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a b s t r a c t

This paper is concernedwith the analysis of theworst case behavior of Hopcroft’s algorithm
for minimizing deterministic finite state automata. We extend a result of Castiglione,
Restivo and Sciortino. They show that Hopcroft’s algorithm has a worst case behavior for
the automata recognizing Fibonacci words. In a previous paper, we have proved that this
holds for all standard Sturmian words having an ultimately periodic directive sequence
(the directive sequence for Fibonacci words is (1, 1, . . .)).
We prove here that the same conclusion holds for all standard Sturmian words having

a directive sequence with bounded elements.
More precisely, we obtain in fact a characterization of those directive sequences for

which Hopcroft’s algorithm hasworst case running time. These are the directive sequences
(d1, d2, d3, . . .) for which the sequence of geometric means (d1d2 · · · dn)1/n is bounded. As
a consequence, we easily show that there exist directive sequences for which the worst
case for the running time is not attained.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

An algorithm for the minimization of deterministic finite state automata that runs in time O(n log n) on automata with
n states was given by Hopcroft [22]. It is, up to now, the most efficient algorithm known in the general case, although it has
been proved quite recently that Moore’s partition refinement algorithm has an O(n log n) average running time [4].
Hopcroft’s algorithm is based on Moore’s algorithm. Another family of algorithms is based on fusion of states. Such an

algorithm working in linear time for cycle-free automata was given by Revuz [26]. This algorithm has been extended to
a more general class of automata by Almeida and Zeitoun [3]. It has been demonstrated in [5] that minimization by state
fusion, which is not always possible, works well for local automata. Another dynamic state minimization algorithm based
on fusion has been described in Watson’s taxonomy [27]. There is a third algorithm, seemingly based neither on splitting
nor on fusion of states, namely Brzozowski’s minimization algorithm that works by determinization of the reversal of the
automaton. In fact, there is a connection with splitting algorithms, as shown in [18].
We address here the problem of showing that the running timeO(n log n) for Hopcroft’s algorithm is tight. This algorithm

has a degree of freedom because, in each step of its main loop, it allows a free choice of a set of states to be processed. Berstel
and Carton [10] introduced a family of finite automata based on de Bruijn words, and they showed that there exist some
‘‘unlucky’’ sequence of choices that slow down the computation to achieve lower boundΩ(n log n).
In the papers [15,16], Castiglione, Restivo and Sciortino replace de Bruijn words by Fibonacci words. They show that, for

this word, and more generally for all circular standard Sturmian words, there is no more choice in Hopcroft’s algorithm,
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so that there is a unique execution of Hopcroft’s algorithm. They show that, for Fibonacci words, the unique execution of
Hopcroft’s algorithm runs in time Ω(n log n), so that the worst-case behavior is achieved for the automata recognizing
Fibonacci words. The computation is carried out explicitly, using connections between Fibonacci numbers and Lucas
numbers. In [17], they give a detailed analysis of the reduction process that is the basis of their computation, and they
show that this process is isomorphic, for all standard Sturmian words, to the refinement process in Hopcroft’s algorithm.
The uniqueness of the execution of Hopcroft’s algorithm comes from the fact that automata for Sturmian words are what

we have called ‘‘slow automata’’ in another context [9].
In a previous paper [7], we have presented a generalization of the result of [16] to any sequence of Sturmianwords that is

constructedwith an eventually periodic directive sequence. The computation required a detailed analysis of some particular
systems of rational functions.
In this paper, we generalize the result to any sequence of Sturmian words that is constructed with a directive sequence

with bounded elements. More precisely, we will get this result as a straightforward consequence of a characterization of
those directive sequences for which Hopcroft’s algorithm has worst case running time. These are the directive sequences
(d1, d2, d3, . . .) for which the sequence of geometric means ((pn)1/n)n≥1, where pn = d1d2 · · · dn, is bounded.
The steps that lead to the equations describing the running time of Hopcroft’s algorithm are similar to those in [16], but

we get a usually infinite system of equations instead of a single one.
We need not solve the system explicitly. We give estimates for the coefficients of the series which are the solution of the

system. This leads to consider continuants, as they are usually introduced for continued fractions [20].

Remark. Although the analysis of Hopcroft’s algorithm is carried out for automata over a single letter input alphabet, we do
not claim that this algorithm is the best one in this case. On the contrary, there is a well-known linear-time algorithm [24]
for minimizing these automata. Moreover, we consider a particular class of these automata, composed of a unique cycle.
For such an automaton, associated canonically to some binary word, it is easily seen that it is minimal if and only if the
corresponding word is primitive. We consider standard Sturmian words which all are primitive, so we know a priori that
all our automata are minimal. However, as soon as one considers only Hopcroft’s algorithm, one needsΩ(n log n) steps to
check that the automata are minimal.

Outline. The paper is organized as follows. After some definitions, the first section sketches Hopcroft’s automata
minimization algorithm in the case we are interested in, namely for alphabets formed of a single letter. We then derive
the system of equations for the generating function of the running time of the algorithm. The last section is concerned with
the evaluation of these systems of equations.

2. Definitions and notation

In this section, we recall some definitions concerning finite Sturmian words, and fix conventions concerning circular
occurrences of factors. Expository texts about Sturmian words are [12,2,25]. For finite Sturmian words, see [11].

