
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Information and Computation 208 (2010) 1258–1272

Contents lists available at ScienceDirect

Information and Computation

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / i c

The expressive power of the shuffle product<

Jean Berstel a,∗, Luc Boassonb, Olivier Cartonb, Jean-Éric Pinb, Antonio Restivo c

a
Laboratoire d’Informatique Gaspard-Monge, Université Paris-Est Marne-la-Vallée, 5 Bd Descartes, Champs-sur-Marne, F-77454 Marne-la-Vallée Cedex 2, France

b
LIAFA, Université Paris Diderot-Paris 7, Case 7014, 75205 Paris Cedex 13, France

c
Dipartimento di Matematica e Informatica, Università degli Studi du Palermo, Via Archirafi 34, 90123 Palermo, Italy

A R T I C L E I N F O A B S T R A C T

Article history:

Received 3 July 2009

Revised 21 January 2010

Available online 16 July 2010

There is an increasing interest in the shuffle product on formal languages, mainly because it

is a standard tool for modeling process algebras. It still remains a mysterious operation on

regular languages.

Antonio Restivo proposed as a challenge to characterize the smallest class of languages

containing the singletons and closed under Boolean operations, product and shuffle. This

problem is still widely open, but we present some partial results on it. We also study some

other smaller classes, including the smallest class containing the languages composed of a

singlewordof length2which is closedunderBooleanoperations and shuffleby a letter (resp.

shuffle by a letter and by the star of a letter). The proof techniques have both an algebraic

and a combinatorial flavor.

© 2010 Published by Elsevier Inc.

1. Introduction

The study of classes of regular languages closed under shuffle is a difficult problem, partly motivated by its applications

to the modeling of process algebras [2] and to program verification. Significant progress has beenmade over the last decade

in the study of the shuffle operation. First, Ésik and Simon [7] have completed the classification of varieties of languages

closed under shuffle. It was known [9] that the commutative varieties of languages closed under shuffle correspond to the

varieties of commutative monoids whose groups belong to a given variety of commutative groups. Ésik and Simon proved

that, apart from the variety of all regular languages, no other variety of languages is closed under shuffle. In particular, the

variety of commutative languages is the largest proper variety of languages closed under shuffle. It was also proved that

there is a largest proper positive variety of languages closed under shuffle and that this variety is decidable [3,4].

A few years ago, the fifth author proposed as a challenge to study the smallest class of languages C containing the

singletons and closed under Boolean operations, product and shuffle. Let us call intermixed the languages of this class. We

show that intermixed languages are closed under quotients, but they are not closed under inverses ofmorphisms. Therefore,

they do not form a variety of languages and the result of Ésik and Simon cannot be applied. However, intermixed languages

are closed under inverses of length-decreasing morphisms and under quotients. Consequently, they form a d-variety, in the

sense of [6,14]. This fact is interesting since, by a result of Kunc [8] (see also [12]), d-varieties can be characterized by a

certain type of identities, called d-identities. The formal definition of d-identities, as well as all definitions and background

used in this paper, are presented in Section 2.

Wegive inSection3 twod-identities satisfiedbyall intermixed languages,namelyxω+1 = xω and (xωyω)ω+1 = (xωyω)ω .
This proves the main result of this paper: intermixed languages form a proper subclass of the class of regular languages,
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since the language (aa)∗ does not satisfy the first identity. Unfortunately, we do not knowwhether our two identities suffice

to characterize the intermixed languages and hence the decidability of this question remains open.

Our two identities give, in a sense, an upper approximation of the class of intermixed languages. In order to get lower

approximations, we investigate some subclasses obtained by restricting the use of the shuffle operation.We briefly study the

case of commutative languages. Then we set aside this case by considering classes containing at least one noncommutative

language. In fact, for technical reasons which are partly justified by Proposition 4.1, our classes will always contain the

languages of the form {ab}, where a and b are two distinct letters of the alphabet.

We first consider in Section 4 the smallest class of languages C0 containing the languages of the form {ab} and closed

under Boolean operations and shuffle by a letter, a very drastic restriction on the shuffle operation. These languages are

called almost star-free commutative for the following reason: a language L belongs to C0 if and only if there exists a star-free

commutative language C such that the symmetric difference L � C is finite. This rather small class is closed under inverses

of length-increasingmorphisms and thus forms an i-variety.We give explicitly a finite set of i-identities which characterizes

this class. It follows in particular that one can decide whether a given regular language is almost star-free commutative.

Increasing the power of the shuffle operation, we next consider two classes C1 and C2. The class C1 is defined as the

smallest Boolean algebra of languages containing C0 and closed under the operations L �→ L ��� a (shuffle by a letter) and

L �→ L ��� a∗ (shuffle by the star of a letter), where a is a letter. The class C2 is the closure of C0 under shuffle. We call jumbled

the languages of C1 and shuffled the languages of C2. We prove that all these classes are d-varieties and that C0 is a proper

subclass of C1. These results are synthesized in the tables below. The first table summarizes the definition of our four classes.

Closed under L ��� a L ��� a, L ��� a∗ L ��� L′ L ��� L′, LL′

Boolean operations C0 C1 C2 C
The second table gathers the known properties of each class.

Class Languages Type Known identities Decidable

C0 Almost star-free i-Variety xω+1 = xω , xωy = yxω Yes

commutative xωyz = xωzy

C1 Jumbled d-Variety ?

C2 Shuffled d-Variety ?

C
Intermixed

d-Variety xω+1 = xω ?

(xωyω)ω+1 = (xωyω)ω

Let us clarify two issues concerning the identities of the fourth column of the second table. First, the type of these identities

depends on the nature of the corresponding variety. In particular, the given identities for C0 are i-identities, while those given

for C are d-identities. Secondly, the set of i-identities given for C0 is complete, that is, a language satisfies these i-identities if

and only if it belongs to C0. In contrast, it is an open problem to knowwhether our given set of d-identities for C is complete.

We give several partial results on jumbled languages in Section 5. In particular, we show that every regular language

can be written as the inverse image, under a morphism, of a jumbled language. By contrast, we have almost nothing to say

about the class C2 of shuffled languages, which is the smallest class of languages containing C0 and closed under Boolean

operations and shuffle. We know very little about this class, apart from the fact that it is a d-variety of languages (the proof

is similar to that of Theorem 3.1). In particular, we failed to prove our conjectures that C1 is strictly contained in C2 and that

C2 is strictly contained in C. A possible candidate to separate C1 from C is the language A∗abbaA∗, but we have no proof that

this language is not jumbled.

One possible method to find an intermixed language which is not shuffled would be to find some d-identities satisfied

by all shuffled languages. Proposition 2.9, which gives ordered identities which are, in a sense, stable under shuffle could be

a useful tool. Unfortunately, we were not able to derive from these ordered d-identities a nonordered identity stable under

shuffle.

Finally, it is interesting to compare our four classes with the class of star-free languages, which is the smallest class

of languages containing the singletons and closed under Boolean operations and product. Clearly every almost star-free

commutative language is star-free and every star-free language is intermixed. Further, it follows from Proposition 5.10

that some jumbled languages are nonstar-free and hence some shuffled languages are nonstar-free. The question remains

whether every star-free language is shuffled or even jumbled. We conjecture that the answer to these questions is negative.

For instance, the language A∗abbaA∗, that we believed to be nonjumbled, is star-free.

2. Definitions and background

In this paper, A denotes a finite alphabet and A∗ is the free monoid on A. The empty word is denoted by 1. We usually

identify a singleton language {u} with the word u itself.
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2.1. Languages

Let L be a language over A and let u be a word. The left quotient of L by u is the language u−1L = {v ∈ A∗| uv ∈ L}. The
right quotient Lu−1 is defined in a symmetrical way. Given a language L ⊂ A∗, we write Lc for the complement A∗\L of L.

