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Abstract. We consider Sturmian trees as a natural generalization of
Sturmian words. A Sturmian tree is a tree having n+1 distinct subtrees of
height n for each n. As for the case of words, Sturmian trees are irrational
trees of minimal complexity. We give various examples of Sturmian trees,
and we characterize one family of Sturmian trees by means of a structural
property of their automata.

1 Introduction

Sturmian words have been extensively studied for many years (see e.g. [4, 5] for
recent surveys). We propose here an extension to trees.

A Sturmian tree is a complete labeled binary tree having exactly n+1 distinct
subtrees of height n for each n. Thus Sturmian trees are defined by extending
to trees one of the numerous equivalent definitions of Sturmian words. Sturmian
trees share the same property of minimal complexity than Sturmian words: in-
deed, if a tree has at most n distinct subtrees of height n for some n, then the
tree is rational, i.e. it has only finitely many distinct infinite subtrees.

This paper presents many examples and some results on Sturmian trees. The
simplest method to construct a Sturmian tree is to choose a Sturmian word and
to repeat it on all branches of the tree. We call this a uniform tree, see Fig. 1.
However, many other categories of Sturmian trees exist.

Contrary to the case of Sturmian words, and similarly to the case of epis-
turmian words, there seems not to exist equivalent definitions for the family of
Sturmian trees. This is due to the fact that, in our case, each node in a tree has
two children, which provides more degrees of freedom. In particular, only one of
the children of a node needs to be the root of a Sturmian tree to make the whole
tree Sturmian.

Each tree labeled with two symbols can be described by the set of words
labeling paths from the root to nodes sharing a distinguished symbol. The (infi-
nite) minimal automaton of the language has quite interesting properties when
the tree is Sturmian. The most useful is that the Moore equivalence algorithm
produces just one additional equivalence class at each step. We call these au-
tomata slow.
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Fig. 1. The top of a uniform tree for the word abaaba - - -. Node label a is represented
by e, and label b is represented by o. This tree will be seen to have infinite degree and
rank 0.

We have observed that two parameters make sense in studying Sturmian
trees: the degree of a Sturmian tree is the number of disjoint infinite paths
composed of nodes which are all roots of Sturmian trees. The rank of a tree is
the number of distinct rational subtrees it contains. Both parameters may be
finite or infinite.

The main result of this paper is that the class of Sturmian trees of degree one
and with finite rank can be described by infinite automata of a rather special
form. The automata are obtained by repeating infinitely many often a distin-
guished path in some finite slow automaton, and intertwining consecutive copies
of this path by letters taken from some Sturmian infinite word. Another property
is that a Sturmian tree with finite degree at least 2 always has infinite rank.

The class of Sturmian trees seems to be quite rich. We found several rather
different techniques to construct Sturmian trees. To the best of our knowledge,
there is only one paper on Sturmian trees prior to the present one, by Carpi, De
Luca and Varricchio [1].

2 Sturmian Trees

We are interested in complete labeled infinite binary trees, and we consider finite
trees insofar as they appear inside infinite trees.

In the sequel, D denotes the alphabet {0,1}. A tree domain is a prefix-closed
subset P of D*. Any element of a tree domain is called a node. Let A be an
alphabet. A tree over A is a map t from a tree domain P into A. The domain of
the tree t is denoted dom(t). For each node w of ¢, the letter ¢(w) is called the
label of the node w. A complete tree is a tree whose domain is D*. The empty
tree is the tree whose domain is the empty set. A (finite or infinite) branch of a
tree ¢ is a (finite or infinite) word  over D such that each prefix of z is a node
of t.
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Fig. 2. The top of the Dyck tree of Example 1 and two of its factors, of height 3 and
2, respectively. Again, a is represented by e and b by o.

Ezample 1. (Dyck tree) Let A be the alphabet {a,b}. Let L be the set of Dyck
words over D = {0, 1}, that is the set of words generated by the context-free
grammar with productions S — 0515 + . The Dyck tree is the complete tree

defined by
a fwel
t(w) = ’ 1
(w) {b otherwise. (1)

The top of this tree is depicted in Fig. 2. The first four words €, 01, 0101 and
0011 of L correspond to the four occurrences of the letter a as label on the top
of the tree.

More generally, the characteristic tree of any language L over D is defined to
be the tree ¢ given by (1). Conversely, for any tree ¢ over some alphabet A, and
for any letter a in A, there is a language L = t~1(a) of words labeled with the
letter a. The language L = t~!(a) is called the a-language of t. In the sequel,
we usually deal with the two-letter alphabet A = {a,b}, and we fix the letter a.
We then say the language of t instead of the a-language.