Directive sequence. A directive sequence is a sequence d = (d1, d2, d3, . . .) of positive integers. If d is eventually periodic and
has period k, that is if dn+k = dn for n > `, then one writes also d = (d1 . . . , d`, d`+1, . . . , d`+k). In particular, if d is purely
periodic and has period k, then one writes d = (d1, . . . , dk).

Standard words. A directive sequence d generates a sequence of words denoted (sn)n≥0. The words sn are called the standard
words generated by d. They are defined as follows:

s0 = 1, s1 = 0, sn+1 = sdnn sn−1 (n ≥ 1).

Thus in particular s2 = 0d11 and s3 = (0d11)d20. We observe that in the literature on Sturmian words, the first term of a
directive sequence is frequently supposed to be only non-negative. We exclude the case d1 = 0 for convenience. It amounts
merely to exchange symbols 0 and 1 in the sequence generated by d.
Example 1 (Fibonacci). For d = (1, 1, . . .) = (1), one gets sn+1 = snsn−1 for n ≥ 1, and the standard words generated by d
are the well-known Fibonacci words 1, 0, 01, 010, 01001, . . .
Example 2. For d = (2, 3), one gets sn+1 = s2nsn−1 if n is odd, and sn+1 = s

3
nsn−1 if n is even. The standard words generated

by d are the words 1, 0, 001, 0010010010, 00100100100010010010001, . . .
Example 3. For d = (1, 2, 3, . . .), one gets sn+1 = snnsn−1 for n ≥ 1, and the standard words generated by d are the rapidly
growing words 1, 0, 01, 01010, 01010010100101001, . . .

Shift. The shift τ(d) of a directive sequence d = (d1, d2, d3, . . .) is defined by

τ(d) =
{
(d1 − 1, d2, d3, . . .) if d1 > 1
(d2, d3, . . .) otherwise.

The terminology is justified by the following observation. Consider the infinite word ad1−1bad2−1b · · · . Then the shift
τ(d) corresponds to the shift on this word, that is to the erasing of its first letter. If d is periodic and has period k, then
τ d1+···+dk(d) = d.
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Example 4. For d = (1, 1, . . .) = (1), one gets τ(d) = d. For d = (2, 3), one gets τ(d) = (1, 3, 2, 3), τ 2(d) = (3, 2, 3),
τ 3(d) = (2, 2, 3), τ 4(d) = (1, 2, 3), and τ 5(d) = d.

Circular factors. Two words x and y are conjugate if there exist words u, v such that x = uv and y = vu. We write x ∼ y
when x and y are conjugate. It is useful to see a class of the conjugacy relation∼ as a single word as drawn on a circle, with
no distinguished origin.
A word u is a circular factor of a word w if it is a factor of some conjugate of w. This is equivalent for u to be a prefix of

some conjugate ofw. It is also equivalent to the conditions that |u| ≤ |w| and u is a factor ofww. The set of circular factors
of a word is denoted by CF(w).
The number of circular occurrences of u in w is denoted by |w|u and is the number of factorizations ww = pus with

|p| < |w| and |u| ≤ |w|. This is precisely the number of occurrences of u inw viewed as drawn on a circle.

Example 5. Consider the word w = 01001. The word u = 10 has two circular occurrences in word w since ww =
0|10|0101001 = 0100|10|1001, although the word 10 has three occurrences in the wordww.

Given a wordw over the alphabet {0, 1}, a word u is a special (circular) factor ofw if u0 and u1 are both (circular) factors
ofw.
We define the weight ofw by

‖w‖ =
∑
u∈CF(w)

min(|w|u0, |w|u1).

The only circular factors which contribute to ‖w‖ are circular special factors. Two conjugate words have the same weight.

Example 6. Consider the wordw = 01001. The circular special factors are here the words 0, 10 and 010. Each of the factors
00, 100 and 0100 has one occurrence inw, so ‖w‖ = 3.

3. Hopcroft’s algorithm

Hopcroft [22] has given an algorithm that computes the minimal automaton of a given deterministic automaton. The
running time of the algorithm is O(|A| × n log n)where |A| is the cardinality of the alphabet and n is the number of states of
the given automaton. The algorithm has been described and re-described several times [21,1,6,13,23].

3.1. Outline

The algorithm is outlined in the functionHopcroftMinimization given below, and is explained then in somemore detail.
It is convenient to use the shorthand T c = Q \ T when T is a subset of the set Q of states. We denote by min(B, C) the

set of smaller size of the two sets B and C , and either one of them if they have the same size.

1: P ← {F , F c}
2: for all a ∈ A do
3: Add((min(F , F c), a),W)
4: while W 6= ∅ do
5: (C, a)← Some(W) F choose some element and remove it fromW
6: for each B ∈ P split by (C, a) do
7: B′, B′′ ← Split(B, C, a)
8: Replace B by B′ and B′′ in P
9: for all b ∈ A do
10: if (B, b) ∈ W then
11: Replace (B, b) by (B′, b) and (B′′, b) inW
12: else
13: Add((min(B′, B′′), b),W)

Algorithm 1: HopcroftMinimization

Given a deterministic automaton A, Hopcroft’s algorithm computes the coarsest congruence which saturates the set F
of final states. It starts from the partition {F , F c}which obviously saturates F and refines it until it gets a congruence. These
refinements of the partition are always obtained by splitting some class into two classes.
Before explaining the algorithm in more detail, some notation is needed. For a set B of states, we note by B · a the set

