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Abstract

Given a strictly increasing sequence s of non-negative integers, filtering a word a0a1 · · · an by s consists in deleting the letters ai

such that i is not in the set {s0, s1, . . . }. By a natural generalization, denote by L[s], where L is a language, the set of all words of
L filtered by s. The filtering problem is to characterize the filters s such that, for every regular language L, L[s] is regular. In this
paper, the filtering problem is solved, and a unified approach is provided to solve similar questions, including the removal problem
considered by Seiferas and McNaughton. Our approach relies on a detailed study of various residual notions, notably residually
ultimately periodic sequences and residually rational transductions.
© 2005 Elsevier B.V. All rights reserved.

1. Introduction

The original motivation of this paper was to solve an automata-theoretic puzzle, proposed by the fourth author
(see also [12]), that we shall refer to as the filtering problem. Given a strictly increasing sequence s of non-negative
integers, filtering a word a0a1 · · · an by s consists in deleting the letters ai such that i is not in the set {s0, s1, . . . }. By
a natural generalization, denote by L[s], where L is a language, the set of all words of L filtered by s. The filtering
problem is to characterize the filters s such that, for every regular language L, L[s] is regular. The problem is non-trivial
since, for instance, it can be shown that the filters n2 and n! preserve regular languages, while the filter (

2n
n

) does not.
The quest for this problem led us to search for analogous questions in the literature. Similar puzzles were already

investigated in the seminal paper of Stearns and Hartmanis [19], but the most relevant reference is the paper [18] of
Seiferas and McNaughton, in which the so-called removal problem was solved: characterize the subsets S of N2 such
that, for each regular language L, the language

P(S, L) = {u ∈ A∗ | there exists v ∈ A∗ such that (|u|, |v|) ∈ S and uv ∈ L}

is regular.
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The aim of the present paper is to provide a unified approach to solve at the same time the filtering problem, the
removal problem and similar questions. It turns out that these problems are intimately related to the study of regulators
[6]. A transduction � from A∗ into B∗ is a regulator if the image under � of any regular set is regular. It is continuous
if the inverse image under � of any regular set is regular. Thus a transduction is continuous if and only if its inverse is
a regulator.

Now, the characterization obtained in [18] for the removal problem states that, for any regular subset R of N, the set

{x ∈ N | there exists y ∈ R such that (x, y) ∈ S}
has to be regular, which exactly means that the relation S is continuous.

Our characterization for the filtering problem is somewhat similar: a filter s preserves regular languages if and
only if its differential sequence �s (defined by (�s)n = sn+1 − sn) is continuous. An equivalent, but more explicit,
characterization is the following: for any positive integer t, the two sequences �s (mod t) and min(�s, t) have to be
ultimately periodic.

The emergence of this differential sequence may appear rather surprising to the reader, but the mystery disappears
if, following [13,14], we observe that L[s] = �−1(L) where � : A∗ → A∗ is the transduction defined by

�(a0a1 · · · an) = As0a0A
s1−s0−1a1 · · · Asn−sn−1−1an(1 ∪ A)sn+1−sn−1.

The removal problem can also be interpreted in terms of transductions. It suffices to observe that P(S, L) = �−1(L),
where � : A∗ → A∗ is the transduction defined by �(u) = uAS(|u|).

Once these problems are interpreted in terms of transductions, the techniques of [13,14] seem to trace an easy road
towards their solutions. However, this approach fails, because the above transductions need not be rational or even
representable (in the sense of [13,14]).

This failure lead us to a detailed study of transductions by the so-called residual approach, which roughly consists
in approximating an infinite object by a collection of finite objects. Profinite techniques (see [1]) and p-adic topology
in number theory are good examples of this approach. Another example is the notion of residually ultimately periodic
sequence, introduced in [18] as a generalization of a similar notion due to Siefkes [16]. Applying these ideas to
transductions, we were lead to the following definitions: a transduction is residually rational if, when it is composed
with any morphism onto a finite monoid, the resulting transduction is rational. We analyze in some detail these properties
and prove in particular that a transduction is continuous if and only if it is residually rational. This is the key to our
problems, since it is now not too difficult to see when our transductions � and � are residually rational.

To answer a frequently asked question, we also solve the filtering problem for context-free languages, but the answer
is slightly disappointing: only differentially ultimately periodic filters preserve context-free languages.

Our paper is organized as follows. Section 2 introduces the main definitions used in the paper: rational and recog-
nizable sets, relations, transductions, rational transducers, regulators and sequences. The precise formulation of the
filtering problem is given in Section 3. Residual properties are studied at length in Section 4 and the properties of
differential sequences are analyzed in Section 5. The solutions to the filtering problem and the removal problem are
given in Sections 6 and 7. Further properties of residually ultimately periodic sequences are discussed in Section 8 and
the filtering problem for context-free languages is solved in Section 9. The paper ends with a short conclusion.

Part of the results of this paper were presented in [3].

2. Preliminaries and background

2.1. Rational and recognizable sets

Given a multiplicative monoid M, the subsets of M form a semiring P(M) under union as addition and subset
multiplication defined by

XY = {xy | x ∈ X and y ∈ Y }.
Recall that the rational (or regular) subsets of a monoid M form the smallest subset R of P(M) containing the finite

subsets of M and closed under finite union, product, and star (where X∗ is the submonoid generated by X). The set of
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rational subsets of M is denoted by Rat(M). It is a subsemiring of P(M). Rational subsets are closed under rational
operations (union, product and star) and under morphisms. This means that if � : M → N is a monoid morphism,
X ∈ Rat(M) implies �(X) ∈ Rat(N).