We shall see that the a-languages of a tree t are regular if and only if the tree
t is rational. For any word w and any language L, the expression w~'L denotes
the set w™!L = {z | wz € L}. Let t be a tree over A and w be a word over D. We
denote by t[w] the tree with domain w™! dom(t) defined by t[w](u) = t(wu) for
each u in w1 dom(t). The tree t[w] is sometimes written as w~'t, for instance
in [1]. If w is not a node of ¢, the tree t{w] is empty. A tree of the form t[w] is
the suffiz of t rooted at w. Suffixes are also called quotients or subtrees in the
literature.

Let t be a tree over A and let w be a word over D. For a positive integer h,
we denote by D<" the set (¢ + D)"~! of words over D of length at most h — 1.
We set D<0 = (.

Let h be a nonnegative integer. The truncation of a tree t at height h is the
restriction of ¢ to the domain D<". Any tree obtained by truncation is called
a prefix of t. A factor of t is a prefix of a suffix of t. More precisely, for any
word w and any nonnegative integer h, we denote by ¢[w, h] the factor of height



h rooted at w, that is the tree of domain w~!dom(t) N D<" and defined by
t{w, h](u) = t(wu). A factor of height 0 is always the empty tree. A factor ¢[w, 1]
of height 1 can be identified with the letter ¢(w) of A that labels its root. A
prefix is a tree of the form ¢[e, .

Factors of height h are sometimes considered to have height A — 1 in the
literature (e.g. [1]). In this paper, the height of a finite tree is the number of
nodes along a maximal branch and not the number of steps in-between. Our
convention will be justified by Proposition 1 which extends a similar result for
words in similar terms.

A tree is rational if it has finitely many distinct suffixes. Recall (see e.g. [2])
that a tree over an alphabet A is rational if and only if t71(a) = {w € D* |
t(w) = a} is a regular subset of D* for each letter a of A. For instance the Dyck
tree t of Example 1 is not rational since t~1(a) is the Dyck language which is
not regular [6]. The following proposition gives a characterization of complete
rational trees using factors. It extends to trees the characterization of ultimately
periodic words by means of their subword complexity [3]. This statement appears
in [1].

Proposition 1. A complete tree t is rational if and only there is an integer h
such that t has at most h distinct factors of height h.

A complete tree is Sturmian if for any integer h, it has h + 1 factors of
height h. Since the factors of height 1 are the letters t(w) a Sturmian tree is
defined over a two letter alphabet. In what follows, we always assume that this
alphabet is {a, b}.

We will prove later that the Dyck tree given in Example 1 is indeed Sturmian.
We start with some simpler examples of Sturmian trees.

In the first of these examples, the same infinite word is repeated along each
branch of the tree.

Ezample 2. (Uniform trees) Let x = xox1x2--- be an infinite word over an
alphabet A, where g, x1, 2, . . . are letters. The uniform tree of = is the complete
tree ¢ defined by t(w) = x},,. This means of course that all nodes of the same
level n in the tree are labeled with the same symbol z,,. If z is a Sturmian word,
then its uniform tree ¢ is a Sturmian tree. Figure 1 shows the top of the uniform
tree of the Fibonacci word = = abaaba - - - .

Ezample 3. (Left branch tree) Let x = xox12z2--- be an infinite word over A,
where xq,x1,T2,... are letters. We define a complete tree ¢t by t(w) = x|y,
(Recall that |w|g is the number of occurrences of d in w.)

The label of each node w is the letter z,, of x, where n is the number of
symbols 0 occurring on the path from the root to w. The label of the root node
is xg. If the label of w is z,, the labels of w0 and w1l are respectively ;41
and x,,.

In particular, the letters of the word x label the nodes of the leftmost branch
of the tree, and all nodes on a rightmost branch share the same label. Figure 3
shows the top of the left branch tree of the Fibonacci word x = abaaba - - - .
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Fig. 3. The top of a left branch tree for the word abaaba - - - .

We write x[n, h] for the factor z,zp+1 - - - Zpyn—1 of the word z. In Example 2,
two factors t[w, h] and t[w’, h] of height h are equal if and only if z[|w|,h] =
z[[w’|, h]. In Example 3, t[w, h] and ¢[w’, h| are equal if and only if z[|w|g, h] =
z[|w'|o, h]. It follows that in these examples, the tree ¢ is Sturmian if and only if
the word « is Sturmian.

