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This paper is concerned with the analysis of the worst cakavier of Hopcroft’s algorithm for minimizing deter-
ministic finite state automata. We extend a result of Castigl Restivo and Sciortino. They show that Hopcroft's
algorithm has a worst case behavior for the automata reziognFibonacci words.

We prove that the same holds for all standard Sturmian waslig an ultimately periodic directive sequence (the
directive sequence for Fibonacci wordg1s1, .. .)).
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1 Introduction

An algorithm for the minimization of deterministic finiteade automata that runs in tini®(n logn) on
automata withn states was given by Hopcroft (1971). Itis, up to now, the reffstient algorithm known
in the general case.

We address here the problem of showing that the running €fielog n) for Hopcroft algorithms is
tight. This algorithm has a degree of freedom because, im&€ap of its main loop, it allows a free choice
of a set of states to be processed. Berstel and Carton (2@@dduced a family of finite automata based
on de Bruijn words, and they showed that there exist someitky’ sequence of choices that slows down
the computation to achieve lower boufidn logn). In the paper Castiglione et al. (2007), Castiglioni,
Restivo and Sciortino replace the de Bruijn words by Fibehawords. They show that, for this word,
there is no more choice in Hopcroft's algorithm, and thatuh&ue execution of Hopcroft's algorithm
runs in timeQ2(rn logn). The computation is carried out explicitly, using connes between Fibonacci
numbers and Lucas numbers.

The unigueness of the execution of Hopcroft's algorithm esrfrom the fact that automata for Stur-
mian words are what we have called “slow automata” in anotbetext Berstel et al. (2007). In this
paper, we present a generalization of the result of Cagstiglet al. (2007) to any sequence of Sturmian
words that is constructed with an eventually periodic divecsequence. These words are well-known
and have special properties (see Berstel and Séébol@);28llbuche and Shallit (2003); Pytheas Fogg
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(2002)). For instance, the corresponding infinite wordspaieeisely those that are fixed points of non-
trivial morphisms. The case of Fibonacci words correspdheslirective sequendg, 1, . ..). We show
that, for this family of words, the execution time of Hopdteglgorithm is alsd2(n logn).

The proof is along the same lines as Castiglione et al. (20@R)it involves new constructions and
some rather delicate analysis of the behavior of a parti@yistem of equations.

The steps that lead to the equations describing the runimregdf Hopcroft's algorithm are similar to
those in Castiglione et al. (2007), but we get a system of teapsinstead of a single one. The solution
of the system requires some additional work. It is intengsto observe that we are led quite naturally
to consider a cyclic version of continuants, as they are llysuidroduced for continued fractions (see
Graham et al. (1994)).

Outline The paper is organized as follows. After some definitions fittst section sketches Hopcroft's

automata minimization algorithm in the case we are inteckst, namely for alphabets formed of a single
letter. We then derive the equations for the generatingtionof the the running time of the algorithm.

We describe a closed form for these equations, using a oy@l&ion of the continuant polynomials. The
last section is concerned with the solution of these syst#raguations.

2 Definitions and notation

In this section, we recall some definitions concerning fiSitermian words, and fix conventions concern-
ing circular occurrences of factors.

Directive sequence A directive sequencis a sequencd = (di,ds,ds,...) of positive integers. |If
d is eventually periodic and has periéd that is if d,,+, = d, for n > /¢, then one writes alsd =
(dy...,de¢,dps,...,desr). In particular, ifd is purely periodic and has peridd then one writegl =
(di,...,dg).

Standard words A directive sequence generates a sequengs,),>o of words, called thestandard
wordsgenerated by, as follows

sop=1, s =0, Sn+l = si”‘sn,l (n>1).

Thus in particulas, = 0911 andss = (0911)920. We observe that in the literature on Sturmian words,
the first term of a directive sequence is frequently supptséeée only non-negative. We exclude the case
dy = 0 for convenience. It amounts merely to exchange symbalsd1 in the sequence generateddy
Example 1 (Fibonacci) Ford = (1,1,...) = (1), one get$,+1 = s,s,_1 for n > 1, and the standard
words generated by are the Fibonacci words 0,01, 010,01001, . ..

Ford = (2,3), one getss,, .1 = s2s,_1 if nis odd, ands,,.; = s>s,_1 if n is even. The standard
words generated by are the wordg, 0, 001, 0010010010, 00100100100010010010001,.. .