Recall that a subset P of a monoid M is recognizable if there exists a finite monoid F and a monoid morphism
� : M → F such that P = �−1(�(P )). The set of recognizable subsets of M is denoted by Rec(M). It is also a
subsemiring of P(M). Recognizable subsets are closed under boolean operations, quotients and inverse morphisms.

Let us briefly remind some important results about recognizable and rational sets.

Theorem 2.1 (Kleene). For every finite alphabet A, Rec(A∗) = Rat(A∗).

Theorem 2.2 (McKnight). Let M be a finite monoid. The following conditions are equivalent:

(1) M is finitely generated,
(2) Every recognizable subset of M is rational,
(3) The set M is a rational subset of M.

Theorem 2.3. The intersection of a rational set and of a recognizable set is rational.

Theorem 2.4 (Mezei). Let M1, . . . , Mn be monoids. A subset of M1 × · · · × Mn is recognizable if and only if it is a
finite union of subsets of the form R1 × · · · × Rn, where Ri ∈ Rec(Mi).

2.2. Relations

Given two sets E and F, a relation on E and F is a subset of E × F . The inverse of a relation S on E and F is the
relation S−1 on F × E defined by

(y, x) ∈ S−1 if and only if (x, y) ∈ S.

A relation S on E and F can also be considered as a function from E into P(F ), the set of subsets of F, by setting, for
each x ∈ E,

S(x) = {y ∈ F | (x, y) ∈ S}.
It can also be viewed as a function from P(E) into P(F ) by setting, for each subset X of E:

S(X) = ⋃
x∈X

S(x) = {y ∈ F | there exists x ∈ X such that (x, y) ∈ S}.

Dually, S−1 can be viewed as a function from P(F ) into P(E) defined, for each subset Y of F, by

S−1(Y ) = {x ∈ E | S(x) ∩ Y �= ∅}.
When this dynamical point of view is adopted, we say that S is a relation from E into F and we use the notation
S : E → F .

2.3. Transductions

Relations between monoids are often called transductions. Transductions were intensively studied in connection
with context-free languages [2]. In this paper, we shall mainly consider transductions from a finitely generated free
monoid A∗ into an arbitrary monoid M. A transduction � : A∗ → M is rational if it is a rational subset of A∗ × M .

Let us first recall a standard, but non-trivial property of rational transductions (it is proved for instance right after [2,
Proposition III.4.3, p. 67]).

Proposition 2.5. Let � : A∗ → M be a rational transduction. If R is a rational subset of A∗, then �(R) is a rational
subset of M.
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2.4. Continuous transductions and regulators

A transduction � : A∗ → M is called continuous 1 if, for each recognizable subset R of M, �−1(R) is regular.
Continuous transductions were called recognizability preserving in [3].

It follows from Proposition 2.5 that every rational transduction is continuous. Representable transductions, introduced
in [13,14] are other examples of continuous transductions. A characterization of continuous transductions will be given
in Section 4.

Following Conway [6], we say that a transduction � : A∗ → B∗ is a regulator if, for each regular language R of A∗,
�(R) is regular. It follows immediately from the definition that � is a regulator if and only if its inverse is continuous.
In particular, every rational transduction from A∗ into B∗ is a regulator.

2.5. Rational transducers

Let A be a finite alphabet. The Kleene–Schützenberger theorem [2] states that a transduction � : A∗ → M is rational
if and only if it can be realized by a rational transducer.

Roughly speaking, a rational transducer is a non-deterministic automaton with output in Rat(M). More precisely, it
is a 6-tuple T = (Q, A, M, I, F, E) where Q is a finite set of states, A is the input alphabet, M is the output monoid,
I = (Iq)q∈Q and F = (Fq)q∈Q are arrays of elements of Rat(M), called respectively, the initial and final outputs.
The set of transitions E is a finite subset of Q × A × Rat(M) × Q. Intuitively, a transition (p, a, R, q) is interpreted
as follows: if a is an input letter, the automaton moves from state p to state q and produces the output R.

It is convenient to represent a transition (p, a, R, q) as an edge p
a|R−→ q. Initial (resp. final) outputs are represented

by incoming (resp. outcoming) arrows, which are omitted if the corresponding input (resp. output) is empty. An other
standard convention is to simply denote by m the singleton {m}, for any m ∈ M . The label to the arrow represents the
output, but might be omitted if it is equal to the identity of M.

Example 2.1. Let T = (Q, A, M, I, E, F ) be the transducer defined by Q = {1, 2}, A = {a, b}, M = {a, b}∗,
I = (a∗b∗, ∅), F = (a∗, b∗) and

E = {(1, a, {1}, 1), (1, a, {b}, 2), (1, b, {ab}, 2), (2, a, ba∗, 2), (2, b, {ba}, 1)}.
It is represented in Fig. 1

A path is a sequence of consecutive transitions:

q0
a1|R1−→ q1

a2|R2−→ q2 · · · qn−1
an|Rn−→ qn.