Ezample 4. (Indicator tree) Let x be an infinite word over D. The indicator tree
of = is the complete tree t defined by

a if w is a prefix of x,
t(w) = )
b otherwise.

In other terms, there is exactly one infinite path in ¢ with all its nodes labeled
by the letter a. The letters of this path are the letters of the word z. Equiva-
lently, the indicator tree of the infinite word « is the characteristic tree of the
language composed of its (finite) prefixes. Figure 4 shows the indicator tree of
the Fibonacci word. It can be easily proved that x is a Sturmian word if and
only if its indicator tree ¢ is a Sturmian tree.

The following example is a variation on Example 4. For a finite word w and
an infinite word x, we denote by d(w,x) the integer |w| — |u| where u is the
longest common prefix of w and z.

Ezample 5. (Band indicator tree) Let « be an infinite word over D and let k be
a non-negative integer. The band indicator tree of width k is the complete tree ¢
defined by

b otherwise.

Hw) = {a if d(w,z) <k,

Again, x is a Sturmian word if and only if ¢ is a Sturmian tree. The band indicator
tree of width 0 is the indicator tree defined in Example 4, since d(w,z) < 0 if
and only if w is a prefix of x.
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Fig. 4. The top of the indicator tree for the Fibonacci word 01001010 ---. The only
nodes labeled a are on the Fibonacci path.

0,1
Fig. 5. Automaton accepting the prefixes of 01001010 ---. All states excepted oo are
final.

3 Rank and Degree

Recall that a branch of a tree is a (finite or infinite) word = over D such that
each prefix of x is a node of the tree.

A node w of a tree ¢ is called rational if the suffix ¢[w] is a rational tree.
It is called irrational otherwise. The rank of a tree t is the number of distinct
rational suffixes of t. This number is either a nonnegative integer or infinite.

If w is an irrational node, then its prefixes also are irrational. Furthermore,
at least one of the two words w0 and w1 also is irrational. The set of irrational
nodes of a tree is a tree domain in which any finite branch is the prefix of an
infinite branch.

The degree of a tree t is the number of infinite branches composed of irrational
nodes. This number is either a nonnegative integer or infinite.

As a first example, consider the Dyck tree defined in Example 1. It has rank 1
and has infinite degree. A node w of this tree is rational if it is not a prefix of
some Dyck word. The set of rational nodes is thus the set L1D* where L is



the set of Dyck words. On the contrary, each branch in 00*10“ only contains
irrational nodes. The degree of the Dyck tree is thus infinite.

Next, let ¢ be the indicator tree of a Sturmian word x, as defined in Example 4.
A node w of t is irrational if and only if it is a prefix of x. Thus, the word x
itself is the only infinite branch composed of irrational nodes, and therefore the
degree of this tree is 1. All rational subtrees are the same, so this tree has rank 1.

These examples show that there are Sturmian trees of degree 1 or of infinite
degree. It turns out that there exist also Sturmian trees of finite degree greater
than 1. In the final section, we construct a Sturmian tree of degree 2 but this
construction is rather involved.

Here is a table summarizing the relations between degree and rank for Stur-
mian trees. A tree with rank 0 always has infinite degree since there is no rational
node.

rank
degree finite infinite
1 characterized in Theorem 1 | Example 8
Indicator tree (rank 1)
Band width tree (rank d + 1)
> 2, finite|| empty by Proposition 4 example not given here
infinite || Uniform tree (rank 0) example not given here
Left branch tree (rank 0)
Dyck tree (rank 1)

The main result of the paper is the characterization of Sturmian trees of
degree 1 and with finite rank by a structural property of the minimal automaton
of its language.

4 Slow Automata

Let t be a complete tree over {a,b}. The language of t is the set t~!(a). We
study properties of trees by considering automata recognizing their language. In
particular, minimization of automata will play a central role.

We recall elementary properties of automata, just observing that they hold
also when the set of states is infinite. We only use deterministic and complete
automata. An automaton A over a finite alphabet D is composed of a state
set @, a set F' C Q of final states, and of a next-state function Q x D — @ that
maps (g,d) to a state denoted by ¢ - d. Given a distinguished state i, a word w
over D is accepted by the automaton if the state i-w is final. When we emphasize
the existence of state i, we call it the initial state as usual.

An automaton B is a subautomaton of an automaton A if its set of states is
a subset of the set of states of A which is closed under the next-state function

of A.