A morphism between two free monoids A∗ and B∗ is a map ϕ : A∗ → B∗ such that, for all u, v ∈ A∗, ϕ(uv) = ϕ(u)ϕ(v).
This condition implies in particular that ϕ(1) = 1. We say that ϕ is length-preserving (p) if, for each u ∈ A∗, the words

u and ϕ(u) have the same length. Equivalently, ϕ is length-preserving if, for each letter a ∈ A, ϕ(a) ∈ B. Similarly, ϕ is

length-decreasing (d) if the image of each letter is either a letter or the empty word, and length-increasing (i) if the image of

each letter is a nonempty word.

A class of languages is a correspondence V which associates with each alphabet A a set V(A∗) of regular languages over A.
A variety of languages is a class of languages closed under Boolean operations (union, intersection and complement), left and

right quotients and inverses of morphisms. Theweaker notions of p-variety [d-variety, i-variety] are obtained by relaxing the

latter condition [6,14]: only closure under inverses of p- [d-, i-] morphisms is required.

The shuffle product (or simply shuffle) of two languages L1 and L2 over A is the language

L1 ��� L2 = {w ∈ A∗|w = u1v1 · · · unvn for some words u1, . . . , un

v1, . . . , vn of A∗ such that u1 · · · un ∈ L1 and v1 · · · vn ∈ L2}.
The shuffle product defines a commutative and associative operation over the set of languages over A.

Two special cases of shuffle product play an important role in this paper. These are the operations L �→ L ��� a and

L �→ L ��� a∗ where a is a letter. The first will be referred to as shuffle by a letter, and the second as shuffle by the star of a

letter.

Recall that Boolean operations commute with quotients and inverses of morphisms. There are also well known formulas

for computing right and left quotients of the product (or the shuffle) of two languages. We shall use freely these standard

commutation rules and two commutation rules which are specific to inverses of length-decreasing morphisms.

Proposition 2.1. Let L1 and L2 be languages over A and let ϕ : B∗ → A∗ be a length-decreasing morphism. Then the following

formulas hold:

ϕ−1(L1L2) = ϕ−1(L1)ϕ
−1(L2), (1)

ϕ−1(L1 ��� L2) = ϕ−1(L1) ��� ϕ−1(L2). (2)

Proof. Formula (1) holds because ϕ is length-decreasing. Let us prove (2). Since ϕ−1 commutes with union, it suffices to

establish the formula

ϕ−1(u1 ��� u2) = ϕ−1(u1) ��� ϕ−1(u2) (3)

when u1 and u2 are words of A∗.
Let w ∈ ϕ−1(u1 ��� u2). Then there exist x1, . . . , xn, y1, . . . , yn such that u1 = x1 · · · xn and u2 = y1 · · · yn and

w ∈ ϕ−1(x1y1 · · · xnyn). In view of Formula (1), w ∈ ϕ−1(x1)ϕ
−1(y1) · · ·ϕ−1(xn)ϕ

−1(yn). Since

ϕ−1(x1) · · ·ϕ−1(xn) = ϕ−1(x1 · · · xn) = ϕ−1(u1)

and

ϕ−1(y1) · · ·ϕ−1(yn) = ϕ−1(u2),

the word w is in ϕ−1(u1) ��� ϕ−1(u2).
Conversely, if w ∈ ϕ−1(u1) ��� ϕ−1(u2), then w ∈ v1 ��� v2 for some v1 ∈ ϕ−1(u1) and v2 ∈ ϕ−1(u2). It follows that

ϕ(w) ∈ ϕ(v1) ��� ϕ(v2) = u1 ��� u2. This proves (3) and the proposition.

2.2. Syntactic monoids and varieties

The syntactic monoid of a language is an algebraic invariant which plays a crucial role in the study of regular languages.

We review its definition and basic properties in this short section.

The syntactic congruence of a language L over A is the equivalence relation on A∗ defined by u ∼L v if and only if, for every

x, y ∈ A∗,

xvy ∈ L ⇐⇒ xuy ∈ L.

ThemonoidM = A∗/∼L is the syntactic monoid of L and the natural morphism η : A∗ → M is called the syntactic morphism

of L. The set P = η(L) is called the syntactic image of L. Note that L is saturated for ∼L , which means that η−1(P) = L. It is a

well-known fact that a language is regular if and only if its syntactic monoid is finite.
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An orderedmonoid is amonoid equippedwith a stable partial order relation, usually denoted by�. The syntactic preorder

of a language L is the relation �L over A
∗ defined by u �L v if and only if, for every x, y ∈ A∗,

xvy ∈ L �⇒ xuy ∈ L.

It is easy to see that �L is a partial preorder on A∗, whose associated equivalence relation is the syntactic congruence of

L. Further, the syntactic preorder of L induces a partial order on M which makes it an ordered monoid as follows. Given

u, v ∈ M, one has u � v if and only if, for all x, y ∈ M,

xvy ∈ P �⇒ xuy ∈ P.

Here P = η(L) is the syntactic image of L. The ordered monoid (M,�) is called the syntactic ordered monoid of L. We write

�P instead of � when we want to emphasize the subset P of M.

For each finite semigroup S, there exists an integer n such that, for each s ∈ S, sn is idempotent. The least integer satisfying

this property is called the exponent of S and is often denoted by ω. By extension, the exponent of a regular language L of A∗
is the smallest integer n such that, for all u ∈ A∗, un ∼L u2n. A finite monoid M of exponent ω is aperiodic if, for all x ∈ M,

xω = xω+1.

A variety of finite monoids [semigroups] is a class of finite monoids [semigroups] closed under taking submonoids [sub-

semigroups], morphic images and finite direct products. If V is a variety of finite monoids, denote by V(A∗) the set of

regular languages of A∗ whose syntactic monoid belongs to V. The correspondence V �→ V associates with each variety of

finite monoids a variety of languages. Conversely, to each variety of languages V , we associate the variety of finite monoids

generated by the syntactic monoids of the languages of V . Eilenberg’s variety theorem [5] states that these two correspon-

dences define mutually inverse bijective correspondences between varieties of finite monoids and varieties of languages.

For instance, Schützenberger’s theorem states that star-free languages correspond to aperiodic monoids.

There is an analogous correspondence between i-varieties of languages and varieties of finite semigroups, obtained by

associating to each language L of A∗ the syntactic semigroup of the language L∩A+. For instance, finite or cofinite languages

correspond to nilpotent semigroups.

To complete this section, let us describe the smallest nontrivial variety closed under shuffle. We denote by [u] the com-

mutative closure of a word u, which is the set of words commutatively equivalent to u. For instance, [aab] = {aab, aba, baa}.
A language L is commutative if, for every word u ∈ L, [u] is contained in L. Equivalently, a language is commutative if its

syntactic monoid is commutative. A description of the class of star-free commutative languages is given in [10, Chapter 2,

Proposition 3.14]. Let us give a variation of this result using the shuffle operation.

Proposition 2.2. A language of A∗ is star-free commutative if and only if it is a finite union of languages of the form [u] ��� B∗
where u is a word and B is a subset of A.

Proof. In one direction, it suffices to observe that if F is a finite commutative language and B is a subset of A, then the

syntactic monoid of F ��� B∗ is commutative and aperiodic.