The (input) label of the path is the word a1a2 · · · an. Its output is the set Iq0R1R2 · · · RnFqn . The transduction realized
by T maps each word u of A∗ onto the union of the outputs of all paths of input label u. For instance, if � is the
transduction realized by the transducer of Example 2.1, there are three paths of input label ab

1
a|1−→ 1

b|ab−→ 2 1
a|b−→ 2

b|ba−→ 1 2
a|ba∗
−→ 2

b|ba−→ 1.

Since I2 = ∅, it follows that �(ab) = (a∗b∗)(1)(ab)(b∗) ∪ (a∗b∗)(b)(ba)(a∗).

2.6. Sequences

A sequence (sn)n�0 of elements of a set is ultimately periodic (u.p.) if there exist two integers m�0 and r > 0 such
that, for each n�m, sn = sn+r .

The (first) differential sequence of an integer sequence (sn)n�0 is the sequence �s defined by

(�s)n = sn+1 − sn.

1 We chose this terminology for the following reason: a map from A∗ into B∗ is continuous in our sense if and only if it is continuous for the
profinite topology [1] on A∗ and B∗.
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1 2a* b*

a* b*

a|1

a|b

b|ab

a |ba*

b|ba

Fig. 1. A transducer.

Note that the integration formula sn = s0 + ∑
0� i �n−1(�s)i allows one to recover the original sequence from its

differential and s0. A sequence is syndetic if its differential sequence is bounded.
If S is an infinite subset of N, the enumerating sequence of S is the unique strictly increasing sequence (sn)n�0 such

that

S = {sn | n�0}.
The differential sequence of this sequence is simply called the differential sequence of S. A set is syndetic if its
enumerating sequence is syndetic.

The characteristic sequence of a subset S of N is the sequence cn defined by

cn =
{

1 ifn ∈ S,

0 otherwise.

The following elementary result is folklore.

Proposition 2.6. Let S be a set of non-negative integers. The following conditions are equivalent:

(1) S is a regular subset of N,
(2) S is a finite union of arithmetic progressions,
(3) the characteristic sequence of S is ultimately periodic.

If S is infinite, these conditions are also equivalent to the following conditions

(4) the differential sequence of S is ultimately periodic.

Example 2.2. Let S = {1, 3, 4, 9, 11} ∪ {7 + 5n | n�0} ∪ {8 + 5n | n�0}={1, 3, 4, 7, 8, 9, 11, 12, 13, 17, 18, 22,

23, 27, 28, . . . }. Then S is a finite union of arithmetic progressions. Its characteristic sequence

0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, . . .

and its differential sequence

2, 1, 3, 1, 1, 2, 1, 1, 4, 1, 4, 1, 4, . . .

are ultimately periodic.

3. The removal and the filtering problems

A filter is a finite or infinite strictly increasing sequence of non-negative integers. If u = u0u1u2 · · · is an infinite
word (the ui are letters), we set

u[s] = us0us1 · · · .
Similarly, if u = u0u1u2 · · · un is a finite word, we set

u[s] = us0us1 · · · usk ,
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where k is the largest integer such that sk �n < sk+1. Thus, for instance, if s is the sequence of squares, abracadabra
[s] = abcr.

By extension, if L is a language (resp. a set of infinite words), we set

L[s] = {u[s] | u ∈ L}.
A filter s preserves regularity if, for every regular language L, the language L[s] is regular. The filtering problem is to
characterize the regularity-preserving filters.

The removal and the filtering problems are instances of a more general question: find out whether a given operator
on languages preserves regular languages. The main idea of [13,14] to solve this kind of problem is to write a n-ary
operator � on languages as the inverse of some transduction � : A∗ → A∗ × · · · × A∗, in such a way that, for all
languages L1, . . . , Ln of A∗,

�(L1, . . . , Ln) = �−1(L1 × · · · × Ln)

and then to show that � is a continuous.
Let us try this idea on the removal and the filtering problems. As a first step, we have to express P(S, L) and L[s]

as the inverse image of L under a suitable transduction.
We first consider the removal problem. Given a subset S of N2, we claim that P(S, L) = �−1

S (L), where �S : A∗ →
A∗ is the removal transduction of S defined by �S(u) = uAS(|u|). Indeed, we have

�−1
S (L) = {u ∈ A∗ | uAS(|u|) ∩ L �= ∅}

= {u ∈ A∗ | there exists v ∈ A∗ such that (|u|, |v|) ∈ S and uv ∈ L}
= P(S, L).

Let us now turn to the filtering problem. Let s be a filter. Then L[s] = �−1
s (L) where �s : A∗ → A∗ is the filtering

transduction of s defined by

�s(a0a1 · · · an) = As0a0A
s1−s0−1a1 · · · Asn−sn−1−1an(1 ∪ A)sn+1−sn−1.

Observe that (1 ∪ A)k = 1 ∪ A ∪ A2 ∪ · · · ∪ Ak . It remains to find out when �S and �s are continuous. To show the
continuity of a given transduction � : A∗ → M , a standard technique is to prove that � is rational or at least representable
[13,14].

Unfortunately, except for some special values of S and s, neither �S nor �s is a rational or even a representable
transduction and the methods of [13,14] cannot be applied directly. To overcome this difficulty, we first need to
introduce our second major tool, the residual properties.

4. Residual properties

4.1. Residually rational transductions

A transduction � : A∗ → M is residually rational if, for any morphism � : M → F , where F is a finite monoid, the
transduction � ◦ � : A∗ → F is rational. The next proposition gives a useful characterization of these transductions.