Ezxample 6. (Dyck automaton) The following automaton accepts the Dyck lan-
guage. The set of states is Q = NU {oo}. The initial and unique final state is 0.



The next state function is given by n-0 =n+1forn >0,n-1 =n—1forn > 1,
0-1=o00and co-0=00-1=oc. This automaton is depicted in Fig. 6. We call
it the Dyck automaton. The singleton {oco} is the unique proper subautomaton
of the Dyck automaton.

i 0 0 0 0
01 2 € s € N ©) Wl
O
1 1 1 1
Fig. 6. Automaton of the Dyck language. State 0 is both the initial and the unique
final state.

Given an arbitrary automaton A, we define inductively a sequence (~p)n>1
of equivalence relations on @ as follows.

q~q = (QeF < ¢ €F)
qrni1q = (@~nqd andVde D q-d~ypq -d)

These are well-known in the case of finite automata, and many properties ex-
tend to general automata. We call ~j the Moore equivalence of order h. The
index of ~j, is the number of equivalence classes of ~5. The Moore minimization
algorithm consists in computing inductively the Moore equivalences.

The equivalence ~p 41 is a refinement of the equivalence ~,. Thus the index
of ~p, 41 is at least the index of ~,. An automaton is called slow if it is minimal
and if the index of ~, is at most h+1 for all A > 1. If ~;, and ~p; are different,
that there is one class ¢ of ~; which gives raise to two classes in ~1. We say
that ~p41 splits class ¢, or that class ¢ is split by ~p41.

It is sometimes useful to distinguish, in a minimal automaton, two kinds of
states. A state p is rational if it generates a finite subautomaton. States which
are not rational are called irrational. In the minimal automaton associated to
the language of a tree, a state is rational if and only if it corresponds to the root
of a rational tree.

The following proposition shows that the classes of ~j are in a one to one
correspondence with the factors of ¢ of height h.

Proposition 2. Let t be a complete tree over {a,b} and let A be an automaton
over D accepting the language of t, with initial state i. For any words w,w’ € D*
and any positive integer h, one has

i-wepi-w < tlw,h] =tw' h].

Corollary 1. Let t be a complete tree over {a,b} and let A be an automaton
over D accepting the language of t. The tree t is Sturmian iff the minimal au-
tomaton of its language is infinite and slow.



5 Trees with Finite Rank

5.1 A Tree of Degree One

In this section, we give an example of a family of Sturmian trees with finite
rank and of degree 1 by describing the family of automata accepting their lan-
guages. These (infinite) automata are based on a finite slow automaton. In this
automaton, a path is distinguished (called a lazy path). The infinite automaton
is obtained by repeating the lazy path and intertwining the copies with symbols
taken from an infinite Sturmian word.

In the next section, we show that any Sturmian tree of degree 1 and with
finite rank can be obtained in this way.
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Fig. 7. A slow automaton A for the Fibonacci word Tox1 -+ - = 01001010 - - - . The final
states are p,r,0,2,4,---.

Let A= (Q,{i}, F) be a finite deterministic automaton over the alphabet D
with N states. We assume that A has the two following properties. First, A is
slow. Recall that by definition, this means that the automaton is minimal and
that the Moore minimization algorithm splits just one equivalence class into two
new classes at each step.

Next, we suppose that there is a lazy path in A. This is a path

. ao al ap—1
Tiqo —q1 —q2 " "4dh—1 — (Gh

of length h, where gy and ¢ are the two states which are separated in the last
step in the Moore algorithm together with the condition that

Gh—1 - Grh—1 = qo OT G

where @ = 1 —a for a € D. If N > 2, the first of these conditions means that
qo ~N—2 qn and qo % N_1 qn- As a consequence, the second property means that
qnh—1 - Gp—1 cannot be separated from g _1 - ap_1 before the very last step of the
Moore algorithm.

Ezample 7. The automaton A given in Fig. 7 has a subautomaton 4 composed
of the states {p, s, r}. This subautomaton is slow: the first partition is into {p, r}
and {s}, and the second partition is equality. The finite subautomaton A in
Fig. 7 admits for example the lazy path 7 : p 959 P 9L r, and indeed
sgp. Here h = 4.



Given the finite slow automaton A, the lazy path 7 and an infinite word
T = xgx1Z2 -+ over D, we now define an infinite minimal automaton A which
accepts the set of nodes labeled a of a tree t. We will show that if x is a Sturmian
word, then ¢ is a Sturmian tree of degree 1. This automaton is the extension of
A by 7 and z, and is denoted by A = A(r, z).