Consider now a commutative star-free language L and let ϕ : A∗ → M be its syntactic morphism. Our aim is to prove

that L can be written as a finite union of languages of the form [u] ��� B∗. Let P = ϕ(L) and let N be the exponent ofM. Since

L = ⋃
m∈P ϕ

−1(m), it suffices establish the result for L = ϕ−1(m), where m is an element of M. We claim that

L = ⋃
u∈F

[u] ��� B∗

where B = {a ∈ A |mϕ(a) = m} and
F = {u ∈ A∗| |u| � N|A|, ϕ(u) = m and for all subwords v of u, ϕ(v) �= m}.

If u ∈ F and w ∈ [u] ��� B∗, then w ∈ u′ ��� v for some u′ ∈ [u] and some v ∈ B∗. Since M is commutative, it follows

that ϕ(w) = ϕ(u)ϕ(v) = mϕ(v) = m. Thus w ∈ L. Conversely, let w ∈ L and let u be a minimal subword of w in L.

By construction, ϕ(u) = m and for all subwords v of u, ϕ(v) �= m. Further, if |u| > N|A|, then |u|a > N for some letter

a ∈ A. Therefore, u can be written as u1au2 for some words u1, u2 such that |u1u2|a � N. Since M is commutative and

ϕ(aN) = ϕ(aN+1), it follows that ϕ(u1u2) = ϕ(u), a contradiction with the definition of u. Thus |u| � N|A| and u ∈ F .

Let v be aword such thatw ∈ u ��� v. SinceM is commutative,ϕ(w) = ϕ(u)ϕ(v), that ism = mϕ(v). SinceM is aperiodic

and commutative, it is J -trivial and thusmϕ(a) = m for each letter a of v. In other words, v ∈ B∗ andw ∈ [u] ��� B∗.

Corollary 2.3. The star-free commutative languages form a variety of languages, which is the smallest variety of languages closed

under shuffle. It is also the smallest class of languages closed under Boolean operations and under shuffle by a letter.

Proof. Thefirst part of the statement is proved in [9]. LetF be the smallest class of languages closedunderBooleanoperations

and the operation L �→ L ��� a, where a is a letter. It just remains to prove thatF contains all star-free commutative languages.
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Since F(A∗) is a Boolean algebra, it contains A∗ and thus, for each letter a ∈ A, the language A∗aA∗ = A∗ ��� a. Therefore,

for each subset B of A, F(A∗) also contains also the languages A∗BA∗ = ∪a∈BA
∗aA∗ and B∗ = A∗\A∗BcA∗. In particular, it

contains the language {1} = ∅∗. Now observe that if u = a1 . . . an, then [u] = {1} ��� a1 ��� . . . ��� an. Thus F contains the

languages of the form [u] and by Proposition 2.2, it contains all star-free commutative languages.

2.3. Equations and identities

The formal approach to identities requires the introduction of profinite words. The definition of those and appropriate

references can be found in [1,11]. However, the weaker notion of ω-term will suffice to state and prove the results of this

paper. For the sake of completeness, let us just mention that Propositions 2.6 and 2.7 below can be readily extended to

profinite words.

An ω-term on an alphabet A is built from the letters of A using the usual concatenation product and the unary operator

x → xω . For instance, if A = {a, b, c}, abc, aω and ((abωc)ωab)ω are examples of ω-terms. The symbol ω plays an abstract

role similar to the star symbol in a regular expression and should not be interpreted as denoting infinite iteration. Two

ω-terms can be concatenated to form their product. This product is associative and extends the usual product on words.

Further, if x is an ω-term, x and xω commute, that is, xxω = xωx. This ω-term is often denoted by xω+1, and more generally,

we write xω+n for xnxω or xωxn. Finally, 1ω = 1 and for each ω-term, xωxω = xω and (xω)ω = xω .

Morphisms between free monoids extend toω-terms in a natural way. For instance, if ϕ : {a, b, c}∗ → {a, b}∗ is defined

by ϕ(a) = ab, ϕ(b) = ba and ϕ(c) = 1, then ϕ(((abωc)ωab)ω) = ((ϕ(a)ϕ(b)ωc)ωϕ(a)ϕ(b))ω = ((ab(ba)ω)ωabba)ω .
Morphisms from a free monoid into a finite monoid M also extend to ω-terms in a very simple way by interpreting the

symbol ω as the exponent of M. It follows that if ϕ : A∗ → M is a morphism and x is an ω-term, then ϕ(xω) is equal to

ϕ(x)ω , the unique idempotent of the subsemigroup of M generated by ϕ(x).
We now consider ordered equations of the form u � v, where u and v are two ω-terms. This kind of equations is mainly

used in Proposition 2.6. This proposition avoids to duplicate proofs unnecessarily. Equations of the form u = v are then

just a shortcut for u � v and v � u. Let L be a regular language of A∗, let (M,�) be its syntactic ordered monoid and let

η : A∗ → M be its syntactic morphism. We say that L satisfies the equation u � v if η(u) � η(v).
Denote by T one of the following types of morphisms: all morphisms, all p-morphisms, all d-morphisms or all i-

morphisms. Let now u and v be two ω-terms on the alphabet B. We say that L satisfies the T -identity u � v if, for all

T -morphisms γ : B∗ → A∗, it satisfies the equation γ (u) � γ (v). As promised, we illustrate our abstract definition by two

examples.

Proposition 2.4. Let L be a regular language over A and let n be its exponent. Then L satisfies the identity [p-, d-, i-identity]
xω+1 � xω if and only if, for every word [letter, word of length � 1, nonempty word] u ∈ A∗, one has un+1 �L un.

Proof. Let γ : B∗ → A∗ be a morphism and let u = γ (x). When γ ranges over the set of all morphisms [p-, d-, i-
morphisms], u ranges over the set of all words [letters, words of length � 1, nonempty words]. Since γ (x)ω = uω and

η(uω) = η(u)n, the equation uω+1 � uω is satisfied if and only if η(u)n+1 � η(u)n or, equivalently, un+1 �L un.

The proof of the next result is similar and is therefore omitted. Both results are immediate consequences of the general

definition of identities and T -identities [1,8,14].

Proposition 2.5. Let L be a regular language over A and let n be its exponent. Then L satisfies the identity [p-, d-, i-identity]
(xωyω)ω+1 = (xωyω)ω if and only if, for every pair of words [letters, words of length � 1, nonempty words] (u, v) ∈ A∗ × A∗,
one has (unvn)n+1 ∼L (u

nvn)n.

As one can see from these examples, the symbols occurring in the equations can be considered as variables. These variables

are interpreted as words of length depending on the class of morphisms T , according to the table below.

Class of morphisms Identity type Interpretation of variables

All morphisms Identity Words

Length-preserving morphisms p-Identity Words of length 1

Length-increasing morphisms i-Identity Words of length � 1

Length-decreasing morphisms d-Identity Words of length � 1

Note that if L satisfies a T -identity u � v where u and v are ω-terms on the alphabet B, then for all ω-terms x, y, it satisfies
the T -identity xuy � xvy.
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Proposition 2.6. Let u be an ω-term. Then the equations uω+1 � uω and uω+1 = uω are equivalent on regular languages.

Proof. Let L be a regular language of exponent n, let (M,�) be its syntactic ordered monoid and let η : A∗ → M be its

syntactic morphism. We claim that if L satisfies the equation uω+1 � uω , then it also satisfies the equation uω+1 = uω . If L

satisfies uω+1 � uω , then by induction it also satisfies the equations

uω+n � · · · � uω+1 � uω.

Since n is the exponent of L, one gets

η(uω+n) = η(uω)η(u)n = η(u)nη(u)n = η(u)n = η(uω).