Proposition 4.1. A transduction � : A∗ → M is residually rational if and only if it is continuous.

Proof. Suppose that � is residually rational and let R ∈ Rec(M). By definition, there exists a morphism � from M
onto a finite monoid F and a subset P of F such that R = �−1(P ).

Since � is residually rational, � ◦ � is a rational subset of A∗ ×F . Now F is finite, and thus P is a recognizable subset
of F. By Mezei’s theorem, A∗ × P is a recognizable subset of A∗ × F and by Theorem 2.3, the set S = (� ◦ �) ∩
(A∗ × P) is a rational subset of A∗ × F . Since S = ⋃

x∈P �−1(�−1(x)) × {x}, the projection of S on A∗ is �−1(R).
Since rational subsets are closed under morphisms, �−1(R) is a rational subset of A∗.
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Fig. 2. The monoid Nt,p .

Conversely, suppose that, for every R ∈ Rec(M), �−1(R) ∈ Rat(A∗). We claim that � is residually rational. Let F
be a finite monoid and let � : M → F be a morphism. Then

� ◦ � = ⋃
x∈F

�−1(�−1(x)) × {x}.

Now, for each x ∈ F , �−1(x) is a recognizable subset of M and thus �−1(�−1(x)) is rational. Since {x} is a rational
subset of F, �−1(�−1(x)) × {x} is a rational subset of A∗ × F and thus � ◦ � is rational. �

A consequence of Proposition 4.1 is the following.

Corollary 4.2. Every rational transduction is residually rational.

Proof. It follows from Propositions 4.1 and 2.5, applied to �−1. �

The representable transductions, introduced in [13,14], are other examples of residually rational transductions.

4.2. Residually ultimately periodic sequences

Let M be a monoid. A sequence (sn)n�0 of elements of M is residually ultimately periodic (r.u.p.) if, for each
monoid morphism � from M into a finite monoid F, the sequence �(sn) is ultimately periodic.

We are mainly interested in the case where M is the additive monoid N of non-negative integers. The following
connection with regulators was established in [9,11,18,21].

Proposition 4.3. A sequence (sn)n�0 of non-negative integers is residually ultimately periodic if and only if the
function n → sn is continuous.

The finite quotients of N are the multiplicative cyclic monoids

Nt,p = {1, x, x2, . . . , xt+p−1}

presented by the relation xt+p = xt . In other words, Nt,p is the quotient of N by the monoid congruence ≡t,p defined
as follows:

x ≡t,p y if and only if

{
x = y if x < t or y < t,

x ≡ y (mod p) otherwise.

The structure of Nt,p is represented in Fig. 2.
It is well-known that the subsemigroup {xt , . . . , xt+p−1} is isomorphic to the cyclic group Z/pZ and in particular,

contains an idempotent.
The two special cases t = 0 and p = 1 are worth a separate treatment. For t = 0, the congruence ≡t,p is simply

the congruence modulo p. For p = 1, the congruence ≡t,1, called the congruence threshold t, is defined by x ≡t,1 y
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if and only if min(x, t) = min(y, t). Thus threshold counting can be viewed as a formalization of children’s counting:
zero, one, two, three, . . . , many.

A sequence s of non-negative integers is said to be ultimately periodic modulo p if, for each monoid morphism
� : N → Z/pZ, the sequence un = �(sn) is ultimately periodic. It is equivalent to state that there exist two integers
m�0 and r > 0 such that, for each n�m, un ≡ un+r (mod p). A sequence is said to be cyclically ultimately periodic
(c.u.p.) if it is ultimately periodic modulo p for every p > 0. These sequences are called ultimately periodic reducible
in [18,16].

Example 4.1. The sequences n2 and n! are both cyclically ultimately periodic. Indeed, for every p > 0, and for every
n�p, (n + p)2 ≡ n2 (mod p) and n! ≡ 0 (mod p).

Example 4.2. It is shown in [16] that the sequence 
√n� is not cyclically ultimately periodic. Indeed, this sequence
is constant on any interval [n2, (n + 1)2[ and thus cannot be ultimately periodic modulo p (for any p).

Example 4.3. The Catalan numbers cn are defined by cn = 1/(n + 1)(
2n
n

), for n�0. The sequence of Catalan numbers
is not cyclically ultimately periodic. Indeed, let �2(m) by the highest power of 2 that divides m. Then it is well-known
that �2((

2n
n

)) = 2�(n), where �(n) is the number of 1’s in the binary expansion of n. It follows that �2((
2n
n

)) = 2 if

and only if n is a power of 2, and (
2n
n

) is divisible by 4 otherwise.

Similarly, a sequence s of non-negative integers is said to be ultimately periodic threshold t if, for each monoid
morphism � : N → Nt,1, the sequence un = �(sn) is ultimately periodic. It is equivalent to state that there exist two
integers m�0 and r > 0 such that, for each n�m, min(un, t) = min(un+r , t).

Example 4.4. For each integer n�0, denote by �(n) the number of 1’s in the binary expansion of n. The first values
are

n 0 1 2 3 4 5 6 7 8 9 · · ·
�(n) 0 1 1 2 1 2 2 3 1 2 · · ·

Of course, �(n) = 1 if and only if n is a power of 2, and so the sequence �(n) is not ultimately periodic with threshold
t for any t > 1.

