
3 , . . . , s̃ dn+1

n , . . .)

Similar results hold for other familiar infinite words, such as the Thue-Morse and
the period doubling sequence. However we do not yet have a full characterization
of the c-factorization of automatic words.

The paper is organized as follows. Section 2 contains definitions and state-
ments of theorems. Section 3 sketches the proof for Sturmian words, Section
4 sketches the proof for a family of Thue-Morse sequences and for the period
doubling sequence, and Section 5 makes some comparison of Crochemore and
Ziv-Lempel factorizations.

2 Basic Definitions and Main Results

Let A be an alphabet and A∗ the the set of finite words on A. For any finite word
x = a1a2 · · ·an, |x| denotes the length n of x and x̃ denotes the reverse word
an · · ·a2a1 of x. If A is a two-letter alphabet A = {a, b}, then x is the image of
x of the morphism defined by a = b and b = a. If x = yα, with x, y ∈ A∗ and
α ∈ A, we denote by x′ the word x′ = yα.

A factorization of a finite word x is a sequence (x1, x2, . . . , xn) such that
x = x1x2 · · · xn. Analogously, a factorization of an infinite word x is a sequence
(x1, x2, . . .) such that x = x1x2 · · ·. A recent introduction to factorizations of
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words can be found in [6]. The c-factorization c(x) of a word x can be con-
structively defined by induction on the length of x as follows. If x is a let-
ter, his c-factorization is c(x) = (x). Otherwise, let x = yα with α ∈ A, and
c(y) = (u1, . . . , uk). The c-factorization c(x) of x is then

c(x) =
{

(u1, . . . , uk, a) if uka is not a factor of y
(u1, . . . , uka) otherwise .

The Ziv-Lempel factorization of a word x is

z(x) = (y1, y2, . . . , ym, ym+1, . . .)

where ym is the shortest prefix of ymym+1 · · · which occurs only once in the word
y1y2 · · · ym.

Let (d1, d2, . . .) be an infinite sequence of integers (called a directive sequence
such that d1 ≥ 0 and di > 0 for i > 1, and let {sn}n≥0 be the infinite sequence
of words defined by

s−1 = b, s0 = a, and sn = s dn
n−1sn−2.

It is easy to see that this sequence converges to the infinite word s that is called
a standard Sturmian word.

Note that the Sturmian word defined by a directive sequence (0, d2, d3, . . .) is
obtained from the Sturmian word defined by (d2, d3, . . .) by changing each letter
a with a letter b and viceversa, so that in the rest of this paper we will only refer
to directive sequences with d1 > 0.

With a result that is very similar to that obtained by de Luca in [5], we have
that any standard Sturmian word has a particular decomposition in reverse finite
words sn:

s = s̃0
d1 s̃1

d2 · · ·
The c-factorization of standard Sturmian words stated in Theorem 1

c(s) = (a, ad1−1, b, ad1 s̃ d2−1
1 , s̃ d3

2 , s̃ d4
3 , . . . , s̃ dn+1

n , . . .)

is then clearly closely related to that decomposition.
Let τ be the Thue-Morse morphism on a two-letter alphabet defined by

τ(a) = ab, τ(b) = ba,

and let {tn}n≥0 be the infinite sequence of words such that t0 = a and tn =
τ(tn−1). This sequence converges to the well known Thue-Morse infinite word

t = abbabaabbaababba · · ·

Each factor in the c-factorization of t can be obtained from the previous ones
by applying the morphism τ as stated in the following Theorem.

Theorem 2. The c-factorization c(t) = (c1, c2, . . .) of the Thue-Morse sequence
is (a, b, b, ab, a, abba, c7, c8, . . .) where cn+2 = τ(cn) for every n ≥ 7.
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The Thue-Morse word can be generalized in several different ways. We consider
here the infinite word t(m) on a m-letter alphabet A = {a1, a2, . . . , am} obtained
as the limit of the morphism τm defined by

τm(ai) = aiai+1 · · · ama1 · · ·ai−1 (i = 1, . . . , m).

A result that is very similar and even better than that obtained for the Thue-
Morse word is the following.

Theorem 3. Let c(t(m)) = (c(m)
1 , c

(m)
2 , . . .) be the c-factorization of the gener-

alized Thue-Morse word t(m) with m ≥ 3. Then c
(m)
n+2(m−1) = τm(cn) for every

n > m.

It shows that the c-factorization of the infinite words t(m) for m > 2 are even
more regular than in the binary case.