Shift  Theshift7(d) of a directive sequenaeé= (d, dz, ds, . . .) is defined by

T(d): (dl—l,dg,dg,...) if dy >1
(do,ds,...) otherwise
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Circular factors Two wordsz andy areconjugateif there exist wordsu, v such thatr = uv and

y = vu. We writex ~ y whenz andy are conjugate. It is useful to see a class of the conjugaatioal
~ as a single word as drawn on a circle, with no distinguishégirar A word v is acircular factor of a
wordw if it is a factor of some conjugate af. This is equivalent fot: to be a prefix of some conjugate of
w. Itis also equivalent to the conditions that < |w| andu is a factor ofww. The set of circular factors
of a word is denoted by'F'(w). Thenumber of circular occurrencesf v in w is denoted byw|, and

is the number of factorizationsw = pus with |p| < |w| and|u| < |w]|. This is precisely the number of
occurrences ofi in w viewed as drawn on a circle. Given a wardover the alphabeft0, 1}, a wordwu is
aspecial (circular) factorof w if ©0 andul are both (circular) factors af. We define thaveightof w by

Jwl =Y min(jwluo, [w]u).

u€ CF(w)

The only circular factors which contribute fav|| are circular special factors. Two conjugate words have
the same weight.

3 Hopcroft's algorithm

Hopcroft (1971) has given an algorithm that computes theémahautomaton of a given deterministic
automaton. The running time of the algorithm@g|A| x nlogn) where|A]| is the cardinality of the
alphabet ana: is the number of states of the given automaton. The algotitasbeen described and re-
described several times (Gries (1973), Aho et al. (19743uBaier et al. (1992), Blum (1996), Knuutila
(2001)).

3.1 Outline

The algorithm is outlined in the functiondPCROFMMINIMIZATION given below, and is explained then
in some more detail.

It is convenient to use the shorthaid = @ \ 7' whenT is a subset of the s€} of states. We denote
by min(B, C) the set of smaller size of the two sé¥sandC, and any one of them if they have the same
size.

Given a deterministic automatas, Hopcroft’s algorithm computes the coarsest congruendehwh
saturates the séft of final states. It starts from the partitigiF, F°} which obviously saturateg’ and
refines it until it gets a congruence. These refinements opdnétion are always obtained by splitting
some class into two classes. LBtandC' be two sets of states and lebe a letter. We say that the pair
(C, a) splitsthe setB if both sets(B - a) N C and(B - a) N C°¢ are nonempty.

The main ingredientin the analysis of the running time ofalgsrithm is that the splitting of all classes
of the current partition according to a p&¥, a) takes a time proportional to the size@f Therefore, the
global running time of the algorithm is proportional to thevsof the sizes of the classes processed in the
main loop. Note that a pair which is added to the waiting/$et not necessarily processed later because
it can be split by the processing of another pair before ibisstdered.

It should be noted that the algorithm is not really deterstinibecause it has not been specified which
pair (C, a) is taken fromWV to be processed at each iteration of the main loop. This ntbahfor a given
automaton, there are many executions of the algorithm. riistout that all of them produce the right
partition of the states. However, different executions migg rise to different sequences of splitting and
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1. P {F, F°}
2: foralla € Ado

3 ADD((min(F, F¢),a), W)

4: whileWw # () do

5. (C,a) — SOME(W) > takes some element iV
6: for eachB € P splitby (C,a) do

7 B',B" «— SPLIT(B,C,a)

8: REPLACE B by B’ andB” in P

o: forallb € Ado

10: if (B,b) € W then

11 REPLACE (B, b) by (B’,b) and(B”,b) in W
12: else

13; ADD((min(B’, B"),b), W)

Algorithm 1: HOPCROFIMINIMIZATION

also to different running time. Hopcroft has proved thatriimening time of any execution is bounded by
O(JA| x nlogn).

3.2 Cyclic automata

The behavior of Hopcroft’s algorithm is better understoacgdamily of automata that we introduce now,
calledcyclic automata

Letw = b; - - - b, be a word of lengtn over the binary alphabgb, 1}. We define an automatas,,
over the unary alphabét:} as follows. The state set of,, is {1,...,n} and the next state function is
defined byi-a = i+1fori < nandn-a = 1. Note that the underlying labeled graph4f, is just a cycle
of lengthn. The final states really depend en The set of final states of,, is FF = {1 <i <n | b; = 1}.

Fig. 1: Cyclic automatonA,, for w = 01001010.