Proposition 4.4. A sequence of non-negative integers is residually ultimately periodic if and only if it is cyclically
ultimately periodic and ultimately periodic threshold t for all t �0.

Proof. It follows immediately from the definition that a residually ultimately periodic sequence is cyclically ultimately
periodic and ultimately periodic threshold t for all t �0.

Consider now a sequence (un)n�0 which is ultimately periodic modulo p for all p > 0 and ultimately periodic
threshold t for all t �0. Let � : N → Nt,p be a morphism and let vn = �(un). Denote by e the identity of the cyclic
group G = {xt , . . . , xt+p−1}. Then the map � : Nt,p → G defined by �(s) = se is a monoid morphism. Similarly,
the map � : Nt,p → Nt,1 defined by

�(xk) =
{

xk if k < t,

xt otherwise,

is a monoid morphism. Note that if x and y are two elements of Nt,p such that �(x) = �(y) and �(x) = �(y),
then x = y. Now, by assumption, the sequences �(vn) and �(vn) are ultimately periodic. That is, there exist integers
s, t, p, q such that, for all n�s, �(vn+p) = �(vn) and, for all n� t , �(vn+q) = �(vn). It follows that for all n� max(s, t),
�(vn+pq) = �(vn) and �(vn+pq) = �(vn) and thus vn+pq = vn. Therefore vn is ultimately periodic and thus un is
residually ultimately periodic. �

The next proposition gives a very simple criterion to generate sequences that are ultimately periodic threshold t
for all t.
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Proposition 4.5. A sequence (un)n�0 of integers such that limn→∞ un = +∞ is ultimately periodic threshold t for
all t �0.

Proof. Let t �0. Since limn→∞ un = ∞, there exists an integer n0 such that, for all n�n0, un � t . It follows that
min(un, t) is ultimately equal to t. �

Example 4.5. The sequences n2 and n! are residually ultimately periodic. Indeed, we have already seen they are
cyclically ultimately periodic. Since they both tend to infinity, Proposition 4.5 shows they are ultimately periodic
threshold t for each t �0 and Proposition 4.4 can be applied.

The sequence (
2n
n

) is ultimately periodic threshold t for all t, but is not cyclically ultimately periodic (see Example
4.3).

Let us mention a last example, first given in [5]. Let bn be a non-ultimately periodic sequence of 0 and 1. The
sequence un = (

∑
0� i �n bi)! is residually ultimately periodic. It follows that the sequence �u is cyclically ultimately

periodic. However, it is not residually ultimately periodic since min((�u)n, 1) = bn.

The class of cyclically ultimately periodic functions has been studied by Siefkes [16], who gave in particular
a recursion scheme for producing such functions. The class of residually ultimately periodic sequences was also
thoroughly studied [5,9,11,18,21]. Their properties are summarized in the next proposition.

Theorem 4.6 (Zhang [21], Carton and Thomas [5]). Let (un)n�0 and (vn)n�0 be r.u.p. sequences. Then the following
sequences are also r.u.p.:

(1) (composition) uvn ,
(2) (sum) un + vn,
(3) (product) unvn,
(4) (difference) un − vn provided that un �vn and limn→∞(un − vn) = +∞,
(5) (exponentiation) u

vn
n ,

(6) (generalized sum)
∑

0� i �vn
ui ,

(7) (generalized product)
∏

0� i �vn
ui .

In particular, the sequences nk and kn (for a fixed k), are residually ultimately periodic.

The sequence 222T
2

(exponential stack of 2’s of height n) is also considered in [18]. It is also a r.u.p. sequence,
according to the following result.

Proposition 4.7. Let k be a positive integer. Then the sequence un defined by u0 = 1 and un+1 = kun is r.u.p.

Proof. Since un tends to infinity, it suffices, by Proposition 4.5, to show that un is cyclically ultimately periodic. But
this follows from the recursion scheme given in [16]. �

The existence of non-recursive, r.u.p. sequences was established in [18]: if � : N → N is a strictly increasing,
non-recursive function, then the sequence un = n!�(n) is non-recursive but is residually ultimately periodic. The proof
is similar to that of Example 4.5.

5. Differential sequences

An integer sequence is called differentially residually ultimately periodic (d.r.u.p. in abbreviated form), if its differ-
ential sequence is residually ultimately periodic.

What are the connections between d.r.u.p. sequences and r.u.p. sequences? First, the following result holds:

Proposition 5.1 (Carton and Thomas [5, Corollary 28]). Every d.r.u.p. sequence is r.u.p.
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Example 4.5 shows that the two notions are not equivalent. However, if only cyclic counting were used, it would
make no difference:

Proposition 5.2. Let p be a positive number. A sequence is ultimately periodic modulo p if and only if its differential
sequence is ultimately periodic modulo p.

Proof. Let s = (sn)n�0 be an integer sequence. If it is ultimately periodic modulo p, then there exist integers t and q
such that, for each n� t , sn+q ≡ sn (mod p). It follows that sn+q+1 − sn+q ≡ sn+1 − sn (mod p), showing that the
differential sequence of s is ultimately periodic modulo p.

Suppose now that �s is ultimately periodic modulo p. Then the proof of [5, Lemma 27] shows that the sequence
sn = ∑

0� i �n−1 (�s)i is also ultimately periodic modulo p. �

There is a special case for which the notions of r.u.p. and d.r.u.p. sequences are equivalent. Indeed, if the differential
sequence is bounded, Proposition 2.6 can be completed as follows.