Finally, let δ be the morphism on a two-letter alphabet defined by

δ(a) = ab, δ(b) = aa,

and let {qn}n≥0 be the infinite sequence of words such that

q0 = a and qn+1 = δ(qn).

The limit q of this sequence is the period doubling sequence.
We will denote the reverse of qi by qi

R and the reverse of q′i by qi
S (we recall

that q′n is qn with just the last letter changed to its opposite).
Similarly to the case of standard Sturmian words, the period doubling se-

quence is the composition of the reverse of the finite period doubling sequence
words qn:

q = q0
Rq1

Rq2
R · · · .

The c-factorization of q reflects indeed this property, as stated in the following
Theorem, observing that the equality qR

n+1 = qS
nqR

n holds for each n.

Theorem 4. Let q be the doubling period sequence. The c-factorization of q is

c(q) = (qR
0 , qS

0 , qR
0 , qS

1 , qR
1 , qS

2 , qR
2 , . . .).

We end this section by mentioning the following well-known result (see [3])

Proposition 1. The Ziv-Lempel an the Crochemore factorizations of a finite
word x can be computed in linear time.

Indeed, one first computes the suffix tree of the word x, where each final state is
labelled with the position of its suffix in x (see Figure 1(a)). Then, one computes,
fore each vertex, the smallest of all positions of the factor corresponding to this
vertex. This is done in linear time by a bottom up tree traversal to compute the
minimum of all positions of its descendants (see Figure 1(b)).

To compute the Crochemore factorization c(x) = (x1, . . . , xn) of x, assume
it is computed up to xj . One enters the suffix y = xj · · ·xn into the suffix tree
as far as possible, provided the position red in the suffix tree remains strictly
smaller than |x1 · · ·xj−1|. The maximal prefix of y obtained is xj . This algorithm
is clearly linear.
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b
5cba

0acbabcba
2cbabcba

b 6cba

8a
4bcba

1cbabcba
7

cba
3

bcba

(a) The suffix tree of abacbabcba

0

0
a

0b
5cba

0acbabcba
2cbabcba

1
b 6cba

1a
4bcba

1cbabcba
3

cba
3

bcba

(b) The augmented suffix tree

Fig. 1. The suffix tree and the extended suffix tree of the word abacbabcba

3 Crochemore Factorization of Standard Sturmian Words

We recall that a standard Sturmian word is the limit s of the sequence

s−1 = b, s0 = a, and sn = sdn
n−1sn−2,

with {dn}n>0 a sequence of positive integers. We want now to prove Theorem 1.
It is a well known fact that sn = pnεn for each n, where pn is the palindrome
word obtained by deleting the last two letters εn of sn, and

εn =
{

ab if n is odd
ba otherwise.

With an easy induction argument, one can obtain the following result.

Proposition 2. sn = sdn−1
n−1 s

dn−1
n−2 · · · sd1

0 εn for each n > 0.

Since sn = pnεn and pn is a palindrome word, one immediately has the following
decomposition of s in reverse words.

Proposition 3. s = s̃0
d1 s̃1

d2 s̃2
d3 · · ·.

Lemma 1. Let wn be the word s
dn+1
n sdn

n−1s
dn−1
n−2 · · · sd1

0 . Then the only occurrences
of sn in wn are the first dn+1 + 1 consecutive ones.

Proof. Since sn is primitive for every n, sn is not a proper factor of s2
n and

we only have to prove that the (dn+1 + 1)-th occurrence is the last one. We
prove it by induction on n. If n = 2, s2 = (ad1b)d2a and w2 = sd3

2 w1 =
((ad1b)d2a)d3(ad1b)d2ad1 . Since (ad1b)d2 occurs in w1 only as a prefix, we have
the assertion. If n = 3, s3 = ((ad1b)d2a)d3ad1b and w3 = sd4

3 w2. Since the last
occurrence of aad1b, which is a suffix of s3, in w3 is exactly the suffix of the
initial sd3

2 s1 in w2, we have the assertion. Let now suppose the assertion be true
for every 2 ≤ k < n. wn = sdn+1

n wn−1. By induction hypothesis, there are only
two occurrences of sdn

n−1 in wn−1 and only the first of them is followed by sn−2,
so that sn occurs in wn−1 only as a prefix. ��
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It is now easy to prove Theorem 1.

Proof. (Theorem 1) Consider s as a composition of reverse words as obtained
in Proposition 3. The first 4 factors of the c-factorization can be easily obtained
by hand. Notice that the composition of these 4 factors in the c-factorization is
exactly s̃0

d1 s̃1
d2 :

c(s) = (a, ad1−1, b, s̃ d1
0 s̃ d2−1

1
︸ ︷︷ ︸

�s0
d1

�s1
d2

, s̃ d3
2 , s̃ d4

3 , . . .).