Now the relations

η(uω) = η(uω+n) � η(uω+1) � η(uω)

show that η(uω+1) = η(uω), which proves the claim and the proposition.

We conclude this section by proving three stability results. The first one states that the class of languages satisfying an

equation of the form uω+1 � uω is stable under product. The second and the third results assert that the class of languages

satisfying the d-identity xω+1 � xω (respectively, xωyxωy � xωyy) is stable under shuffle.

Proposition 2.7. Let u be an ω-term of A∗. If two regular languages satisfy the equation uω+1 � uω , then their product also

satisfies this equation.

Proof. Let L1 and L2 be languages of A∗ satisfying the equation uω+1 � uω and let L be their product. Let n be the least

common multiple of the exponents of the languages L1, L2 and L. By Proposition 2.4, it suffices to prove that for every

word u ∈ A∗, un+1 �L un. Suppose that xuny ∈ L. Since un ∼L u2n, one has xu2ny ∈ L and thus xu2ny = u1u2 for

some u1 ∈ L1 and u2 ∈ L2. It follows that one of the words u1 or u2 contains un as a factor. Since the two cases are

symmetrical, we may assume that u1 = xunz for some z ∈ A∗. It follows that xun+1z ∈ L1, since L1 satisfies the identity

uω+1 � uω . Thus xu2n+1y ∈ L and finally xun+1y ∈ L since u2n ∼L un. Therefore L satisfies the equation uω+1 � uω .

Proposition 2.8. If two regular languages satisfy the d-identity xω+1 � xω , then their shuffle also satisfies this d-identity.

Proof. Let L1 and L2 be languages of A∗ satisfying the d-identity xω+1 � xω and let L = L1 ��� L2. Let n be the least common

multiple of the exponents of the languages L1, L2 and L. According to Proposition 2.4, it suffices to prove that, for each word

u of length 0 or 1, one has un+1 �L un. The result is obvious if u is the empty word and thus we may assume that u = a for

some letter a ∈ A.

Suppose that xany ∈ L for some words x, y ∈ A∗. Since an ∼L a2n, one has xa2ny ∈ L and thus xa2ny ∈ u1 ��� u2 for some

u1 ∈ L1 and u2 ∈ L2. It follows that one of the words u1 or u2 contains an as a factor. If, for instance, u1 = rans for some

r, s ∈ A∗, then ran+1s ∈ L1 since L1 satisfies the d-identity aω+1 � aω . It follows that xa2n+1y ∈ L and finally xan+1y ∈ L

since a2n ∼L an. Thus L satisfies the d-identity aω+1 � aω .

Proposition 2.9. If two regular languages satisfy the d-identity xωyxωy � xωyy (resp. yxωyxω � yyxω), then their shuffle also

satisfies this identity.

Proof. By symmetry, it suffices to prove the first identity. Let L1 and L2 be languages satisfying this identity and let L =
L1 ��� L2. Let n be the least common multiple of the exponents of the languages L1, L2 and L. According to Proposition 2.4, it

suffices to prove that, for all words u, v of length 0 or 1, one has unvunv �L unvv. The result is obvious if u or v is the empty

word and thus we may assume that u = a and v = b for some letters a, b ∈ A.

Suppose that xanbby ∈ L for some words x, y ∈ A∗. Since an ∼L a2n, the word u = xa2nbby also belongs to L and thus

u ∈ u1 ��� u2 for some u1 ∈ L1 and u2 ∈ L2.

First assume that each of the words u1 and u2 contains exactly one of the two letters b. Since u contains at least 2n

occurrences of a on the left of the two letters b, the word anb is a factor of either u1 or u2. Without loss of generality, wemay

assume that anb is a factor of u1, as depicted in Fig. 1. In this diagram, the letters of u1 are represented in white, the letters

of u2 in grey and the factors of u in which letters from u1 and u2 may occur simultaneously are represented in light grey.

Since n is a multiple of the exponent of L1, iterating an in u1 produces a word u′
1 of L1. One can also insert this new factor

in u, as indicated in Fig. 2, to obtain the word u′ = xa2nbanby as a shuffle of u′
1 and u2. Thus, in this case, xa2nbanby belongs

to L. Finally, since an ∼L a2n, xanbanby ∈ L.
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Fig. 1. u ∈ u1 ��� u2.

Fig. 2. Inserting an .

Fig. 3. Case an in u2.

Fig. 4. Inserting an again….

Suppose now that one of the words u1 or u2, say u1, contains the two occurrences of b. Out of the 2n occurrences of a

preceding the two letters b, at least n originate from the same word. First assume that this word is u2, as illustrated in Fig. 3.

Since n is a multiple of the exponent of L2, iterating an in u2 produces a word u′
2 of L2. One can also insert this new factor

in u, as indicated in Fig. 4, to obtain the word xa2nbanby as a shuffle of u1 and u′
2. Thus, in this case again, xanbanby belongs

to L.

Finally, if at least n occurrences of a originate from u1, then anbb is a factor of u1, and since L1 satisfies the equation

aωbaωb � aωbb, the word obtained from u1 by replacing this factor by anbanb is still in L1. It follows, once again, that

xanbanby belongs to L. This exhausts all cases and concludes the proof.

3. Intermixed languages

By definition, the class C of intermixed languages is the smallest class of languages containing the singletons {1} and {a},
for each letter a, and closed under Boolean operations, product and shuffle. Let us show immediately that these properties

entail two other closure properties.

Theorem 3.1. Intermixed languages form a d-variety of languages.

Proof. We proceed in four steps. After a preliminary step, we show that C is closed under quotients, then that it is closed

under inverses of length-preserving morphisms and finally under inverses of length-decreasing morphisms.

Preliminary step. We show that, for each alphabet A, C(A∗) contains the languages B and B∗, for each subset B of A. The first

property is obvious, since B = ∪a∈B{a}. For the second one, it suffices to prove that the complement of B∗ is in C(A∗). This
complement is equal to A∗(A\B)A∗ and since C(A∗) is closed under product, it belongs to C(A∗).
First step. Let C′ be the class of all languages L of C such that, for each letter a, a−1L and La−1 are in C. Clearly, the singletons

{1} and {b}, for each letter b, are in C′. Further, standard commutation rules show that C′ is closed under Boolean operations,

product and shuffle. Therefore C′ contains C and thus C is closed under quotient by a letter. It follows by induction that C is

closed under quotient.
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Second step. LetF be the class defined as follows: for each alphabet A,F(A∗) is the class of all languages L of A∗ such that, for

each length-preserving morphism ϕ : B∗ → A∗, one has ϕ−1(L) ∈ C(B∗). First, F(A∗) contains the singletons {1} and {a},
for each letter a ∈ A, since ϕ−1(1) = {1} and ϕ−1(a) is a subset of B. Next, standard commutation rules and Proposition 2.1

show that F is closed under Boolean operations, product and shuffle. This shows that F contains C. Thus C is closed under

inverses of length-preserving morphisms.

Third step. Let L be a language of C(A∗) and let ϕ : B∗ → A∗ be a length-decreasing morphism. If A is empty, then L = {1}
and ϕ−1(1) = B∗. Otherwise, let us fix a letter a of A. Setting

C = {b ∈ B |ϕ(b) �= 1} and D = {b ∈ B |ϕ(b) = 1},
define a length-preserving morphismψ : B∗ → A∗ by setting

ψ(b) =
{
ϕ(b) if b ∈ C,

a if b ∈ D.

Then the equality ϕ−1(L) = (ψ−1(L)∩ C∗) ��� D∗ and the previous steps show that ϕ−1(L) ∈ C(B∗). Thus C is closed under

inverses of length-decreasing morphisms.