Lemma 5.3. If a syndetic sequence is residually ultimately periodic, then its differential sequence is ultimately periodic.

Proof. Let s be a syndetic sequence and let p be an upper bound for �s. If s is r.u.p., Proposition 5.2 shows that �s is
ultimately periodic modulo p. But since p is an upper bound for �s, �s is actually ultimately periodic. �

Putting everything together, we obtain

Proposition 5.4. Let s be a syndetic sequence of non-negative integers. The following conditions are equivalent:

(1) s is residually ultimately periodic,
(2) �s is residually ultimately periodic,
(3) �s is ultimately periodic.

Proof. Proposition 5.1 shows that (2) implies (1). Furthermore (3) implies (2) is trivial. Finally, Lemma 5.3 shows that
(1) implies (3). �

Proposition 5.5. Let S be an infinite syndetic subset of N. The following conditions are equivalent:

(1) S is regular,
(2) the enumerating sequence of S is residually ultimately periodic,
(3) the differential sequence of S is residually ultimately periodic,
(4) the differential sequence of S is ultimately periodic.

Proof. The last three conditions are equivalent by Proposition 5.4 and the equivalence of (1) and (4) follows from
Proposition 2.6. �

The class of d.r.u.p. sequences was thoroughly studied in [5].

Theorem 5.6 (Carton and Thomas [5, Theorem 22]). Let (un)n�0 and (vn)n�0 be differential residually ultimately
periodic sequences. Then the following sequences are also differential residually ultimately periodic:

(1) (sum) un + vn,
(2) (product) unvn,
(3) (difference) un − vn provided that un �vn and limn→∞(�u)n − (�v)n = +∞,
(4) (exponentiation) u

vn
n ,

(5) (generalized sum)
∑

0� i �vn
ui ,

(6) (generalized product)
∏

0� i �vn
ui .
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6. A solution to the filtering problem

In this section, we solve completely the filtering problem. Let us start by giving a necessary condition to be a
regularity-preserving filter.

Proposition 6.1. Every regularity-preserving filter is differentially residually ultimately periodic.

Proof. Let s be a regularity-preserving filter. By Propositions 4.4 and 5.2, it suffices to prove the following properties:

(1) for each p > 0, s is ultimately periodic modulo p,
(2) for each t �0, �s is ultimately periodic threshold t.

(1) Let p be a positive integer and let A = {0, 1, . . . (p − 1)}. Let u = u0u1 · · · be the infinite word whose ith letter ui

is equal to si modulo p. At this stage, we shall need two elementary properties of �-rational sets. The first one states
that an infinite word u is ultimately periodic if and only if the �-language {u} is �-rational. The second one states that,
if L is a regular language of A∗, the set of infinite words

−→
L = {v ∈ A� | v has infinitely many prefixes in L}

is �-rational.
We claim that u is ultimately periodic. Define L as the set of prefixes of the infinite word (0123 · · · (p − 1))�. Then

L[s] is the set of prefixes of u. Since L is regular, L[s] is regular, and thus the set
−→
L[s] is �-rational. But this set

reduces to {u}, which proves the claim. Therefore, the sequence (sn)n�0 is ultimately periodic modulo p.
(2) The proof is quite similar to that of (1), but is slightly more technical. Let t be a non-negative integer and let

B = {0, 1, . . . , t} ∪ {a}, where a is a special symbol. Let d = d0d1 · · · be the infinite word whose ith letter di is equal
to si+1 − si − 1 threshold t. Let us prove that d is ultimately periodic. Consider the regular prefix code

P = {0, 1a, 2a2, 3a3, . . . , tat , a}.
Then P ∗[s] is regular, and so is the language R = P ∗[s] ∩ {0, 1, . . . , t}∗. We claim that, for each n > 0, the word
pn = d0d1 · · · dn−1 is the maximal word of R of length n in the lexicographic order induced by the natural order
0 < 1 < · · · < t . First, pn = u[s], where u = as0d0a

s1−s0−1d1 · · · dn−1a
sn−sn−1−1 and thus pn ∈ R. Next, let

p′
n = d ′

0d
′
1 · · · d ′

n−1 be another word of R of length n. Then p′
n = u′[s] for some word u′ ∈ P ∗. Suppose that p′

n comes
after pn in the lexicographic order. We may assume that, for some index i�n− 1, d0 = d ′

0, d1 = d ′
1, . . . , di−1 = d ′

i−1
and di < d ′

i . Since u′ ∈ P ∗, the letter d ′
i , which occurs in position si in u′, is followed by at least d ′

i letters a. Now
d ′
i > di , whence di < t and di = si+1 − si − 1. It follows in particular that in u′, the letter in position si+1 is an a, a

contradiction, since u′[s] contains no occurrence of a. This proves the claim.
Let now A be a finite deterministic trim automaton recognizing R. It follows from the claim that in order to read d

in A, starting from the initial state, it suffices to choose, in each state q, the unique transition with maximal label in
the lexicographic order. It follows at once that d is ultimately periodic. Therefore, the sequence (�s) − 1 is ultimately
periodic threshold t, and so is (�s). �

We now show that the converse to Proposition 6.1 is true.

Proposition 6.2. Let s be a differentially residually ultimately periodic sequence. Then the filtering transduction �s is
residually rational.