{q · a | q ∈ B}. Let B and C be two sets of states and let a be a letter. We say that the pair (C, a) splits the set B if both sets
(B · a) ∩ C and (B · a) ∩ C c are nonempty. In that case, the set B is split into the two sets B′ = {q ∈ B | q · a ∈ C} and
B′′ = {q ∈ B | q · a /∈ C} that we call the resulting sets. Note that a partition {Q1, . . . ,Qn} is a congruence if and only if for
any 1 ≤ i, j ≤ n and any a ∈ A, the pair (Qi, a) does not split Qj.
The algorithm proceeds as follows. It maintains a current partition P = {B1, . . . , Bn} and a current setW of pairs (C, a)

that remain to be processed, where C is a class ofP and a is a letter. The setW is called thewaiting set. The algorithm stops
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Fig. 1. Cyclic automatonAw forw = 01001010.

when the waiting set W becomes empty. When it stops, the partition P is the coarsest congruence that saturates F . The
starting partition is the partition {F , F c} and the starting setW contains all pairs (min(F , F c), a) for a ∈ A.
The main loop of the algorithm takes one pair (C, a) out of the waiting setW and performs the following actions. Each

class B of the current partition (including the class C) is checked whether it is split by the pair (C, a). If (C, a) does not split
B, then nothing is done. Otherwise, the class B is replaced in the partition P by the two resulting sets B′ and B′′ of the split.
For each letter b, if the pair (B, b) is in W , it is replaced in W by the two pairs (B′, b) and (B′′, b), otherwise only the pair
(min(B′, B′′), b) is added toW .
The main ingredient in the analysis of the running time of the algorithm is that the splitting of all classes of the current

partition according to a pair (C, a) takes a time proportional to the size of C . Therefore, the global running time of the
algorithm is proportional to the sum of the sizes of the classes processed in the main loop. Note that a pair which is added
to the waiting setW is not necessarily processed later because it can be split by the processing of another pair before it is
considered.
It should be noted that the algorithm is not really deterministic because it has not been specifiedwhich pair (C, a) is taken

fromW to be processed at each iteration of themain loop. Thismeans that for a given automaton, there aremany executions
of the algorithm. It turns out that all of them produce the right partition of the states. However, different executions may
give rise to different sequences of splitting and also to different running times. Hopcroft has proved that the running time
of any execution is bounded by O(|A| × n log n).

3.2. Cyclic automata

The behavior of Hopcroft’s algorithm is better understood on a family of automata that we introduce now, called cyclic
automata.
Let w = b1 · · · bn be a word of length n over the binary alphabet {0, 1}. We define an automaton Aw over the unary

alphabet {a} as follows. The state set ofAw is {1, . . . , n} and the next state function is defined by i · a = i+ 1 for i < n and
n · a = 1. Note that the underlying labeled graph ofAw is just a cycle of length n. The final states really depend on w. The
set of final states ofAw is F = {1 ≤ i ≤ n | bi = 1}.
For a binary word u, we define Qu to be the set of states of Aw which are the starting positions of circular occurrences

of u inw. If u is the empty word, then Qu is by convention the set Q of all states ofAw . By definition, the set F of final states
ofAw is Q1 while its complement F c is Q0.
Consider the automatonAw forw = 01001010 given in Fig. 1. The sets Q1, Q01 and Q11 of states are respectively {2, 5, 7},

{1, 4, 6} and ∅.
Since cyclic automata are over the unary alphabet {a}, we say that a class C splits a class Bwhen the pair (C, a) splits the

pair (B, a).
The following statements appears in [16]:

Proposition 7. Letw be a standard word. Hopcroft’s algorithm on the cyclic automatonAw is uniquely determined. In particular,
at each step, the waiting set is a singleton.

In fact, the execution is described in the next statement. The first part of the statement is from [14]. They prove that the
number of circular (special) factors in fact characterizes standard words.
Proposition 8. Let w be a standard word and set m = |w|. For 0 ≤ i ≤ m− 2, the word w has exactly i+ 1 circular factors of
length i and exactly one circular special factor of length i.
At each step i of the execution of Hopcroft’s algorithm, the current partition is composed of the i+ 1 classes Qv indexed by the

cyclic factors of length i, and the waiting set is a singleton. This singleton is the smaller of the sets Qu0, Qu1, where u is the unique
cyclic special factor of length i− 1.

As already mentioned, the complexity of Hopcroft’s algorithm is proportional to the sum of the sizes of the sets that are
processed in the waiting set. As a consequence of the previous description, one gets the following corollary.
Corollary 9. Let d = (d1, d2, . . .) be a directive sequence. Let (sn)n≥0 be the standard sequence defined by d. Then the complexity
of Hopcroft’s algorithm on the automatonAsn is proportional to ‖sn‖.
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Recall that ‖w‖ =
∑
u∈CF(w)min(|w|u0, |w|u1). The main result of this paper is the following theorem. This is the basis for

the description of those directive sequences for which Hopcroft’s algorithm has a worst-case running time.

Theorem 10. Let d = (d1, d2, . . .) be a directive sequence. Let (sn)n≥0 be the standard sequence defined by d. Then ‖sn‖ =
Θ(n|sn|).

This theorem is proved in [16] in the case of the Fibonacci words, for which the directive sequence is d = (1).

4. The generating series of the complexity

Let d = (d1, d2, . . .) be a directive sequence. Let (sn)n≥0 be the standard sequence defined by d, and set

an = |sn|1, cn = ‖sn‖.

