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Abstract We consider Sturmian trees as a natural generalization of Sturmian words.
A Sturmian tree is a tree having n + 1 distinct subtrees of height n for each n. As for
the case of words, Sturmian trees are irrational trees of minimal complexity.

We prove that a tree is Sturmian if and only if the minimal automaton associated
to its language is slow, that is if the Moore minimization algorithm splits exactly one
equivalence class at each step. We give various examples of Sturmian trees, and we
introduce two parameters on Sturmian trees, called the degree and the rank. We show
that there is no Sturmian tree of finite degree at least 2 and having finite rank. We
characterize the family of Sturmian trees of degree 1 and having finite rank by means
of a structural property of their minimal automata.

Keywords Sturmian word · Labeled tree · Minimal automaton · Moore algorithm

1 Introduction

Sturmian words have been extensively studied for many years (see e.g. [5, 6] for
recent surveys). We propose here an extension to trees.

A Sturmian tree is a complete labeled binary tree having exactly n + 1 distinct
subtrees of height n for each n. Thus Sturmian trees are defined by extending to trees
one of the numerous equivalent definitions of Sturmian words. Sturmian trees share
the same property of minimal complexity than Sturmian words: indeed, if a tree has
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Fig. 1 The top of a uniform tree for the word abaaba · · · . Node label a is represented by •, and label b

is represented by ◦. This tree will be seen to have infinite degree and rank 0

at most n distinct subtrees of height n for some n, then the tree is rational, i.e. it has
only finitely many distinct infinite subtrees.

This paper presents many examples and some results on Sturmian trees. The sim-
plest method to construct a Sturmian tree is to choose a Sturmian word and to repeat
it on all branches of the tree. We call this a uniform tree, see Fig. 1. However, many
other categories of Sturmian trees exist.

Contrary to the case of Sturmian words, and similarly to the case of episturmian
words, there seems not to exist equivalent definitions for the family of Sturmian trees.
This is due to the fact that, in our case, each node in a tree has two children, which
provides more degrees of freedom. In particular, only one of the children of a node
needs to be the root of a Sturmian tree to make the whole tree Sturmian.

Each tree labeled with two symbols can be described by the set of words labeling
paths from the root to nodes sharing a distinguished symbol. The (infinite) minimal
automaton of the language has quite interesting properties when the tree is Sturmian.
The most useful is that the Moore equivalence algorithm produces just one additional
equivalence class at each step. We call these automata slow.

We have observed that two parameters make sense in studying Sturmian trees: the
degree of a Sturmian tree is the number of disjoint infinite paths composed of nodes
which are all roots of Sturmian trees. The rank of a tree is the number of distinct
rational subtrees it contains. Both parameters may be finite or infinite.

The main result of this paper is that the class of Sturmian trees of degree one
and with finite rank can be described by infinite automata of a rather special form.
The automata are obtained by repeating infinitely many often a distinguished path
in some finite slow automaton, and intertwining consecutive copies of this path by
letters taken from some Sturmian infinite word. Another property is that a Sturmian
tree with finite degree at least 2 always has infinite rank.

Here is a table summarizing the relations between degree and rank for Sturmian
trees. A tree with rank 0 always has infinite degree since there is no rational node.
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rank
degree finite infinite

1 characterized in Theorem 1 Example 14
≥ 2, finite empty by Proposition 6 Example 15
infinite example of Dyck tree Example 14(a)

The class of Sturmian trees seems to be quite rich. We found several rather dif-
ferent techniques to construct Sturmian trees. To the best of our knowledge, there is
only one paper on Sturmian trees prior to the present one, by Carpi, De Luca and
Varricchio [2].

The paper is organized as follows. Section 2 contains the basic definitions, and the
proof that a tree with fewer subtrees is rational. This was already known before, in
particular in [2]. We give the easy proof for sake of completeness. Section 3 recalls
several basic properties of automata, just observing that these properties also hold
for infinite automata. In the case of slow automata, the way classes are split in the
Moore equivalence algorithm is analyzed, for later use. The next section is devoted
to Rauzy graphs. These are a useful construct for Sturmian words, and we show
how they characterize Sturmian trees. As a byproduct, we obtain new insight in the
nature of Rauzy graphs for Sturmian words: they are the graphs obtained in the Moore
minimization process of an infinite automaton over a single letter alphabet.

In Sect. 5, we define the rank and the degree of a tree. In Sect. 6, we consider
Sturmian trees with finite rank, that is with finitely many rational subtrees. We prove
the main result, namely that Sturmian trees with finite rank and of degree one corre-
spond precisely to extensions of automata obtained as an extension of a finite slow
automaton by repeating some finite path infinitely many often, and by intertwining
consecutive copies of this path with the successive letters taken from some Sturmian
infinite word.

Section 7 is concerned with trees with infinite rank. It contains examples of Stur-
mian trees and of the corresponding automata showing that the general case might be
quite intricate.