We now come to the main theorem of this paper.

Theorem 3.2. Intermixed languages satisfy the d-identities xω+1 = xω and (xωyω)ω+1 = (xωyω)ω .

Proof. Let F be the class of languages satisfying the two identities of the statement. Then F is closed under Boolean

operations and it is easy to see that it contains the singletons {1} and {a} for each letter a. We also know that, according

to Proposition 2.6, one may replace the d-identities of the statement by xω+1 � xω and (xωyω)ω+1 � (xωyω)ω . Finally,
Proposition 2.7 shows that F is closed under product. Therefore, we just need to prove that F is closed under shuffle to

conclude.

Let L1 and L2 be two languages of F(A∗) and let L = L1 ��� L2. Proposition 2.8 already shows that L satisfies the d-identity

xω+1 � xω . Let n be the least common multiple of the exponents of L1, L2 and L. By Propositions 2.5 and 2.6, we have to

prove that if u and v are words of length � 1 of A∗, then (unvn)n+1 �L (u
nvn)n. The result is trivial if one of the words is

empty, and we may assume that u = a and v = b, for some (possibly equal) letters a and b.

Let x, y ∈ A∗ and suppose that x(anbn)ny ∈ L. Since L satisfies the d-identity aω+1 = aω , one has a2n−1 ∼L an and

b2n−1 ∼L bn. Setting u = x(a2n−1b2n−1)ny, we get u ∈ L and thus u ∈ u1 ��� u2 for some u1 ∈ L1 and u2 ∈ L2. A factor of

u of the form a2n−1 or b2n−1 will be called a block in the sequel. Let us say that a letter of u is red if it projects onto u1 and

black if it projects onto u2 and that a block is red (resp. black) if it contains a majority of red (resp. black) letters.

First suppose that in u, at least two consecutive blocks have different colors. Let us assume for instance that a red block

a2n−1 is followed by a black block b2n−1 (the three other cases are similar). We may also assume that the n last letters of

a2n−1 are red and the first n letters of b2n−1 are black: if it is not the case, it suffices to permute a few letters a (resp. b)

without changing the shuffle product. Since n is a multiple of an exponent of L1 and L2, replacing a2n by an and b2n by bn

within u1 (resp. u2) yields a word of L1 (resp. L2). Reshuffling these words a2n and b2n, we can replace the central factor anbn

of a2n−1b2n−1 by anbnanbn. Thus we may replace in u the factor a2n−1b2n−1 by a2n−1bnanb2n−1, and still obtain a word of

L. Since a2n−1 ∼L an and b2n−1 ∼L bn, one may replace a2n−1bnanb2n−1 by anbnanbn and the other factors a2n−1b2n−1 by

anbn, to obtain the word x(anbn)n+1y, which is therefore still in L. This proves the result in this case.

The only remaining possibility is that all blocks have the same color, say red. This means that

u1 = x1a
p1bq1 · · · apnbqny1 and u2 = x2a

r1bs1 · · · arnbsny2,
with pi, qi � n and ri, si < n. Since L1 satisfies the equation aω+1 = aω , the word x1(a

nbn)ny1 is in L1, and since L1 satisfies

the equation

(aωbω)ω+1 � (aωbω)ω,

it also contains the words x1(a
nbn)n+1y1 and u′

1 = x1a
nbnap1bq1 · · · apnbqny1. Reshuffling with u2 shows that x(anbn)n+1y

is in L.

Theorem 3.2 suffices to prove that intermixed languages form a proper subclass of the class of all regular languages.

Corollary 3.3. The language (aa)∗ over the single letter alphabet {a} is not intermixed.

Proof. This language clearly does not satisfy the d-identity xω+1 = xω .



Author's personal copy

1266 J. Berstel et al. / Information and Computation 208 (2010) 1258–1272

It is tempting to try to generalize the identities of Theorem3.2 to three variables ormore. The next paragraph summarizes

one of our unsuccessful attempts to do so.

Let L be a regular language of A∗ and let η : A∗ → M be its syntactic morphism. For each nonnegative integer n, consider

the property (Pn) defined as follows:

InM, the subsemigroup generated by n elements of the form η(a)ω , where a is a letter, is aperiodic.

It is easy to see that L satisfies (P2) if and only if it satisfies the d-identities xω+1 = xω and (xωyω)ω+1 = (xωyω)ω and thus,

by Theorem 3.2, every intermixed language satisfies (P2). This result lead us to conjecture that every intermixed language

should satisfy (Pn) for all n, until our hopes were ruined by the following counterexample.

Example 3.1. Let A = {a, b, c}, H = (a+b)+a+ and

L = (
Hc+Hc+

)+
H ��� b+.

A computation shows that the syntactic monoid of L is the 76-element monoid M presented by

〈{a, b, c} |aa = a, cb = bc, cc = c, b2b = b2, b2c = bc, ab2a = abab, acac = 0,

baba = abab, babb = bab, b2ab = bab, b2ac = babc, bcac = 0,

cabb = bcab, cabc = 0, cac = 0, cabab = bcaba, cabacabac = c〉.
Denote by S the subsemigroup of M generated by the three idempotents a, b2 and c. Then S is a 44-element semigroup in

which the element x = ab2acab2a satisfies x3 = x but x2 �= x. Therefore S is not aperiodic.

We claim that L is intermixed. First, one has L = K ��� b+ with

K = (
Hc+Hc+

)+
H.

Next K = (R ��� a∗)\A∗ca+cA∗, where R = (
(ab)+ac+(ab)+ac+

)+
(ab)+a. The language A∗ca+cA∗ is star-free. Further, one

has

R =
(
aA∗ ∩

((
(ab)+ac(ab)+ac

)+
(ab)+a ��� c∗

)
∩ A∗a

)
\A∗(bc ∪ cb)A∗

and (
(ab)+ac(ab)+ac

)+ = (
(ab)+ac

)+ ∩ (
(acc)∗ ��� {a, b}∗)

.

Since the remaining pieces are star-free and hence intermixed, the claim is proved.

A weaker condition (Qn) could also be considered:

InM, the minimal ideal of each subsemigroup generated by n elements of the form η(a)ω , where a is a letter, is aperiodic.

It is easy to see that L satisfies the d-identities xω+1 = xω and (xωyω)ω+1 = (xωyω)ω if and only if it satisfies (Q1) and
(Q2). We leave as an open problem to know whether every intermixed language satisfies (Qn) for all n.

We conclude this section by a nontrivial example of intermixed languages. Recall that a word is primitive if it is not a

power of another word. If u is a primitive word, then u∗ is a star-free language (see for instance [13] for a more general

result).

Proposition 3.4. Let u be a primitive word of length> 1. Then for each nonnegative integer r, the language (ur)∗ is intermixed.

Proof. Let u be a primitive word of A∗. Then u contains at least two distinct letters of A. Let a be the last letter of u. Then u

can be written as vbak , where v ∈ A∗, k > 0 and b is a letter distinct from a.

Let w = ar|u|a−kbak . Since w contains a single b, it is primitive. Observing that w∗ ��� (A\b)∗ = {z ∈ A∗ | |z|a ≡
0 mod r|u|a}, we get(

ur
)∗ = u∗ ∩ [

w∗ ��� (A\b)∗]
.

Since u and w are primitive, the languages u∗ and w∗ are star-free and thus
(
ur

)∗
is intermixed.