By the definition of sn, one gets, for n ≥ 1,

an+1 = dnan + an−1. (1)

These quantities depend of course on d, although this is not indicated in the notation. We have a0 = 1, a1 = 0, a2 = 1 and
a3 = d2 because s2 = 0d11 and s3 = (0d11)d20. In particular, the value d1 plays no role in the sequence (an)n≥0. This will be
used later.
Observe also that c0 = 0, c1 = 0 because s0 = 1 and s1 = 0, and that c2 = d1. Indeed, the circular special factors of s2

are the words 0` for 0 ≤ ` < d1, and each factor 0`1 for 0 ≤ ` < d1 has exactly one circular occurrence in s2.

4.1. A first equation

The generating series Ad(x) and Cd(x) are defined by

Ad(x) =
∑
n≥1

anxn, Cd(x) =
∑
n≥0

cnxn.

Note that the constant a0 is not included in the series Ad. Observe also that the series Ad does not depend on the value of the
first term d1 of d.
Given a directive sequence d = (d1, d2, . . .), we define a shorthand notation T (d) by T (d) = τ d1(d). Thus

T (d1, d2, d3, . . .) = (d2, d3, . . .). Clearly T i(d) = (di+1, di+2, . . .). We also define a Kronecker symbol δ by

δ(d) =
{
0 if d1 > 1,
1 otherwise.

The following equation results from the combinatorial study given below.

Proposition 11. For any directive sequence d = (d1, d2, . . .), one has

Cd(x) = Ad(x)+ xδ(d)Cτ(d)(x)+ x1+δ(T (d))Cτ(T (d))(x). (2)

Example 12. Consider the directive sequence d = (1) of the Fibonacci words. Since τ(d) = T (d) = d, and δ(d) = 1, Eq. (2)
becomes

Cd(x) = Ad(x)+ (x+ x2)Cd(x),

fromwhichwe get Cd(x) =
Ad(x)
1−x−x2

. Clearly an+2 = an+1+an for n ≥ 0, and since a0 = 1 and a1 = 0, one gets Ad(x) = x2

1−x−x2
.

Thus

Cd(x) =
x2

(1− x− x2)2
.

4.2. Acceleration

Iterated application of Eq. (2) gives a system of equations which is finite when the directive sequence d is periodic.
Indeed, call suffix of order m of d any of the directive sequences τm(d). If d is purely periodic with (minimal) period k, then
d = τ d1+···+dk(d), so d has exactly N = d1 + · · · + dk distinct suffixes. Let U be this set of suffixes. Each of the suffixes u in
U satisfies Eq. (2) with d replaced by u, so we get the following system of N equations in the variables Cu(x), for u ∈ U:

Cu(x) = Au(x)+ xδ(u)Cτ(u)(x)+ x1+δ(T (u))Cτ(T (u))(x).

Each of the Cu depends only linearly on Cτ(u) and Cτ(T (u)), with coefficients which are monomials among 1, x, x2. We will
show how to replace this system of N equations by a system of only k equations. This is done by collapsing appropriate
equations of the previous system. We start with an example.
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Example 13. Consider the directive sequence d = (2, 3). Eq. (2) applied iteratively gives the following five equations:

C(2,3) = A(2,3) + C(1,3,2) + xC(2,2,3)
C(1,3,2) = A(1,3,2)+ xC(3,2) + xC(2,2,3)
C(2,2,3) = A(2,2,3)+ C(1,2,3) + xC(1,3,2)
C(3,2) = A(3,2) + C(2,2,3) + xC(1,3,2)
C(1,2,3) = A(1,2,3)+ xC(2,3) + xC(1,3,2).

There is no term with coefficient x2 here because there is no di = 1 in the directive sequence. Observe that A(2,3) = A(1,3,2)
and A(3,2) = A(2,2,3) = A(1,2,3) because these series do not depend on the first term of the directive sequence. Setting
D1 = C(1,3,2) and D2 = C(2,2,3), we get

C(2,3) = A(2,3) + D1 + xD2,

where D1 and D2 satisfy the equations

D1 = A(2,3) + xA(3,2) + 2xD2 + x
2D1

D2 = 2A(3,2) + xA(2,3) + 3xD1 + x
2D2.

Thus the original system of 5 equations in the Cu is replaced by a system of 2 equations in D1 and D2.

Let d = (d1, d2, . . .) be a directive sequence, and for i ≥ 1, set

ei = T i−1(d) = (di, di+1, . . .), Di = xδ(ei)Cτ(ei), Bi = (di − 1)Aei + xAei+1 .

With these notations, the following system of equation holds.

Proposition 14. The following equations hold

Cd = Ad + D1 + xD2 (3)

Di = Bi + dixDi+1 + x2Di+2 (i ≥ 1). (4)

Eqs. (3) and (4) hold for arbitrary, even non-periodic directive sequences. If a directive sequence d is periodic with period k,
then Dk+1 = D1 and Dk+2 = D2, and the system is finite. Observe that the equations of the previous example have precisely
this form.