We obtain the result as the limit of the c-factorization on the palindrome prefixes
pn of s. Suppose the c-factorization of pn = s̃ d1

0 · · · s̃ dn−1
n−2 s̃ dn−1

n−1 to be

c(pn) = (. . . , s̃ dn−1
n−2 , s̃ dn−1

n−1 ).

By Lemma 1, the only occurrences of s̃n in w̃n are the last dn+1 + 1 consecutive
ones and since the first letter of s̃n−1 is different from the first letter of s̃n, we
obtain the c-factorization of pn+1 = w̃n−1s̃

dn
n−1s̃

dn+1−1
n

c(pn+1) = (. . . , s̃ dn−1
n−2 , s̃ dn

n−1, s̃
dn+1−1

n ). ��

4 Crochemore Factorization of Thue-Morse and Period
Doubling Sequences

Let t be the Thue-Morse word defined as the limit of the morphism τ such that
τ(a) = ab and τ(b) = ba.
We recall the following well known fact.

Lemma 2. Let w be a factor of t such that |w| ≥ 4. Then the occurrences of w
in t begin all in pair positions or all in odd positions.

Proof. (Theorem 2) Let c(t) = (c1, c2, . . .) be the c-factorization of t. We will
prove that each Crochemore factor cn+1 begins in a pair position, double than
that of cn−1, and that cn+1 = τ(cn−1) for every n ≥ 8. One can verify by hands
the first step, that is, c9 begins in the pair position double than that of c7.
Let now cn+1 begin in the double position than that of cn−1. Then τ(cn−1) ∈
Prefix(cn+1cn+2 · · ·). By definition of Crochemore factor and by Lemma 2, since
|cn−1| > 4 the factor cn−1 occurs earlier in a pair position, so that also τ(cn−1)
has an earlier occurrence. Thus, τ(cn−1) ∈ Prefix(cn+1).

By contradiction, suppose τ(cn−1)a ∈ Prefix(cn+1), where by definition of τ
a is forced to be the first letter of cn. Then there is an earlier occurrence of
τ(cn−1)a in a pair position, so that also cn−1 occurs followed by a letter a earlier
than as a Crochemore factor, that is absurd. ��

Let now t(m) be the generalized Thue-Morse word on the m-alphabet A =
{a1, . . . , am} defined as the limit of the morphism

τm(ai) = aiai+1 · · · ama1 · · ·ai−1 (i = 1, . . . , m).
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Set wn,i = τn
m(ai) and let t

(m)
n = τn

m(a1) = wn,1. The following result can be
easily obtained by induction.

Lemma 3. wn,i /∈ Fact(wn,hwn,k) for every i and h �= k.

The relationship between the structure of the generalized Thue-Morse words and
the c-factorization is simpler than what we have obtained for the Thue-Morse
word on a 2-letter alphabet. For example, let m = 3. Then

c(t(3)3 ) = (a, b, c, bc, a, ca, b, bcacab, abc, cababc, bca).

Using Lemma 3 it is not difficult to prove the following result, which is even
stronger than what we stated in Theorem 3.

Theorem 5. The c-factorization of t
(m)
n is (w1,1, . . . , w1,m, w1,2 · · · w1,m, w1,1,

. . . , w1,m · · ·w1,1, w1,m−1, . . . , wn,2 · · ·wn,m, wn,1, . . . , wn,m · · ·wn,1, wn,m−1).

In the case m = 3 we have

t
(3)
3 =

t
(m)
2

︷ ︸︸ ︷

abc
︸︷︷︸

w2,1

bca
︸︷︷︸

w2,2

cab
︸︷︷︸

w2,3

bcacababc
︸ ︷︷ ︸

w2,2w2,3w2,1

cababcbca
︸ ︷︷ ︸

w2,3w2,1w2,2

,

in accordance with the c-factorization given above.
In the general case also, this factorization reflects exactly the decomposition

of each prefix t
(m)
n in wh,i words:

(w1,1, . . . , w1,m
︸ ︷︷ ︸

t
(m)
1 =w2,1

, w1,2 · · · w1,m, w1,1
︸ ︷︷ ︸

w2,2

, . . . , w1,m · · · w1,1, w1,m−1
︸ ︷︷ ︸

w2,m

︸ ︷︷ ︸

t
(m)
2

, . . .)