For a binary wordu, we define@,, to be the set of states of,, which are the starting positions of
circular occurrences af in w. If u is the empty word, the®,, is by convention the sep of all states
of A,,. By definition, the sef’ of final states of4,, is @1 while its complement™ is Q.

Consider the automata#,, for w = 01001010 given in is Fig. 1. The set®:, Qo1 and@;; of states
are respectively2,5,7}, {1,4, 6} and{.

The following statements appears in Castiglione et al. 7200
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Proposition 2 Letw be a standard word. Hopcroft's algorithm on the cyclic auadon A,, is uniquely
determined. In particular, at each step, the waiting set snagleton.

In fact, the execution is described in the next statemerg.fifét part of the statement is from Borel and
Reutenauer (2006). They prove that the number of circupgdigl) factors in fact characterizes standard
words.

Proposition 3 Let w be a standard word and set = |w|. For0 < ¢ < m — 2, the wordw has
exactlyi + 1 circular factors of length and exactly one circular special factor of length

At each step of the execution of Hopcroft's algorithm, the current ptioth is composed of the+ 1
classeq), indexed by the cyclic factors of lengthand the waiting set is a singleton. This singleton is
the smaller of the set@ ., Q.1, Whereu is the unique cyclic special factor of length- 1.

As already mentioned, the complexity of Hopcroft's algamitis proportional to the sum of the sizes
of the sets that are processed in the waiting set. As a coasequf the previous description, one gets
the following corollary.

Corollary 4 Letd = (d1,ds, . ..) be adirective sequence. Lgt,),,>o be the standard sequence defined
by d. Then the complexity of Hopcroft's algorithm on the autasnad;  is proportional to||s., ||.

Recall that|wl| = 3~ c o () min(|wluo, [wlu1). The main result of this paper is the following theorem.

Theorem 5 Letd = (d,ds, . ..) be an ultimately periodic directive sequence. [€t),>( be the stan-
dard sequence defined By Thenn = O(log |sy|), ||sn|| = ©(n|s,|), and the complexity of Hopcroft's
algorithm on the automatal,,, is in ©(N log N) with N = |s,,|.

This theorem is proved in Castiglione et al. (2007) in theeaafsthe Fibonacci words, with directive
sequencéd = (1). It remains open whether it holds for arbitrary directivgusences.

4 The generating series of the complexity

Letd = (di,do, ...) be a directive sequence. Lgt,),,>o be the standard sequence defined/bgnd set
an = |3n|17 Cn = ||3nH

These quantities depend of course dynalthough this is not indicated in the notation. Observe tha
ap = 1,a; = 0, az = 1 andaz = do becausa, = 0711 andsz = (0%11)%20. In particular, the valud;
plays no role in the sequen¢e, ),,>o. This will be used later.

Observe also thaty = 0, ¢c; = 0 becausey, = 1 ands; = 0, and thatcs = d;. Indeed, the circular
special factors of, are the word$®’ for 0 < ¢ < d,, and each factad1 for 0 < ¢ < d; has exactly one
circular occurrence in,.
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4.1 Afirst equation
Thegenerating seriesiy(x) andCy(z) are defined by
Aq(z) = Z ap,x", Cy(x) = Z cpx™ .
n>1 n>0

Observe that we do not include the constanin the seriesd,;. Observe also that the seridg does not
depend on the value of the first tektn of d.

Given a directive sequenee= (dy, ds, . ..), we define a shorthand notati@i{d) by T'(d) = 7% (d).
ThusT(dy,ds,ds,...) = (da,ds,...). Observe that*(d) = (di+1,d;i12,...). We also define &ro-

necker symbai by
5(d): 0 |fd1>.].,
1 otherwise
The following equation results from the combinatorial leasgiven below.

Proposition 6 For any directive sequenee= (d;,ds,...), one has
Ca(z) = Aa(z) + 2°DC gy () + 2" TP T C 7)) (). 1)
Example 7 Consider the directive sequené¢e= (1) of the Fibonacci words. Sinced) = T(d) = d,
andé(d) = 1, Equation (1) becomes
Ca(z) = Ag(2) + (x + 2%)Cy(x) .
4.2 Acceleration

Iterated application of Equation (1) gives a system of équatwhich is finite when the directive sequence
d is periodic. Indeed, cafiuffixof orderm of d any of the directive sequeneé&' (d). If dis purely periodic
with (minimal) periodk, thend = 74+ +dk(d), sod has exactlyN = d; + - - - + dy, distinct suffixes.
LetU be this set of suffixes. Each of the suffixem U satisfies Equation (1) with replaced by, so we
get a system oN equations in the variables, (z), foru € U.