2 Sturmian Trees

We are interested in complete labeled infinite binary trees, and we consider finite
trees insofar as they appear inside infinite trees.

In the sequel, D denotes the alphabet {0,1}. A tree domain is a prefix-closed
subset P of D∗. Any element of a tree domain is called a node. Let A be an alphabet.
A tree over A is a map t from a tree domain P into A. The domain of the tree t

is denoted dom(t). For each node w of t , the letter t (w) is called the label of the
node w. A complete tree is a tree whose domain is D∗. The empty tree is the tree
whose domain is the empty set. A (finite or infinite) branch of a tree t is a (finite or
infinite) word x over D such that each prefix of x is a node of t .

Example 1 (Dyck tree) Let A be the alphabet {a, b}. Let L be the set of Dyck words
over D = {0,1}, that is the set of words generated by the context-free grammar with
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Fig. 2 The top of the Dyck tree of Example 1 and two of its factors, of height 3 and 2, respectively. Again,
a is represented by • and b by ◦

productions S → 0S1S + ε. The Dyck tree is the complete tree defined by

t (w) =
{

a if w ∈ L,

b otherwise.
(1)

The top of this tree is depicted in Fig. 2. The first four words ε, 01, 0101 and 0011
of L correspond to the four occurrences of the letter a as label on the top of the tree.

More generally, the characteristic tree of any language L over D is defined to be
the tree t given by (1). Conversely, for any tree t over some alphabet A, and for any
letter a in A, there is a language L = t−1(a) of words labeled with the letter a. The
language L = t−1(a) is called the a-language of t . In the sequel, we deal with the
two-letter alphabet A = {a, b}, and we fix the letter a, and we simply call language
of t its a-language.

We shall see that the language of a tree t is regular if and only if the tree t is
rational.

For any word w and any language L, the expression w−1L denotes the set w−1L =
{x | wx ∈ L}. Let t be a tree over A and w be a word over D. We denote by t[w] the
tree with domain w−1 dom(t) defined by t[w](u) = t (wu) for each u in w−1 dom(t).
The tree t[w] is sometimes written as w−1t , for instance in [2]. If w is not a node of t ,
the tree t[w] is empty. A tree of the form t[w] is the suffix of t rooted at w. Suffixes
are also called quotients or subtrees in the literature.

Let t be a tree over A and let w be a word over D. For a positive integer h, we
denote by D<h the set (ε + D)h−1 of words over D of length at most h − 1. We set
D<0 = ∅.

Let h be a nonnegative integer. The truncation of a tree t at height h is the re-
striction of t to the domain D<h. Any tree obtained by truncation is called a prefix
of t . A factor of t is a prefix of a suffix of t . More precisely, for any word w and any
nonnegative integer h, we denote by t[w,h] the factor of height h rooted at w, that is
the tree of domain w−1 dom(t) ∩ D<h and defined by t[w,h](u) = t (wu). A factor
of height 0 is always the empty tree. A factor t[w,1] of height 1 can be identified
with the letter t (w) of A that labels its root. A prefix is a tree of the form t[ε,h].
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Factors of height h are sometimes considered to have height h− 1 in the literature
(e.g. [2]). In this paper, the height of a finite tree is the number of nodes along a
maximal branch and not the number of steps in-between. Our convention will be
justified by Proposition 1 which extends a similar result for words in similar terms.

The following equation for any words w and w′ over D and any positive integers h

and h′ holds:

t[w,h][w′, h′] = t[ww′,min(h − |w′|, h′)] for |w′| ≤ h.

A tree is rational if it has finitely many distinct suffixes. Recall (see e.g. [3]) that
a tree over an alphabet A is rational if and only if t−1(a) = {w ∈ D∗ | t (w) = a}
is a regular subset of D∗ for each letter a of A. For instance the Dyck tree t of
Example 1 is not rational since t−1(a) is the Dyck language which is not regular [7].
The following proposition gives a characterization of complete rational trees using
factors. It extends to trees the characterization of ultimately periodic words by means
of their subword complexity [4]. This statement appears also in [2], we give the proof
for sake of completeness.

Proposition 1 A complete tree t is rational if and only if there is an integer h such
that t has at most h distinct factors of height h.

Proof It is clear that if t has k distinct suffixes, it has at most k distinct factors of
height h for any h.

Conversely, we prove by induction on h that if t has at most h factors of height h,
then t is rational. If h = 1, all nodes in t have the same label and clearly t is rational.
Suppose now that h > 1 and that t has h factors f1, . . . , fh of height h. Each factor
of height h−1 of t is a prefix fi[ε,h−1] of some factor fi . If there are at most h−1
such factors, then t is rational by the induction hypothesis. Otherwise, each factor of
height h − 1 is the prefix of exactly one factor of height h. But this means that each
suffix is determined by its prefix of height h − 1. Consequently, t has h suffixes and
therefore is rational. �

A tree is Sturmian if it is complete and if it has h + 1 factors of height h for any
integer h. Since the factors of height 1 are the letters t (w) a Sturmian tree is de-
fined over a two letter alphabet. In what follows, we always assume that this alphabet
is {a, b}.