Note that the condition |u| > 1 is mandatory in Proposition 3.4 since the language (aa)∗ is not intermixed.
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4. Shuffle by a letter

The operation of shuffling a language L by a letter a is the operation L �→ L ��� a. In this section we consider classes of

languages closed under Boolean operations and under shuffle by a letter. Proposition 2.3 shows that the smallest class with

these properties is the class of commutative star-free languages. We are interested in larger classes containing at least one

noncommutative language. The following proposition shows that, under some reasonable conditions, it is natural to start

with the language {ab} on a two letter alphabet.

Proposition4.1. LetV beap-varietyof languages. IfV contains thefinite commutative languagesandat least onenoncommutative

language, then V({a, b}∗) contains the language {ab}.
Proof. Let L be a noncommutative language of V(A∗). By definition, there exist two distinct letters c, d ∈ A and two words

x, y ∈ A∗ such that xcdy ∈ L and xdcy /∈ L. Setting K = x−1Ly−1, we get cd ∈ K and dc /∈ K . But since V is closed

under quotients, K ∈ V(A∗). Furthermore, since V contains the finite commutative languages, V(A∗) contains the language

R = {cd, dc}. It follows that {dc} = R\K is a languageofV(A∗). Let nowϕ : {a, b}∗ → A∗ be the length-preservingmorphism

definedbyϕ(a) = d andϕ(b) = c. By construction,ϕ−1({dc}) = {ab} and thusV({a, b}∗) contains the language {ab}.

Let C0 denote the smallest class of languages containing the languages of the form {ab}, where a, b are distinct letters,

and which is closed under Boolean operations and under shuffle by a letter.

The aim of this section is to give both a combinatorial and an algebraic characterization of C0. Although the combinatorial

characterization may appear more descriptive to the reader, the algebraic one is more powerful. It shows in particular that

the class C0 is decidable: given a regular language, one can effectively decide whether or not it belongs to C0.
We first prove a combinatorial result of independent interest.

Proposition 4.2. Let u be a word of length � 3. Then the language {u} is a Boolean combination of languages of the form v ��� a,

where a is a letter and v is a word of length |u| − 1.

Proof. Let n = |u| − 1 and E = {(v, a) ∈ An × A |u ∈ v ��� a}. The result will follow from the formula

{u} =
⎛⎝ ⋂
(v,a)∈E

v ��� a

⎞⎠ ∖⎛⎝ ⋃
(v,a)∈(An×A)\E

v ��� a

⎞⎠. (∗)

Let L be the right hand side of (∗). It is clear that u ∈ L. Suppose that L contains another word w. Then |w| = |u| and, for
every (v, a) ∈ An × A, u ∈ v ��� a if and only if w ∈ v ��� a. Let f be the longest common prefix of u and w. Assuming

u �= w, one can write u = fau′ and w = fbw′, for some u′,w′ ∈ A∗, a, b ∈ A and a �= b. We claim that f is the empty

word. Otherwise, let c be a letter of f and let f = f1cf2. Let us assume that c �= a (the case c �= b would be symmetric by

exchanging u and w). Then u ∈ f1f2au
′ ��� c and thus w = f1cf2bw

′ ∈ f1f2au
′ ��� c. This means that c has to be inserted in

the word f1f2au
′ to produce f1cf2bw

′. Since a �= b, this insertion cannot occur inside the prefix f1f2a. Therefore f1f2a = f1cf2,

a contradiction, since |f1f2a|a > |f1cf2|a.
Thus the longest common prefix of u and w is the empty word, and by a symmetric argument, their longest common

suffix is also the empty word. Let c be the first letter of u′. Then u′ = cx for some word x ∈ A∗. It follows that u ∈ ax ��� c

and thus w ∈ ax ��� c. Since the first letter of w is b, it means that c = b and w = bax. It follows that x is a common

suffix of u and w and thus x is the empty word. Therefore u = ab and w = ba, a contradiction, since |u| � 3.

Proposition 4.3. The class C0 contains all finite languages.

Proof. Since C0(A∗) is closed under union, it suffices to prove that it contains the languages reduced to a single word u. If

|u| � 1, the language {u} is star-free commutative and the result follows from Proposition 2.3. If |u| = 2, say u = ab, either

a �= b and the language {ab} belongs by definition to C0(A∗), or a = b and the language {u} is star-free commutative. Finally,

if |u| > 2, Proposition 4.2 permits to conclude by induction on the length of u.

A language L is said to be almost star-free commutative if there exists a star-free commutative language C such that the

symmetric difference L � C is finite.

Theorem 4.4. The class C0 is the class of almost star-free commutative languages.

Proof. SinceC0(A∗) is aBooleanalgebra, Propositions2.3 and4.3 showthatC0(A∗) contains thealmost star-free commutative

languages. Since this latter class of languages is closed under Boolean operations and contains the languages of the form

{ab}, it suffices to show that it is closed under shuffle by a letter. But this property follows immediately from the formula
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(L ��� a)� (C ��� a) ⊆ (L � C) ��� a,

which holds1 for any languages L and C, and any letter a.

Corollary 4.5. The class C0 is an i-variety of languages.

Proof. Let L beanalmost star-free commutative languageofA∗. By assumption, there exists a star-free commutative language

C such that L�C is finite. If u is aword, then u−1C is star-free commutative and u−1(L�C) is finite. It follows, since (u−1L)�
(u−1C) = u−1(L � C), that u−1L is almost star-free commutative. The proof that Lu−1 is almost star-free commutative is

dual. Thus C0 is closed under quotients.

Let ϕ : B∗ → A∗ be a length-increasing morphism. Since star-free commutative languages form a variety of languages,

ϕ−1(C) is star-free commutative. Further, since ϕ is length-increasing, ϕ−1(L � C) is finite. Finally, ϕ−1 commutes with

Boolean operations and hence ϕ−1(L � C) = ϕ−1(L)� ϕ−1(C), which shows that ϕ−1(L) is almost star-free commutative.

Therefore C0 is an i-variety of languages.

Since C0 is an i-variety of languages, it corresponds to somevariety of semigroupsV. Now, an almost star-free commutative

language is a Boolean combination of finite languages and of star-free commutative languages. The i-variety of finite or

cofinite languages corresponds to the variety of finite nilpotent semigroups Nil and the i-variety of star-free commutative

languages corresponds to the variety of finite aperiodic commutative semigroups Acom [5]. It follows that V is the join of

the varietiesNil and Acom. We are indebted to Jorge Almeida for providing us with a set of equations defining V, which lead

to the following characterization.

Theorem 4.6. A regular language is almost star-free commutative if and only if it satisfies the i-identities xω = xω+1, xωy = yxω

and xωyz = xωzy.

Proof. Let V be the join of the varieties Nil and Acom. As explained before, it suffices to prove that a finite semigroup

belongs to V if and only if it satisfies the three identities xω = xω+1, xωy = yxω and xωyz = xωzy. These identities are

clearly satisfied by a nilpotent semigroup and by a commutative aperiodic semigroup.

Let S be a finite semigroup satisfying these identities. The identity xω = xω+1 says that S is aperiodic and the identity

xωy = yxωmeans that each idempotent of S commuteswith any other element of S. These properties imply that theminimal

ideal of S is a singleton and therefore S has a zero. We now prove by induction on the number of elements of S that S belongs

to Nil ∨ Acom.

If S has only one idempotent, then S is nilpotent and the result is trivial. Otherwise, let e be a nonzero idempotent of S.

Then eS is an ideal of S, since SeS = eSS ⊆ eS. Observe also that if s ∈ eS, then es = s since, if s = ex for some x ∈ S, then

es = eex = ex = s. Finally let us show that eS is a commutative semigroup. Let y, z ∈ S. Since eS = S, one has y = ey and

z = ez. Further, the identity xωyz = xωzy gives eyz = ezy. Putting these relations together, we get yz = eyz = ezy = zy.