Cu(x) = Au(x) + xé(u)c‘r(u) (.13) + x1+6(T(u))C‘r(T(u))(x) .

Each of theC’, depends only linearly ol’; () and C(r(,)), with coefficients which are monomials
amongl, z, 2. We will show how to replace this system Sfequations by a system of ontyequations.
This is done by collapsing appropriate equations of theipus/system. We start with an example.

Example 8 Consider the directive sequente= (2, 3). Equation (1) applied iteratively gives the follow-
ing five equations:

Cez =A@z +Cuzz +2C03z3
Cuza = Ausnt 10z + 10033
Cezs =4ezt Cuzs t 20052
Ceaz =A@z *+Cez3 +2C033)
Cuzz = Auzst 20z + 20033
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Observe thatd 53) = A(; 53) andAz5) = A, 53, = A1 33 because these series do not depend on
the first term of the directive sequence. Setting= Cuzz andD; = C(o73), We get

Ciz3) = A@g) + D1+ 2D,
whereD; and D- satisfy the equations
Dy = Ay + 2Agg) +22D2 + 2Dy
Dy = 2A g + ©Agz) + 32Dy + 2°D;.
Thus the original system &fequations in th€’, is replaced by a system dfequations inD; andDs.
Letd = (di,ds,...) be a directive sequence, and for 1, set
e =T7Hd) = (di,diyq,...).

Set also
Dy =a2"NC .y, Bi=(di—1)A., +zA,

2it1
With these notations, the following system of equation kold

Proposition 9 The following equations hold

Ca=Aq+ Dy + 2Dy (2)
D; = B; + diZ‘DH_l + Z‘QDH_Q (l > 1) (3)

Equations (2) and (3) hold for arbitrary, even non-perialiiective sequences. If a directive sequedice
is periodic with period:, thenDy,1 = D; andDy,2 = D,. Observe that the equations of the previous
example have precisely this form.

We now turn to the derivation of expressions for the numbeyagiurrences of circular special factors
in the words generated by some directive sequehiceterms of the corresponding numbers associated
to the directive sequencéd) andT'(d). For this, we will observe how circular special factors mgate
through some particular morphisms.

Letd = (d1,ds, . ..) be a fixed directive sequence, and(let),>o be the sequence of standard words
generated byl. The following four lemmas hold. Lemmas 10 and 12 are sinttatemmas proved
in Castiglione et al. (2007), the proofs of Lemmas 11 and &3amilar.

Lemma 10 Assumel; = 1, and lett,, be the sequence of standard words generated By = (dz, ds, . . .).
Let ¢ be the morphism defined y(0) = 01 and(1) = 0. Thens,,+1 = ¢(t,) forn > 1. Ifvis a
circular special factor of,,, theny(v)0 is a circular special factor of,, 1. Conversely, itv is a circular
special factor ofs,, 11 starting with0, thenw has the formw = ¢(v)0 for some circular special factor
of t,,. Moreover,|s,+1]wo = |tn]v1 @Nd|snt1|w1 = |tn|vo-

Lemmall Assumel; > 1, and lett,, be the sequence of standard words generated(By = (d; —
1,da,ds, . ..). Lety be the morphism defined p¥0) = 0 and(1) = 01. Thens,, = ¥(t,) forn > 1.
If v is a circular special factor of,,, theny(v)0 is a circular special factor of,,. Conversely, ifw is a
circular special factor ofs,, starting with0, thenw has the formw = (v)0 for some circular special
factorv of t,,. Moreover,| s, |wo = |tn|vo @NA|sy|w1 = |tnl|v1-
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Lemma 12 Assumed, = 1, and let¢, be the sequence of standard words generated’Byl) =
(d3,ds,...). Leta be the morphism defined ly0) = 10©:+! anda(1) = 10%. Thens, 2,04 =
0%a(t,) forn > 0. If v is a circular special factor ot,,, thena(v)10% is a circular special factor
of s,,+2. Conversely, ifw is a circular special factor o#,, o starting with1, thenw has the formw =
a(v)10% for some circular special factar of t,,. Moreover,|s,, 1 2|wo = |tn|vo @Nd|sp12lwi = |tn|v1-

Lemma 13 Assumel, > 1, and lett,, be the sequence of standard words generatediyl) = (ds —
1,ds,dy,...). Let3 be the morphism defined 5(0) = 104 and 8(1) = 10%*!. Thens, 104 =
041 3(t,) for n > 1. If v is a circular special factor ot,,, then3(v)10% is a circular special factor
of s,+1. Conversely, ifw is a circular special factor ok, ., starting with1, thenw has the formw =
B(v)10% for some circular special factar of t,,. Moreover, s, +1|wo = |tn|v1 @aNd|spi1lwi = |tn]vo-

5 Closed forms for the generating series

The seriesdy(z) = > anz™ andCy = ) ¢, ™ have an expression in closed form in the particular case
where the directive sequence is periodic.