Recall that the period doubling sequence is defined as the limit q of the
morphism δ such that δ(a) = ab and δ(b) = aa. In order to prove Theorem 4,
we begin by providing some easy to prove results on the structure of q.

Lemma 4. The following facts hold:

(i) qn+1 = qnq′n, where if qn = va, q′n = vā.
(ii) qn = pnun, where pn is a palindrome word such that p0 = ε, pn+1 =

pnunpn, and

un =
{

a n pair
b n odd

(iii) pn = qR
0 qR

1 · · · qR
n−1.

Lemma 5. For every n ≥ 1, pn occurs only as a prefix and as a suffix in pn+1.
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Proof. True for n = 1, 2. Suppose the lemma true for n ≤ k.

pk+2 = pkukpkuk+1pkukpk

and pk+1 = pkukpk. Since pk+1 is different from the central factor of pk+2
pkuk+1pk and by the induction hypothesis on pk, we have the assert. ��

Proof. (Theorem 4) We prove that

c(qn+2) = (qR
0 , qS

0 , qR
0 , qS

1 , qR
1 , . . . , qS

n , qR
n , u(n)).

The assertion holds for n = 2. Suppose it is true for qn+1.
By Lemma 4,

qn+2 = qn+1q
′
n+1 = pn+1un+1pnunpnun. (1)

Note that un+1pn = qS
n and unpn = qR

n .
By induction hypothesis, the last Crochemore factor of qn+1 is its last letter, so
that the un+1 of Equation (1) is the first letter of a Crochemore factor of qn+2.

With the further expansion of the expression of qn+2

qn+2 = pn−1un−1pn−1unpn−1un−1pn−1 un−1pn−1un−1pn−1
︸ ︷︷ ︸

qS
n

unpn−1un−1pn−1
︸ ︷︷ ︸

qR
n

un

we can verify that the factors un+1pn and unpn of Equation (1) (here under-
lined in the same occurrences) occurred already before in qn+2. Moreover, by
using Lemma 5 it can be shown that they are not contained into larger already
occurred factors, that is, un+1pnun and unpnun did not occur before, so that
qS
n , qR

n , un are exactly the c-factors we need to add to those of qn+1 to complete
the c-factorization of qn+2. ��

5 Crochemore Factorization Versus Ziv-Lempel
Factorization

Ziv and Lempel have considered several variations of factorizations of words (see
[7]; these are also discussed in [6]). We illustrate the relation between Crochemore
and Ziv-Lempel factorizations by stating some simple facts, and by giving some
examples.

Lemma 6. Let (c1, c2, . . .) and (z1, z2, . . .) be the Crochemore and the Ziv-Lem-
pel factorizations of a word w. The following hold.

– For each i, j such that |c1 · · · ci−1| ≥ |z1 · · · zj−1| and |c1 · · · ci| < |z1 · · · zj|,
then |z1 · · · zj | = |c1 · · · ci| + 1.

– For each i, j such that |z1 · · · zj−1| < |c1 · · · ci| ≤ |z1 · · · zj | then |c1 · · · ci+1| ≤
|z1 · · · zj+1|.

Lemma 6 reflects the fact that by their definitions if a Ziv-Lempel factor includes
a Crochemore factor, then it ends at most a letter after, and that a Crochemore
factor cannot include a Ziv-Lempel factor. Accordingly, we have the following
result.
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Proposition 4. The number of factors of the Crochemore factorization is at
most twice the number of factors of the Ziv-Lempel factorization.

Consider for example the period doubling sequence. It is simple to show that
each Ziv-Lempel factor of q properly includes a Crochemore factor by ending
just a letter before, as illustrated in this figure:

z : a b a a a b a b a b a a a b a a · · ·
c : a b a a a b a b a b a a a b a a · · ·

In this example each Ziv-Lempel can therefore be associated to a couple of
Crochemore factors. On the contrary, in the next example each Ziv-Lempel factor
is associated to a sole factor.

Consider the word v = aabbabbbbabbbbbba · · · in which for each i ≥ 0 the letter
in position i is defined as a if i is a perfect square and b otherwise. The Ziv-
Lempel factors of v are shifted one letter ahead with respect to the Crochemore
factors, as illustrated in the figure:

z : a a b b a b b b b a b b b b b b a · · ·
c : a a b b a b b b b a b b b b b b a · · ·

6 Conclusion

In the examples given here, the detailed knowledge of the structure of the infinite
words yields enough information in order to compute the Crochemore factoriza-
tion. Similar results hold for episturmian words. On the contrary, it is not yet
clear whether a satisfactory description can be obtained for automatic sequences
other than those which are uniform purely morphic sequences.
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