The set of states of A is QUN. For convenience, we use a mapping ¢ : N — @
defined by ¢(n) = @¢n mod » for any n € N. Here and below qq,...,q, are the
states of the lazy path of A and aq,...,an—1 are the letters labeling the path.
The initial state of A is 0 and its set of final states is FUg ™' (F). The next-state
function of A is extended to A by setting, for n € N,

() if n #h —1 mod h, then
n'an,nlodh:n+17 n'dnmodh:q(n)'&nmodh

(B) if n =1ih+ h —1 for some i > 0, then

n-x;=n+1, n-T; =qo
The infinite path through the integer states of the automaton Ais composed
of an infinite sequence of copies of the lazy path of A. For each state ¢(n) inside
each of the copies of the lazy path, the next-state for the “other” letter, that is
the letter @y mod n, maps g(n) back into A. Two consecutive copies of the lazy
path, say the ith and ¢ + 1th, are linked together by the letter x; of the infinite
word x driving the automaton (see Fig. 7).

Proposition 3. Let A = A(r,x) be the extension of the finite slow automaton
A by a lazy path © and an infinite word x. If the word x is Sturmian, then A
defines a tree t which is Sturmian, of degree 1, and having finite rank.

The tree defined by this automaton has degree 1 since the only irrational
states are the integer states n and they all lie on a single branch. Its rank is the
number of states of 4. We claim that this tree is also Sturmian.

5.2 Characterization

In this section, we give a characterization of Sturmian trees of degree 1 which
have finite rank by describing the family of automata accepting their languages.
These (infinite) automata are extensions of a finite automaton by a lazy path
and a Sturmian word.

Theorem 1. Lett be a Sturmian tree of degree one having finite rank, and let A
be the minimal automaton of the language of t. Then A is the extension of a slow
finite automaton A by a lazy path = and a Sturmian word x, i.e. A = A(r,x).

Given a tree t and some Moore equivalence ~j on its minimal automaton,
it is convenient to call an equivalence class of ~j an irrational class if it is
entirely composed of irrational states. It is a rational class otherwise. A rational



Fig. 8. The tree showing the evolution of the Moore equivalence relations on the au-
tomaton given in Fig. 7. Each level describes a partition. Each level has one class
splitting into two classes at the next level.
class contains at least one rational state, and may contain even infinitely many
irrational states.

Up to now, all our examples of Sturmian trees are of finite rank. It can be
observed that for all of them the degree is either 1 or infinite. This is unavoidable.

Proposition 4. The degree of a Sturmian tree with finite rank is either one or
nfinite.

6 A Tree With Infinite Rank

There exist Sturmian trees with infinite rank. The following example gives a
Sturmian tree with infinite rank and of degree 1.

Ezample 8. We define a tree by giving a (minimal) automaton accepting its
language. The set of states of the automaton is Q@ = {n € N | n > 3} x {0,1}.
The set of final states is the set {(n,b) € @ | n = 0 mod 2}. The set E of
transitions is defined as follows. Let n = 25m where m > 1 and m #£ 0 mod 2.
The integer 2% is then the greatest power of 2 which divides n.

(n.5)-0 = (2F"14+1,0) ifm=1andb=0
’ |l (n+1,b) otherwise

(3,0) if k=0
(4,0) if k=1

(n,b)-1 =4 (4,0) ifk=2,m=1landb=0
(2872 41,0) ifk>2,m=1andb=0

(2¥=1 +1,0) otherwise

In Fig. 9, we give a picture of this automaton; states of the form (n,0) are
drawn as circles () and states of the form (n, 1) as squares [n] .
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Fig. 9. Final states are dark. Observe the fractal-like structure, with a doubling of the
size of each block.

7 Concluding Remarks

In this paper, we have introduced the notion of Sturmian trees. We have consid-
ered two parameters, the degree and the rank, and we have described Sturmian
trees of finite rank and finite degree.

We have given several examples of Sturmian trees of finite rank and infinite
degree. All these are in some sense easy. There exist more involved examples
of trees in this family. Such examples may be constructed using more than one
Sturmian word.

In this short note, we have presented only one Sturmian tree of infinite rank
which is of degree one. Using some kind of fractal structure, we are able to build
Sturmian trees of infinite rank and of degree two or more. Similarly, we know
some Sturmian trees for which both degree and rank are infinite. None of these
examples is given here due to the lack of space. They will be presented in a
forthcoming full version.
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