Proof. Let d be the sequence defined by d0 = s0 and dn = sn − sn−1 − 1 for n > 0. Since s is differentially residually
ultimately periodic, d is residually ultimately periodic. Let � be a morphism from A∗ into a finite monoid F and
	s = � ◦ �s . Setting R = �(A), S = 1 ∪ R and ā = �(a) for each a ∈ A, one has

	s(a0a1 · · · an) = Rd0 ā0R
d1 ā1 · · · RdnānS

dn+1 .

Finally, let � : N → P(F ) be the monoid morphism defined by �(n) = Rn. Since P(F ) is finite and dn is residually
ultimately periodic, the sequence �(dn) = Rdn is ultimately periodic. Therefore, there exist two integers t �0 and
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Fig. 3. A transducer realizing 	s .

p > 0 such that, for all n� t , Rdn+p = Rdn . It follows that the transduction 	s can be realized by the transducer T
represented in Fig. 3, in which a stands for a generic letter of A.

Formally, T = (Q, A, P(F ), I, F, E) with Q = {1, . . . , t +n− 1}, I1 = {1} and Iq = ∅ for q �= 1, Fq = Sq−1 for
q ∈ Q, and the transitions are of the form (p, a, Rp−1ā, p + 1), with a ∈ A and p ∈ Q (p + 1 is of course calculated
modulo ≡t,p). Therefore 	s is rational and thus �s is residually rational. �

Putting Propositions 6.1 and 6.2 together, we obtain the characterization announced in the Introduction.

Theorem 6.3. A filter preserves recognizability if and only if it is differentially residually ultimately periodic.

7. A solution to the removal problem

A solution to the removal problem was given in [18]. In this section, we only give a proof of the fact that if the
relation S is continuous, then the transduction �S is also continuous. In view of Proposition 4.1, it is equivalent to prove
the following result.

Proposition 7.1. Let S be a continuous relation on N. The removal transduction �S is residually rational.

Proof. Let � be a morphism from A∗ into a finite monoid F. Let �S = � ◦ �S and R = �(A). Since the monoid P(F )

is finite, the sequence (Rn)n�0 is ultimately periodic. Therefore, there exist two integers r �0 and q > 0 such that, for
all n�r , Rn = Rn+q . Consider the following subsets of N:

K0 = {0} K1 = {1} . . . Kr−1 = {r − 1}
Kr = {r, r + q, r + 2q, . . . }

Kr+1 = {r + 1, r + q + 1, r + 2q + 1, . . . }
...

Kr+q−1 = {r + q − 1, r + 2q − 1, r + 3q − 1, . . . }.
The sets Ki , for i ∈ {0, 1, . . . , r + q − 1} are regular and since S is continuous, each set S−1(Ki) is also regular.
By Proposition 2.6, there exist two integers ti �0 and pi > 0 such that, for all n� ti , n ∈ S−1(Ki) if and only if
n + pi ∈ S−1(Ki). Setting

t = max
0� i � r+q−1

ti and p = lcm
0� i � r+q−1

pi,

we conclude that, for all n� t and for 0� i�r + q − 1, n ∈ S−1(Ki) if and only if n + p ∈ S−1(Ki), or equivalently

S(n) ∩ Ki �= ∅ ⇐⇒ S(n + p) ∩ Ki �= ∅.
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Fig. 4. A transducer realizing �S .

It follows that the sequence Rn of P(F ) defined by Rn = RS(n) is ultimately periodic of threshold t and period p, that
is, Rn = Rn+p for all n� t . Consequently, the transduction �S can be realized by the transducer represented in Fig. 4,
in which a stands for a generic letter of A. Therefore �S is rational and �S is residually rational. �

8. Further properties of d.r.u.p. sequences

In this section, we come back to the filtering problem. Filters were defined as strictly increasing sequences, but we
could have as well used subsets of N. Indeed, if S is an infinite subset of N, it suffices to set L[S] = L[s] where s is
the enumerating sequence of S.

In this setting, the question arises to characterize the filters S such that, for every regular language L, both L[S] and
L[N \ S] are regular. By Theorem 6.3, the sequences defined by S and its complement should be d.r.u.p. This implies
that S is regular, according to the following slightly more general result.

Proposition 8.1. Let S and S′ be two infinite subsets of N such that S ∪ S′ and S ∩ S′ are regular. If the enumerating
sequence of S is d.r.u.p. and if the enumerating sequence of S′ is r.u.p., then S and S′ are regular.

Proof. Let s (resp. s′) be the enumerating sequence of S (resp. S′). First assume that S′ is syndetic. By Proposition 5.5,
S′ is regular. Now

S =
(
(S ∪ S′) \ S′) ∪ (S ∩ S′)

and since regular sets are closed under boolean operations, S is regular.
Assume now that S′ is not syndetic. Since S ∪S′ is an infinite regular subset of N, it contains an arithmetic sequence,

say un = a + rn, for some a�0 and r > 0. Since s is d.r.u.p., the sequence �s, counted threshold r, is ultimately
periodic. Therefore, there exist n0 and p such that, for all n�n0

min((�s)n, r) = min((�s)n+p, r). (1)