4.3. Proof of the propositions

Proof of Proposition 14. Eq. (2) writes as

Cd = Ad + D1 + xD2,

as required. It is enough to prove (4) for i = 1, since indeed the equation for i > 1 reduces to the first one by replacing the
directive sequence (d1, d2, . . .) by (di, di+1, . . .).
We distinguish two cases. Assume first d1 > 1. For m = 1, . . . , d1 − 1, one has τm(d) = (d1 − m, d2, d3, . . .) and

Aτm(d)(x) = Ad(x), since this series does not depend on d1. Next one has δ(τm(d)) = 0 and T (τm(d)) = T (d) = (d2, d3, . . .).
Also, for m = 1, . . . , d1 − 2, one has δ(τm(d)) = 0 whereas δ(τ d1−1(d)) = 1. Eq. (2) gives, with d replaced by τm(d) for
m = 1, . . . , d1 − 1

Cτm(d) = Aτm(d) + xδ(τ
m(d))Cτm+1(d) + x

1+δ(T (τm(d)))Cτ(T (τm(d)))(x).

It follows that form = 1, . . . , d1 − 2,

Cτm(d) = Ad + Cτm+1(d) + xD2,

and, form = d1 − 1,

Cτd1−1(d) = Ad + xCT (d) + xD2.

Summing these d1 − 1 equations, we get

Cd = (d1 − 1)Ad + xCT (d) + (d1 − 1)xD2.

Since by (2) with d replaced by T (d)we have

CT (d) = AT (d) + D2 + xD3,
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substituting this expression gives

D1 = Cτ(d) = (d1 − 1)Ad + xAT (d) + d1xD2 + x2D3

as claimed.
Consider now the case d1 = 1. Then τ(d) = T (d) = (d2, d3, . . .), and

Cτ(d) = Aτ(d) + xδ(T (d))Cτ(T (d)) + x1+δ(T
2(d))Cτ(T2(d))

= B1 + D2 + xD3.

Consequently

D1 = xCτ(d) = xB1 + d1xD2 + x2D3.

This concludes the verification. �

We now turn to the derivation of expressions for the number of occurrences of circular special factors in the words
generated by some directive sequence d in terms of the corresponding numbers associated to the directive sequence τ(d)
and T (d). For this, we will observe how circular special factors propagate through some particular morphisms.
Let d = (d1, d2, . . .) be a fixed directive sequence, and let (sn)n≥0 be the sequence of standard words generated by d. The

following four lemmas hold. Lemmas 15 and 17 are similar to lemmas proved in [16], the proofs of Lemmas 16 and 18 are
similar, so we prove only the last one.

Lemma 15. Assume d1 = 1, and let tn be the sequence of standard words generated by τ(d) = (d2, d3, . . .). Let ϕ be the
morphism defined by ϕ(0) = 01 and ϕ(1) = 0. Then sn+1 = ϕ(tn) for n ≥ 1. If v is a circular special factor of tn, then ϕ(v)0 is a
circular special factor of sn+1. Conversely, ifw is a circular special factor of sn+1 starting with 0, thenw has the formw = ϕ(v)0
for some circular special factor v of tn. Moreover, |sn+1|w0 = |tn|v1 and |sn+1|w1 = |tn|v0.

Lemma 16. Assume d1 > 1, and let tn be the sequence of standard words generated by τ(d) = (d1 − 1, d2, d3, . . .). Let ψ be
the morphism defined by ψ(0) = 0 and ψ(1) = 01. Then sn = ψ(tn) for n ≥ 1. If v is a circular special factor of tn, then ψ(v)0
is a circular special factor of sn. Conversely, ifw is a circular special factor of sn starting with 0, thenw has the formw = ψ(v)0
for some circular special factor v of tn. Moreover, |sn|w0 = |tn|v0 and |sn|w1 = |tn|v1.

Lemma 17. Assume d2 = 1, and let tn be the sequence of standard words generated by τT (d) = (d3, d4, . . .). Let α be the
morphism defined by α(0) = 10d1+1 and α(1) = 10d1 . Then sn+20d1 = 0d1α(tn) for n ≥ 0. If v is a circular special factor of tn,
then α(v)10d1 is a circular special factor of sn+2. Conversely, ifw is a circular special factor of sn+2 starting with 1, thenw has the
formw = α(v)10d1 for some circular special factor v of tn. Moreover, |sn+2|w0 = |tn|v0 and |sn+2|w1 = |tn|v1.

Lemma 18. Assume d2 > 1, and let tn be the sequence of standard words generated by τT (d) = (d2 − 1, d3, d4, . . .). Let β be
the morphism defined by β(0) = 10d1 and β(1) = 10d1+1. Then sn+10d1 = 0d1β(tn) for n ≥ 1. If v is a circular special factor of
tn, then β(v)10d1 is a circular special factor of sn+1. Conversely, ifw is a circular special factor of sn+1 starting with 1, thenw has
the formw = β(v)10d1 for some circular special factor v of tn. Moreover, |sn+1|w0 = |tn|v1 and |sn+1|w1 = |tn|v0.

Proof. We first prove the relation between the sn and the tn. One has 0d1β(t1) = 0d1β(0) = 0d110d1 = s20d1 . Next

s30d1 = (0d11)d20d1+1 = 0d11(0d11)d2−10d1+1 = 0d1(10d1)d2−110d1+1

= 0d1β(0d2−11) = 0d1β(t2)

since by definition t2 = 0d2−11. By induction,

sn+10d1 = sdnn sn−10
d1 = sdnn 0

d1β(tn−2) = · · ·

= 0d1β(tdnn−1tn−2) = 0
d1β(tn)

since by definition tn = t
dn
n−1tn−2 for n > 2.