Denote by π the projection from S onto the Rees quotient S/eS and let ϕ : S → eS × S/eS be the morphism defined by

ϕ(s) = (es, π(s)). We claim that ϕ is injective. Indeed, suppose that ϕ(s) = ϕ(t). The condition π(s) = π(t) implies that s

and t are either both in eS or both in its complement. If s, t ∈ S\eS, the conditionπ(s) = π(t) ensures that s = t. If s, t ∈ eS,

then es = s and et = t. Therefore es = et implies s = t, which proves the claim. Thus S is a subsemigroup of eS × S/eS.
Since 0 and e are in eS, they are identified by π and |S/eS| < |S|. It follows by the induction hypothesis that S/eS ∈ V. Since

the semigroup eS is aperiodic and commutative, it also belongs to V and finally S also belongs to V.

Corollary 4.7. It is decidable whether a given regular language is almost star-free commutative.

5. Jumbled languages

In this section, we consider the smallest class of languages C1 containing C0 and closed under Boolean operations and

under shuffle by a letter and by the star of a letter. We call the languages of this class jumbled languages. We first establish

some closure properties.

Proposition 5.1. A class of languages which is closed under finite union and under shuffle by a letter and by the star of a letter is

also closed under the operations L �→ L ��� K, where K is a star-free commutative language.

Proof. By Proposition 2.2, every star-free commutative language is a finite union of languages of the form [u] ��� B∗ where

u is a word and B is a subset of A. Now, set u = a1 · · · an, and B = {b1, b2, . . . , bk}, where a1, . . . , an, b1, . . . , bk are letters.

Then [u] = a1 ��� a2 ��� · · · ��� an and B∗ = b∗
1 ��� b∗

2 · · · ��� b∗
k . The result now follows, since the shuffle product is

associative and distributes over union.

1 Note that this inclusion might be strict. For instance, if L = {ab} and C = {ba}, then (L ��� a)� (C ��� a) = {aab, baa} and (L � C) ��� a = {aab, aba, baa}.
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Proposition 5.2. The class of jumbled languages forms a d-variety of languages.

Proof. The proof is similar to that of Theorem3.1.We first prove that the class of jumbled languages is closed under quotient

and then that it is closed under inverses of length-decreasing morphisms.

First step. Let F be the class of languages containing the jumbled languages L such that for all a ∈ A, a−1L, La−1 is jumbled.

Since quotients commute with Boolean operations, F is closed under Boolean operations. Further, since C0 is contained in

C1 and is closed under quotient, it is contained in F . In particular, for each alphabet A, the languages of the form {a}, a∗ and

{ab}, where a and b are letters of A, are in F(A∗). Next we show that F is closed under shuffle by a letter and shuffle by the

star of a letter. Suppose that L ∈ F(A∗) and let a be a letter. Then L is jumbled and thus L ��� a and L ��� a∗ are also jumbled.

For b ∈ A, the following formulas hold:

(L ��� a)b−1 =
{
(La−1 ��� a) ∪ L if b = a

Lb−1 ��� a otherwise.
(4)

(L ��� a∗)b−1 =
{
(La−1 ��� a∗) ∪ (L ��� a∗) if b = a

Lb−1 ��� a∗ otherwise.
(5)

It follows that (L ��� a)b−1 and (L ��� a∗)b−1 (and by symmetry b−1(L ��� a) and b−1(L ��� a∗)) are jumbled. Thus L ��� a and

L ��� a∗ are in F(A∗).
It follows that F contains C0 and is closed under the Boolean operations and under shuffle by a letter and by the star of

a letter. In other words, F contains the jumbled languages. Coming back to the definition of F , it means that the class of

jumbled languages is closed under quotients.

Second step. LetF ′ be the class of all jumbled languages L of A∗ such that, for each length-decreasingmorphismϕ : B∗ → A∗,
ϕ−1(L) ∈ C1(B∗). We claim that, for each alphabet A, the languages of the form {a}, a∗ and {ab}, where a and b are letters

of A, belong to F ′(A∗). First, these languages are jumbled. Let now ϕ : B∗ → A∗ be a length-decreasing morphism. Let Ba,

Bb and C be the subsets of B consisting of the letters c such that ϕ(c) is, respectively, equal to a, b and 1. Then

ϕ−1({a}) = C∗BaC∗ = ⋃
c∈Ba

c ��� C∗, (6)

ϕ−1(a∗) = (C∗Ba)∗C∗ = B∗
a ��� C∗, (7)

ϕ−1({ab}) = C∗BaC∗BbC∗ = ⋃
c∈Ba,d∈Bb

cd ��� C∗. (8)

By Proposition 5.1, these languages are jumbled.

Next we show that F ′ is closed under shuffle by a letter and by the star of a letter. Suppose that L ∈ F ′(A∗) and let a be a

letter. Then the languages L, L ��� a and L ��� a∗ are jumbled. Let ϕ : B∗ → A∗ be a length-decreasing morphism. Proposition

2.1 shows that

ϕ−1(L ��� a) = ϕ−1(L) ��� ϕ−1(a) and ϕ−1(L ��� a∗) = ϕ−1(L) ��� ϕ−1(a∗).

Now Formulas (6) and (7) and Proposition 5.1 shows that ϕ−1(L ��� a) and ϕ−1(L ��� a∗) are in C1(B∗). Thus L ��� a and

L ��� a∗ are in F ′(A∗).
Finally, F ′(A∗) is closed under Boolean operations, since these operations commute with inverse morphisms. It follows

that the class F ′ contains the languages of the form {ab}, and is closed under the Boolean operations and shuffle by a letter

and by the star of a letter. Since C1 is by definition the smallest classwith these properties,F ′ contains C1. Coming back to the

definition ofF ′, itmeans that the class of jumbled languages is closedunder inverses of length-decreasingmorphisms.

Recall that a language is piecewise testable if it is a Boolean combination of languages of the form u ��� A∗, where u is

a word. These languages have been characterized by I. Simon: a language is piecewise testable if and only if its syntactic

monoid is J -trivial.

Note that the class of piecewise testable languages is closed under the operation L �→ L ��� A∗ since, by a celebrated

theorem of Higman, every language of the form L ��� A∗ can be written as F ��� A∗ for some finite language.

Proposition 5.3. Every piecewise testable language is jumbled.

Proof. By Proposition 4.3, C1 contains all languages of the form {u}, where u is a word. Therefore, by Proposition 5.1, it also

contains the languages of the form u ��� A∗.
We shall frequently use the following consequence of Proposition 5.3.
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Corollary 5.4. The languages of the form A∗
0a1A

∗
1a2 · · · akA∗

k , where A0, . . . , Ak are subsets of the alphabet and, for 1 � i � k,

ai /∈ Ai−1 ∪ Ai, are jumbled.

Proof. Indeed these languages are piecewise testable.

Proposition 5.5. The languages of the form anA∗ and anbA∗, where a, b ∈ A, are jumbled.

Proof. Let B = A\{a}. Then anB∗ can be written as ∅∗a∅∗a · · · ∅∗aB∗ and thus is jumbled by Corollary 5.4. Now anA∗ =
anB∗ ��� a∗ and thus anA∗ is also jumbled. Corollary 5.4 also shows that a∗b(A\{b})∗ is jumbled. Consequently, the language

{a, b}∗bA∗, which is equal to a∗b(A\{b})∗ ��� b∗, is also jumbled.