Since S′ is not syndetic, one can find a gap of size p in S′. In other words, there is an interval I = [b, b + pr] such that
I ∩S′ = ∅. Without loss of generality, we may assume that b�a and b�sn0 . Now, at least pr elements of the sequence
un are in I. These elements belong to S ∪ S′, and even to S, since I and S′ are disjoint. Therefore, |I ∩ S|�p. Since S
contains all the elements a + nr which are in I, �s is bounded by r on I. It follows now from (1) that �s is ultimately
periodic. It follows by Proposition 5.5 that S is regular. We conclude that S′ is regular by the same argument as in the
syndetic case, the role of S and S′ being swapped. �
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The following counter-example shows that the conclusion of Proposition 8.1 no longer holds if S′ is only assumed to
be residually ultimately periodic. Define a partition {S, S′} of N as follows. Both sets consist of blocks of consecutive
integers, obtained by distributing the integers between n! and (n + 1)! into n blocks of length n!, which are then
alternatively allocated to S and S′. Thus we have, with a concise notation,

S = {0, 2, 3, 6–11, 18–23, 48–71, 96–119, . . . },
S′ = {1, 4, 5, 12 − 17, 24 − 47, 72 − 95, 120 − 239, . . . }.

More precisely, given a positive integer m, there is a unique triple of integers (n, k, r) with n > 0 and k > 0 such that

m = kn! + r, 1�k�n and 0�r < n!
We use this decomposition of m to define S and S′ formally

S = {0} ∪ {kn! + r|1�k�n, 0�r < n! and 
n/2� ≡ k (mod 2)},
S′ = {kn! + r|1�k�n, 0�r < n! and 
n/2� /≡ k (mod 2)}.

Now, neither S nor S′ is ultimately periodic, but the sequences defined by S and S′ are both residually ultimately
periodic.

We let a last statement as an exercise to the reader.

Proposition 8.2. Let S1, . . . , Sn be infinite subsets of N such that the sets
⋃

1� i �nSi and Si ∩ Sj , for i �= j , are
regular. If, for each i, the enumerating sequence of Si is d.r.u.p., then the sets Si are all regular.

9. Filters and context-free languages

We characterized the filters preserving regular languages. What about filters preserving context-free languages? The
answer is simple:

Theorem 9.1. A filter s preserves context-free languages if and only if its differential sequence is ultimately periodic.

Proof. If the differential sequence of s is ultimately periodic, the filtering transduction �s is rational. It follows that
the transduction �−1

s is also rational. Now by a well-known result [2], context-free languages are closed under rational
transductions. Since L[s] = �−1

s (L), it follows that s preserves context-free languages.
To establish the opposite direction of the theorem, take an infinite filter s = (s0, s1, . . . ) that preserves context-free

languages. Consider the context-free language L over the alphabet {a, b, c, d} given by

L = {andu | n�1, u ∈ {b, c}∗, |u|b = n},
and define another language M by M = L[s] ∩ a+d{b, c}∗. We claim that

M = {andv | n�1, v ∈ {b, c}∗, 0� |v|b �sn − 1}.
Indeed, a word in M has the form w = an dv for some n�1 and v ∈ {b, c}∗. A word x in L such that w = x[s] has the
form

x = asn−1 dy

with y ∈ {b, c}∗ and |y|b = sn − 1. It follows that 0� |v|b �sn − 1 and, by choosing the word y in an appropriate way,
any value between 0 and sn − 1 can be obtained for |v|b. Consider the projection � : {a, b, c, d}∗ → {a, b}∗. Then

N = �(M) = {anbm | 0�m�sn − 1}.
Since s preserves context-free languages, the language L[s], and consequently also M and N are context-free. Because
N is a context-free bounded language over two letters, this is equivalent to the condition that the set

H = {(n, m) | 0�m�sn − 1}
is semilinear or, equivalently, is a rational subset of the free commutative monoid N2 (see e.g. [7,15]).
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Rational subset of N2 are closed under complementation, so the set H ′ = (H + {(0, 1)}) \ H = {(n, sn) | n�0}
is rational. Also, rational subsets of N2 have unambiguous representations, that is H ′ is the finite disjoint union of
sets of the form (p0, q0) + ∑h

i=1 (pi, qi)N, and in our case even with h = 1. Indeed, otherwise there are elements
(p0, q0) + p2(p1, q1) and (p0, q0) + p1(p2, q2) in H ′ and p2(p1, q1) = p1(p2, q2) contradicting the unambiguity.

It follows that H ′ is a finite disjoint union of sets of the form (p0, q0) + (p, q)N. Let P be the lcm of the integers p
in these expressions. Then n �→ sn is a linear affine function on each arithmetic progression mod P. �

10. Conclusion

We solved the filtering and the removal problems by using the new concept of residually rational transduction. There
are several advantages to this approach.

First, it can be applied to solve most of the automata-theoretic puzzles proposed in the literature [8–11,13,14,17–19].
Next, this approach leads to explicit computations. For instance, given a sequence s and a finite automaton recognizing
a language L, one can compute an automaton recognizing L[s]. More generally, given an operator on languages �,
it permits to compute a monoid recognizing �(L1, . . . , Ln), given the syntactic monoids of L1, . . . , Ln. This is a
powerful tool for the study of operators on varieties of recognizable languages.

It is easy to create more sophisticated examples, and we do not resist to the temptation to add our own puzzle: show
that if L is a recognizable language of A∗, the set

{u ∈ A∗|u222T
2

︸ ︷︷ ︸
|u| times

∈ L}

is recognizable. The solution follows from the results of this paper.
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