Theorem 14 If d is a periodic directive sequence with peribdthen

R(x)
Q(z)

whereR(z) and.S(x) are polynomials and

Ai(z) = Zanx” =z

and Cy(z) = chx” = S((a:)

Q(x)*’

Qz)=1—Z(dy,...,dy)x" + (=1)k2?*
whereZ(x1, ..., xx) is a polynomial in the variables, , . . . , x;. Moreover,
an, =0(p") and ¢, =0(np")
wherep is the unique real root greater thanhof the reciprocal polynomial af ().

The polynomialsZ have a special form that will be given below, and they havengerésting combina-
torial interpretation. They will be calledircular continuant polynomials We will show later that the
reciprocal polynomial of)(z) have two real roots which are irrational numbers, and thagteater of
them is strictly greater thah

Letd be a directive sequence. By definition, the sequence |s,, |1 counting the number dfs in the
standard words,, defined byd verify ag = 1, a; = 0, and satisfy the recurrence relations

Unp1 = dpap +an—1 (0 >1).

Assume the directive sequengehas periodk. Then the coefficientd,, in the recurrence relation are
repeating with period. Our aim is to prove that the sequenggis a solution of a unique linear recurrence
relation, with constant coefficients, of ordsk.



Hopcroft's automaton minimization algorithm and Sturmiaords 9

5.1 Circular continuant

We present here a generalization of continuant polynorthalsarise naturally when considering circular
words. We use these polynomials for solving the recurreelegion counting occurrences of the letter
in standard words.

Condensation Letxy,...,z, be variables. We consider circular words over these vasabibwed as
letters, and a replacement operation that weaatldensatiomvhich replaces a factar;x; 1, of variables
with consecutive indexes by. The replacement af,,z; by 1 is allowed in this operation. Thus for
T1T22324, there are four condensations,igr, (by removingz,xs), to x124 (by removingzszs), to
x122 (by removingzsxz,), to xox3 (by removingz,z1). Two terms can be condensed further, namely
r3x4 andxizo. Both are condensed to Observe that; x4 cannot be condensed since the indexes are
not consecutive.

We callcircular continuant polynomiabf ordern the polynomialZ (x4, . . ., z,) in commutative vari-
ables which is the sum of all monomials obtained from- - - - x,, by repeated condensation. The fol-
lowing are the first circular continuant polynomials.

Z(x1) = a1
Z(J)l,xg) =129 + 2
Z(a:l, T2, .133) = L1223 + X1 + T2 + X3
Z(21,22,%3,Tq) = T1T2T3%4 + T1X2 + ToZ3 + T3Tg + T4w1 + 2.

Observe the constant terthin Z(x1,x2) which comes from the condensations of bath:; and of
x1x2. The constant term always appears when the number of variables is even. Thenogy
has been chosen because of the resemblance between themialigrand the (non-circular) continuant
polynomialsK (z1, . . ., zx) as they arise in the study of continued fractions (see eah&n et al. (1994).
These polynomials are defined by the condensation ruleeapfithe non-circular word; x5 - - - z,,. In
particular, the block:,z; is notcondensed. The first continuant polynomials are

K({Ll) =

K(J)l, ],‘2) = 2122 + 1

K(z1,22,23) = 212223 + 21 + 23

K(z1,22,23,%4) = 21222324 + 2122 + T3xg + 124 + 1.
5.2 Continued fraction

Letd = (di,ds,ds,...) be a sequence of non-zero numbers. Thaetinued fractiondefined byd is
denotedy = [dy, d2, ds, ...] and is defined by

Oé:dl-l-

1
doy +

dg +---
The finite initial parts|d;,ds ..., d,] of d define rational numbers called partial quotients. It is well
known that these partial quotients are the numbers
K(dy,da,...,dy)
K(dg,ds,...,dy) "
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It follows easily that for the standard woreg defined byd that forn > 3

snlo = K(di,....dp_1), an=|sn]1 = K(ds,...,dn_1), anda = lim :S”:O .
Snl1
6 Proof of Theorem 14
Letdy,...,d; be a sequence of non-zero numbers. kgl >0 be a sequence of numbers satisfying, for
i1 =1,...,k, the recurrence relations
Gpt1 =diap +ap—1, n=imodk. (4)

Example 15 Fork = 2, d; = 2,d; = 3, one gets the relations
2a, + a,—1 if nisodd,
Ap4+1 = . .
3a, +a,—1 if niseven.