Next, let v be circular special factor of tn. Then v0 and v1 are circular factors of tn, and |v0| = |v1| < |tn| because
if there were equality, then v0 and v1 would be conjugate words which is impossible since they do not have the same
number of 0’s. So v00 or v01 is a circular factor of tn, and β(v1) = β(v)10d1+1 and one of β(v00) = β(v)10d110d1 or
β(v01) = β(v)10d110d1+1 is a circular factor of sn+1, so in both cases, β(v)10d11 is a circular factor of sn+1. This shows that
β(v)10d1 is a special circular factor of sn+1.
Conversely, let w be a circular special factor of sn+1 starting with 1. Then w1 is a circular factor of sn+1 so w ends with

10d1 or 10d1+1, and sincew0 is a circular factor of sn+1, the second case is excluded because 0d1+2 is not a factor of sn+1. Thus
w = u10d1 for some word uwhich is itself of the form u = β(v) for some word v. Moreover,w0 = β(v1) andw = β(v0).
We show that v0 and v1 are circular factors of tn. Indeed, every conjugate of sn+1 starting with the letter 1 is of the form

βt ′ for some word t ′ which is conjugate of tn. We choose the conjugate of sn+1 starting with w1. Then β(v1) is a prefix of
β(t ′) and v1 is a factor of t ′, so v1 is a circular factor of tn. The same holds for v0. This shows that v is a special circular factor
of tn. The counting formulas are a consequence. �
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Proof of Proposition 11. It will be convenient to refer explicitly to the directive sequence. Therefore, we write c(d)n for cn.
Thus

c(d)n = ‖sn‖ =
∑

u∈CF(sn)

min(|sn|u0, |sn|u1).

Note that in this sum, only special circular factors contribute. We may therefore restrict the sum to special factors, and we
consider three cases, namely whether a circular special factor starts with 0, starts with 1, or is the empty word. The last case
is easy, since then the corresponding term is the smaller of the number of 0’s or of 1’s in sn, and by the choice of d1 > 0, this
is always the number an of 1’s in sn. Thus, writing c

(d)
n,0 for the sum corresponding to special factors starting with 0 and c

(d)
n,1

for those starting with 1, one has

c(d)n = c
(d)
n,0 + c

(d)
n,1 + an.

Next, by Lemmas 15 and 16, one has c(d)n,0 = c
(τ (d))
n if d1 > 1 and c

(d)
n,0 = c

(τ (d))
n−1 . Similarly, by Lemmas 17 and 18, one has

c(d)n,1 = c
(τT (d))
n−1 if d2 > 1 and c

(d)
n,1 = c

(τT (d))
n−2 otherwise. This proves the proposition. �

5. Evaluation of the complexity

5.1. Results

In this section, we derive bounds for the coefficients an and cn of the series Ad(x) =
∑
anxn and Cd(x) =

∑
cnxn.

In the next statements, d = (d1, d2, d3, . . .) denotes a directive sequence, (sn)n≥0 is the sequence of standard words
generated by d, an = |sn|1 is the number of letters 1 in the word sn, and cn = ‖sn‖ is the running time of Hopcroft’s
algorithm on the automatonAsn .
The first result is the following proposition that describes the dependence of cn from an. This is precisely Theorem 10.

Proposition 19. For any sequence d, one has cn = Θ(nan).
We postpone the proof. We will get the bound cn = Θ(an log an) whenever n = Θ(log an). The next proposition

characterizes the directive sequences having this behavior.
Proposition 20. One has n = Θ(log an) and consequently cn = Θ(an log an) if and only if the sequence of geometric means(
(d1d2 · · · dn)1/n

)
n≥1 of the directive sequence d is bounded.

Proof. Since an+1 = dnan + an−1 and a3 = d2, one has
an+1 ≥ dnan ≥ · · · ≥ dn · · · d4a4 ≥ dn · · · d2,

and since the sequence (an)n≥1 is increasing, one has
an+1 ≤ (dn + 1)an ≤ · · · ≤ (dn + 1)(dn−1 + 1) · · · (d2 + 1).

Set pn = d2d3 · · · dn−1dn. Then (dn + 1)(dn−1 + 1) · · · (d2 + 1) ≤ 2npn and consequently
pn ≤ an+1 ≤ 2npn.

If the sequence (p1/nn ) is bounded, there exist numbers k, k′ > 0 such that k ≤ p1/nn ≤ k′, and consequently
kn ≤ pn ≤ an+1 ≤ 2npn ≤ (2k′)n,

showing that n = Θ(log an). Conversely, if nk ≤ log an ≤ nk′, then kn ≤ an ≤ k′n and pn−1 ≤ k′n and kn ≤ 2n−1pn−1,
showing that the sequence (p1/nn ) is bounded. �

As a corollary, the relation cn = Θ(an log an) holds if the arithmetic mean 1n (d1+· · ·+dn) are bounded, since the geometric
mean is always less than the arithmetic mean.
In particular, this relation holds when the elements of the sequence d themselves are bounded.
Observe also that there exist directive sequences d such that cn = O(an log log an). This holds if dn = 22

n
, since then

d1d2 · · · dn = 22
n+1
−2 and consequently an = Θ(22

n+1
). Thus n = Θ(log log an). In fact, any running time close to an can be

achieved by taking a rapidly growing directive sequence.
For the proof of Proposition 19, we will need some bounds for continuant polynomials.