Let us show by induction on n that anbA∗ is jumbled. For n = 0, it follows from the previous result. Next, the formula

anbA∗ = (
(anA∗ ��� b) ∩ {a, b}∗bA∗)\(

(1 ∪ a ∪ · · · ∪ an−1)bA∗ ∪ an+1A∗)
provides the induction step.

Proposition 5.5 already suffices to separate C0 from C1.

Corollary 5.6. Let A = {a, b}. Then the language aA∗ is jumbled but is not almost star-free commutative.

Proof. The first part follows from Proposition 5.5. Next, the syntactic semigroup of aA∗ is the semigroup S = {a, b} defined
by a2 = ab = a and ba = bb = b. In particular, idempotents do not commute in S and by Theorem 4.6, aA∗ is not in

C0(A∗).
Recall that a language L of A∗ is local if there exist two subsets P and S of A and a subset N of A2 such that L\{1} =

(PA∗ ∩ A∗S)\A∗NA∗.

Proposition 5.7. Every local language is jumbled.

Proof. The language {1} is jumbled since it is finite and the languages of the form aA∗ are jumbled by Proposition 5.5.

Let now a and b be two (possibly equal) letters of A and let C = A\{a, b}. Then by Corollary 5.4, C∗abC∗ is jumbled. Now

A∗abA∗ = C∗abC∗ ��� {a, b}∗ and thus A∗abA∗ is also jumbled. Thus every local language is jumbled.

We now state a useful property of the jumbled languages, which is not an immediate consequence of the definition.

Proposition 5.8. If L is a jumbled language and u is a word, the languages uL and Lu are also jumbled.

Proof. Let L be a jumbled language. By symmetry, it suffices to prove that uL is also jumbled. Actually, it suffices to show

that for each letter a, aL is jumbled.

If the empty word belongs to L, one has L = {1} ∪ (L\{1}). Therefore one may assume that L does not contain the empty

word. By Theorem 3.2, L satisfies the equation aω = aω+1. Let n be the smallest integer such that an ∼L an+1.

Let B = A\{a} and, for 0 � i � n − 1, let Li = L ∩ aiBA∗. Finally, let Ln = L ∩ anA∗, Ln+1 = L ∩ an+1A∗ and K = L ∩ a∗.
By Proposition 5.5, the languages Li, where 0 � i � n + 1, are jumbled. The language K is also jumbled. Note that

L = L0 ∪ L1 ∪ · · · ∪ Ln ∪ K.

We claim that aLn = Ln+1. Indeed, let u ∈ Ln. Then u = anv for some v ∈ A∗ and since an ∼L an+1 and anv ∈ L, one gets

au = an+1v ∈ L. Therefore au ∈ Ln+1 and thus aLn ⊆ Ln+1. To prove the opposite inclusion, consider a word u ∈ Ln+1.

Then u ∈ L and u = an+1v for some v ∈ A∗. Since an ∼L an+1, one also has anv ∈ L and thus anv ∈ Ln. Therefore u ∈ aLn,

which proves the claim. Now, the formulas

aL0 = (a ��� L0)\BA∗,
aL1 = (a ��� L1)\aBA∗,
...

aLn−1 = (a ��� Ln−1)\anBA∗,
aLn = Ln+1

show that for 0 � i � n, the languages aLi are jumbled. Since aK is commutative star-free, it is also jumbled. Finally, the

language

aL = aL0 ∪ aL1 ∪ · · · ∪ aLn ∪ aK

is jumbled.
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Proposition 5.9. The languages A∗anA∗ and A∗anbamA∗, for n,m � 0 and a, b ∈ A, are jumbled.

Proof. Let B = A\{a}. Then A∗anA∗ = B∗anB∗ ��� a∗. Since B∗anB∗ is jumbled by Corollary 5.4, A∗anA∗ is also jumbled.

Let C = A\{a, b}. By Corollary 5.4, the languages of the form C∗akban−kC∗ are jumbled. Now the formulas

B∗anbB∗ = (C∗anbC∗ ��� b∗)\ ⋃
0<k<n

(C∗akban−kC∗ ��� b∗),

A∗anbA∗ = B∗anbB∗ ��� a∗

show that A∗anbA∗ is jumbled.

Finally, if m > 0, the languages of the form B∗anbamB∗ are jumbled by Corollary 5.4. Since

A∗anbamA∗ = B∗anbamB∗ ��� a∗,

the languages of the form A∗anbamA∗ are also jumbled.

Proposition 5.10. The languages (anb)∗ and ((ab)n)∗, for n � 0, are jumbled. In particular, there exist nonstar-free jumbled

languages.

Proof. Let A = {a, b}. By Corollary 5.4, C1 contains, for each k, the language a∗bakba∗. The result now follows from the

previous propositions by the following sequence of relations:

A∗b(ab∗)kbA∗ = a∗bakba∗ ��� b∗,

(anb)∗ = {1} ∪
((

anA∗ ∩ A∗b
)\(

A∗an+1A∗ ∪ ⋃
0�k�n−1

A∗b(ab∗)kbA∗))
,

((ab)n)∗ =
(
(anb)∗ ��� b∗)

∩ (ab)∗.

Now, the word ab generates a cyclic group of order n in the syntactic monoid of ((ab)n)∗. Therefore, by Schützenberger’s

theorem, ((ab)n)∗ is not star-free for n � 2.

Other examples of jumbled languages include the language

{a, b}∗abc{a, b}∗ = (b∗abcb∗ ��� a∗)\(b∗acb∗ ��� a∗),

but it is an open problem to know whether the language A∗abbaA∗ is jumbled.

Corollary 5.11. The class of jumbled languages is not closed under inverses of morphisms.

Proof. Let ϕ : {a}∗ → {a, b}∗ be the morphism defined by ϕ(a) = ab. Then ϕ−1((abab)∗) = (aa)∗. Now, the language

(abab)∗ is jumbled by Proposition 5.10, but Corollary 3.3 shows that the language (aa)∗ is not jumbled.

In fact, the closure of the class of jumbled languages under inverses of morphisms is equal to the class of all regular

languages. More precisely, one has the following result, the proof of which relies on an argument of [7].

Proposition 5.12. For every regular language L over A, there exist an alphabet C, a morphism ϕ from A∗ to C∗ and a jumbled

language K over C such that L = ϕ−1(K).

Proof. It is a well-known fact that every regular language is the image of some local language under a length-preserving

morphism. Therefore, there is an alphabet B, a length-preserving morphism γ : B∗ → A∗ and a local language R of B∗ such

that L = γ (R). By Proposition 5.7, R is jumbled.

Let c be a new letter and let C = B ∪ {c}. We claim that the languages of C∗

R1 = R ��� c∗, R2 = (Bc)∗

are jumbled. This is clear for R1. For R2 observe that R2 = π−1((ab)∗), where π denotes the length-preserving morphism

from C∗ into {a, b}∗ mapping c to b and each letter of B to a, and apply Propositions 5.10 and 5.2 to conclude. It follows that

the language

K = (R1 ∩ R2) ��� B∗
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is jumbled. To finish the proof, let, for each a ∈ A, ua be a word of B∗ containing exactly one occurrence of each letter in

γ−1(a), and no other letter. Consider the morphism ϕ : A∗ → C∗ defined, for each a ∈ A, by ϕ(a) = uac. It is shown in [7]

that γ (R) = ϕ−1(K). Thus L = ϕ−1(K).

6. Conclusion

We introduced four classes of regular languages related to the shuffle operation: almost star-free commutative, jumbled,

shuffled and intermixed languages. We completed the study of the first class and proved only partial results on the other

ones. Our hope is that these incomplete results and open problems will stimulate research on the shuffle, one of the most

fascinating operations on regular languages.
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