If the initial conditions are forinstaneg = 1, a1 = 0, thenthe sequencge,, ),,>( Starts withl, 0,1, 3,7, 24,
55,189, .... Observe on the first values thgt = 8a,,_2 — a,_4 for n > 4. This is a consequence of the
result to be proved.

The theorem is a consequence of the following propositidniclvgives the precise form of the polyno-
mial Q(z).
Proposition 16 If a,, is a sequence satisfying the recurrence relatighsthen forn > 2k
Ay = Z(dl, ce ,dk)an,k + (—1)k+1an,2k .

The following lemma describes the roots of the polynorgjét).
Lemma 17 The polynomiall (z) = 2? — Z(du, ...,dx)x + (—=1)* is irreducible overQ and has one
real root strictly greater thari. The roots of the reciprocal polynomial @f(z) are the numberg; A, p2 A,
where) ranges over thé-th roots ofl and wherep}, p% are the roots ofd (z).
6.1 Computation of the characteristic polynomial

Given a periodic sequenee= (ds, ..., dy), the system of equations given in Propaosition 9 is finite. In
matrix form thek equations (3) take the form

Dy By
Me || =]
Dy, By,
where
1 —dix  —a? 0 0 - 0
0 1 —dyx  —a? 0 - 0
0 0 1 —dsx —x® .- 0
M(z) = . :
—a? 0 0 1 —di_1x

—dpx —z? 0 0 1



Hopcroft's automaton minimization algorithm and Sturmiaords 11

In order to solve this system, we compuig M (), which is of course a polynomial in. Recall that
Q(J)) =1- Z(dl, ey dk)xk + (_1)1(7332]@.

Lemma 18 One haslet M (z) = Q(x).

6.2 Computation of the adjugate matrix
Lemma 19 Let

M\ () = @(Rﬁm) 7

where (P; j(z)) is the adjugate matrix of\/ (). For eachi, j, there are integersn; ;, ; ;, B;,; With
m;,; < k such that
Pyj(x) = 2™ (a5 + 2" Biz)

Moreover, the polynomial®; ;(x) andQ(z) are relatively prime.

Lemma 20 Let (P, ;(x)) be the adjugate matrix of/ (), and letp be the greater of the real numbers

p1, p2. Each of the series
P () (i,5)
= Uy, T,
w2

has integral non-negative coefficients. Moreovet?jf; () is not null, then there is an integérwith
0 < ¢ < k such that{”) = ©(p") whenever = ¢ modk.

6.3 Proof of Theorem 5
We are now ready for the proof of the main result.

Proof: First, the coefficients of the seriek;(z) = °, -, anz™ verify a,, = ©(p") for all n. Next, the
seriesB; are defined as a combination with positive polynomial coieffits of seriesd,, so their coeffi-
cients have the same asymptotic behavior, and éa¢h) of the formR;(z)/Q(x) for some polynomial
R; (x)

Each serie®;, viewed as a component of the solution of the system of eguusthas the form

k

! 5 N~ Puy@) By(@)
D= g & PP = LG 0w

=1

The polynomials?, ;, for j = 1,...,k are not all null. Each of the serié3;(z) has coefficients which
are®(p") for all n, and at least one of the seris; (x)/Q(x) has coefficients that afe(p™) for all n in
some arithmetic progression moduoThis suffices to guarantee that the coefficients of the sérjeare
O(np™) for all n. SinceCy = Ay + D1 + x Do, it follows thatc,, = O(np™). Next|s,| = O(p™). Indeed
[$n] = ISnl1 + |Snlo ~ [$n]1(1 + @), wherea = [dy,d3,...], SO|sn| ~ an(1 + «) and consequently
[sn] = ©(p™). In order to complete the proof, it remains to observe thatutimately periodic can be
easily handled by a similar argument. a
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