5.2. Continuant polynomials

Continuant polynomials are used for continuant fractions, see for instance [20]. They are also used, in a noncommutative
version, for the derivation of an analogue of Levi’s lemma for polynomials, see for instance [19]. Here, we derive several
upper and lower bounds that will be used later.
The continuant polynomials Kn(x1, . . . , xn), for n ≥ −1 are a family of polynomials in the variables x1, . . . , xn defined by

K−1 = 0, K0 = 1 and, for n ≥ 1, by
Kn(x1, . . . , xn) = x1Kn−1(x2, . . . , xn)+ Kn−2(x3, . . . , xn). (5)
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The first continuant polynomials are

K1(x1) = x1
K2(x1, x2) = x1x2 + 1
K3(x1, x2, x3) = x1x2x3 + x1 + x3
K4(x1, x2, x3, x4) = x1x2x3x4 + x1x2 + x3x4 + x1x4 + 1.

It can be shown that for n ≥ 1, one has also the following recurrence formula.
Kn(x1, . . . , xn) = Kn−1(x1, . . . , xn−1)xn + Kn−2(x1, . . . , xn−2). (6)

These polynomials are related to continued fractions as follows (see e.g. [20]). Let d = (d1, d2, d3, . . .) be a sequence of
positive numbers. The continued fraction defined by d is denoted α = [d1, d2, d3, . . .] and is defined by

α = d1 +
1

d2 + 1
d3+···

.

The finite initial parts [d1, d2 . . . , dn] of d define rational numbers

d1 +
1

d2 + 1
d3+···+

1
dn

=
Kn(d1, . . . , dn)
Kn−1(d2, . . . , dn)

.

From (6), it follows for the standard words sn defined by d that for n ≥ 3
|sn|0 = Kn−1(d1, . . . , dn−1), an = |sn|1 = Kn−2(d2, . . . , dn−1).

It follows that

α = lim
n→∞

|sn|0
|sn|1

,

and also |sn| = Θ(|sn|1).
We now use these continuant polynomials to give parametrized expressions for the coefficients of the series Ad, Bi andDi.

Lemma 21. One has
an+2 = Kn(d2, . . . , dn+1) (n ≥ −1) (7)

and
Ad(x) = x2

∑
n≥0

Kn(d2, . . . , dn+1)xn. (8)

Proof. One has an+1 = dnan + an−1 for n ≥ 2 and a0 = 1, a1 = 0, a2 = 1. Thus a1 = K−1, a2 = K0, a3 = K1(d2) and (7)
follows from (5). The expression for the series Ad follows. �

We now give a similar description of the series Bi and Di. Define Ln by
Ln(x1, . . . , xn) = Kn(x1, . . . , xn)− Kn−1(x2, . . . , xn). (9)

Lemma 22. For i ≥ 1, one has

Bi = x2
∑
n≥0

(
Kn+1(di, . . . , dn+i)− Kn(di+1, . . . , dn+i)

)
xn

= x2
∑
n≥0

Ln+1(di, . . . , di+n)xn.

Proof. Indeed, by definition one has Bi = (di − 1)Aei + xAei+1 , and using (8), applied to (di, di+1, . . .), one gets

Aei(x) = x
2
∑
n≥0

Kn(d1+i, . . . , dn+i)xn,

and thus
Bi(x)− Ad(x) = x2

∑
n≥0

(
diKn(d1+i, . . . , dn+i)+ Kn−1(d1+i, . . . , dn+i−1)

)
xn,

which, by Eq. (5) applied to the values di, d1+i, . . . , dn+i gives the expression

Bi(x)− Ad(x) = x2
∑
n≥0

Kn+1(di, . . . , dn+i)xn.

The expression for Bi follows. �

Finally, set

Nn(x1, . . . , xn) =
n−1∑
i=0

Ki(x1, . . . , xi)Ln−i(xi+1, . . . , xn). (10)
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We now show that

Lemma 23. One has

D1 = x2
∑
n≥0

Nn+1(d1, . . . , dn+1)xn,

and more generally

Di = x2
∑
n≥0

Nn+1(di, . . . , dn+i)xn.

Proof. We prove that for i,m ≥ 1,

Di =
m−1∑
`=0

K`Bi+` + KmxmDi+m + Km−1xm+1Di+m+1

where we write Kh for Kh(di, . . . , di+h−1). Indeed, form = 1, this is (4), and by induction, substituting Di+m+1 we get

Di =
m−1∑
`=0

K`x`Bi+` + Kmxm(Bi+m + di+mxDi+m+1 + x2Di+m+2)+ Km−1xm+1Di+m+1

=

m∑
`=0

K`x`Bi+` + (Kmdi+mxm+1 + Km−1xm+1)Di+m+1 + Kmxm+2Di+m+2

=

m∑
`=0

K`x`Bi+` + Km+1xm+1Di+m+1 + Kmxm+2Di+m+2.

It follows that, whenm→∞,

D1 =
∑
`≥0

K`(d1, . . . , d`)x`B`+1.

Thus the coefficient of x2+n in D1 is as announced. �

Observe finally that the series Cd also has an expression with continuants since

Cd = x2
∑
n≥0

(Kn(d2, . . . , dn+1)+ Nn+1(d1, . . . , dn+1)+ Nn(d2, . . . , dn+1))xn. (11)

5.3. Bounds for continuant polynomials

The following bounds on the values of continuant polynomials will be used in Proposition 25.

Proposition 24. The following inequalities hold for any sequence (d1, d2, d3, . . .) of positive integers:

(a) Kn−1(d2, . . . , dn) ≤ Kn(d1, . . . , dn) ≤ (1+ d1)Kn−1(d2, . . . , dn).
(b) For n ≥ 2

Ln(d1, . . . , dn) ≥


1

2+d2
Kn(d1, . . . , dn) if d1 = 1

1
2Kn(d1, . . . , dn) otherwise.

(c) For n,m ≥ 0, one has 12Kn+m(d1, . . . , dn+m) ≤ Kn(d1, . . . , dn)Km(dn+1, . . . , dn+m) ≤ Kn+m(d1, . . . , dn+m).

Proof. We use Kh,i as a shorthand for Kh,i = Kh(di, . . . , di+h−1), and similarly for L.
(a) By (5), one has Kn−1,2 ≤ Kn,1, and Kn,1 = d1Kn−1,2 + Kn−2,3 ≤ d1Kn−1,2 + Kn−1,2 = (1+ d1)Kn−1,2.
(b) If d1 = 1, then Kn,1 = Kn−1,2 + Kn−2,3 ≤ (2+ d2)Kn−2,3 by use of (a) for n− 1. It follows that Ln,1 = Kn,1 − Kn−1,2 =

Kn−2,3 ≥ 1/(2+ d2)Kn,1.
Assume now d1 ≥ 2. Since d1 − 1 ≥ d1/2, we have 2Ln,1 = 2(d1 − 1)Kn−1,2 + 2Kn−2,3 ≥ d1Kn−1,2 + Kn−2,3 = Kn,1.
For (c), we use the following identity which is easy to prove and which is also Equation (6.133) in [20]:

Kn+m,1 = Kn,1Km,n+1 + Kn−1,1Km−1,n+2.

Since Kn−1,1Km−1,n+2 ≤ Kn,1Km,n+1, one gets Kn+m,1 ≤ 2Kn,1Km,n+1 which gives the first inequality. One gets the second
by observing in the equation, the second term in the right-hand side satisfies Kn−1,1Km−1,n+2 ≥ 0, and so Kn+m,1 ≥
Kn,1Km,n+1. �
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The inequalities just obtained allow us to give bounds on the coefficients of the series Di:

Proposition 25. For n ≥ 1, one has

Nn(d1, . . . , dn) ≤ nKn(d1, . . . , dn),

and for n ≥ 2, one has

Nn(d1, . . . , dn) ≥
n− 1
12

Kn(d1, . . . , dn).

Proof. Since Ln(d1, . . . , dn) ≤ Kn(d1, . . . , dn), we get by Eq. (9) the inequality Nn(d1, . . . , dn) ≤
∑n−1
i=0 Ki(d1, . . . ,

di)Kn−i(di+1, . . . , dn). By Proposition 24(c), it follows that Nn(d1, . . . , dn) ≤ nKn(d1, . . . , dn).
For the other inequality, consider the partition of the set J = {1, 2, . . . , n} into the three sets I = {i ∈ J : di > 1},

I ′ = {i ∈ J : i < n, di = di+1 = 1}, and I ′′ = J \ (I ∪ I ′). Observe if i ∈ I ′′ and i < n, then di+1 ∈ I . This shows that
Card(I ′′) ≤ Card(I)+ 1, and consequently that Card(I ∪ I ′) ≥ (n− 1)/2.
According to Proposition 24(b), one has

Ln−i(di+1, . . . , dn) ≥ 1/2Kn−i(di+1, . . . , dn) for i+ 1 ∈ I,

and

Ln−i(di+1, . . . , dn) ≥ 1/3Kn−i(di+1, . . . , dn) for i+ 1 ∈ I ′.

It follows that

Nn(d1, . . . , dn) ≥
1
2

∑
i+1∈I

Ki(d1, . . . , di)Kn−i(di+1, . . . , dn)+
1
3

∑
i+1∈I ′

Ki(d1, . . . , di)Kn−i(di+1, . . . , dn)

≥
1
4

∑
i+1∈I

Kn(d1, . . . , dn)+
1
6

∑
i+1∈I ′

Kn(d1, . . . , dn)

≥
1
6

∑
i+1∈I∪I ′

Kn(d1, . . . , dn) ≥
n− 1
12

Kn(d1, . . . , dn),

as claimed. �

We can now derive easily the estimation of the complexity of Hopcroft’s algorithm stated in Proposition 19.

Proof of Proposition 19. By Eq. (11), one has cn = Θ(Kn−2(d2, . . . , dn−1) + Nn−1(d1, . . . , dn−1) + Nn−2(d2, . . . , dn−1).
By Proposition 25, one has Nn(d1, . . . , dn) = Θ(nKn(d1, . . . , dn)). Thus cn = Θ(nKn−1(d1, . . . , dn−1) + nKn−2(d1, . . . ,
dn−2)) = Θ(nKn−1(d1, . . . , dn−1)). Finally, by Eq. (7), one gets an = Θ(Kn−1(d1, . . . , dn−1)). �

6. Conclusion

We have characterized a family of automata over a single letter alphabet that have a worst-case behavior for Hopcroft’s
minimization algorithm. These automata are defined by means of standard Sturmian words.
Onemay askwhether there exist families of automata overmore than one letter that have the same behavior. The answer

is in fact positive: There exist automata over a binary alphabet with worst-case behavior for Hopcroft’s algorithm. These
automata were discovered during the investigation of Sturmian trees [9]. A paper with the proof of their behavior is in
preparation [8].
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