Remark 1 In a Sturmian tree t , each subtree of height h has infinitely many occur-
rences. This does not mean that all infinite subtrees of t are Sturmian, see for instance
the Dyck tree (Fig. 2).

We will prove later that the Dyck tree given in Example 1 is indeed Sturmian. We
start with some simpler examples of Sturmian trees.

In the first of these examples, the same infinite word is repeated along each branch
of the tree.
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Fig. 3 The top of a left branch tree for the word abaaba · · ·

Example 2 (Uniform trees) Let x = x0x1x2 · · · be an infinite word over an alphabet
A, where x0, x1, x2, . . . are letters. The uniform tree of x is the complete tree t defined
by t (w) = x|w|. This means of course that all nodes of the same level n in the tree
are labeled with the same symbol xn. If x is a Sturmian word, then its uniform tree t

is a Sturmian tree. Figure 1 shows the top of the uniform tree of the Fibonacci word
x = abaaba · · · .

Example 3 (Left branch tree) Let x = x0x1x2 · · · be an infinite word over A, where
x0, x1, x2, . . . are letters. We define a complete tree t by t (w) = x|w|0 . (Recall that
|w|d is the number of occurrences of d in w.)

The label of each node w is the letter xn of x, where n is the number of symbols 0
occurring on the path from the root to w. The label of the root node is x0. If the label
of w is xn, the labels of w0 and w1 are respectively xn+1 and xn.

In particular, the letters of the word x label the nodes of the leftmost branch of the
tree, and all nodes on a rightmost branch share the same label. Figure 3 shows the top
of the left branch tree of the Fibonacci word x = abaaba · · · .

We write x[n,h] for the factor xnxn+1 · · ·xn+h−1 of the word x. In Example 2, two
factors t[w,h] and t[w′, h] of height h are equal if and only if x[|w|, h] = x[|w′|, h].
In Example 3, t[w,h] and t[w′, h] are equal if and only if x[|w|0, h] = x[|w′|0, h].
It follows that in these examples, the tree t is Sturmian if and only if the word x is
Sturmian.

Example 4 (Indicator tree) Let x be an infinite word over D. The indicator tree of x

is the complete tree t defined by

t (w) =
{

a if w is a prefix of x,

b otherwise.

In other terms, there is exactly one infinite path in t with all its nodes labeled by the
letter a. The letters of this path are the letters of the word x. Equivalently, the indicator
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Fig. 4 The top of the indicator
tree for the Fibonacci word
01001010 · · · . The only nodes
labeled a are on the Fibonacci
path

tree of the infinite word x is the characteristic tree of the language composed of its
(finite) prefixes. Figure 4 shows the indicator tree of the Fibonacci word. It can be
easily proved that x is a Sturmian word if and only if its indicator tree t is a Sturmian
tree.

The following Example 5 is a variation on Example 4. For a finite word w and an
infinite word x, we denote by d(w,x) the integer |w| − |u| where u is the longest
common prefix of w and x.

Example 5 (Band indicator tree) Let x = x0x1x2 · · · be an infinite word over D and
let k be a non-negative integer. The band indicator tree of width k is the complete
tree t defined by

t (w) =
{

a if d(w,x) ≤ k,

b otherwise.

The same argument shows that x is a Sturmian word if and only if t is a Sturmian
tree. An example is given in Fig. 5. The band indicator tree of width 0 is the indicator
tree defined in Example 4, since d(w,x) ≤ 0 if and only if w is a prefix of x.

3 Slow Automata

Let t be a complete tree over {a, b}. The language of t is the set t−1(a). We study
properties of trees by considering automata recognizing their language. In particular,
minimization of automata will play a central role.

We recall elementary properties of automata, just observing that they hold also
when the set of states is infinite. We only use deterministic and complete automata.
An automaton A over a finite alphabet D is composed of a state set Q, a set F ⊆ Q

of final states, and of a next-state function Q × D → Q that maps (q, d) to a state
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Fig. 5 The top of the band
indicator tree of width 1 for the
Fibonacci word 01001010 · · · .
The nodes labeled a are at
distance at most 1 from the
Fibonacci path

Fig. 6 Automaton of the Dyck
language. State 0 is both the
initial and the unique final state

denoted by q · d . The next state function is extended to a function from Q×D∗ to Q

by setting q · ε = q and q · wd = (q · w) · d for a word w ∈ D∗ and a letter d ∈ D.
Given a distinguished state i, a word w over D is accepted by the automaton if the
state i · w is final. When we emphasize the existence of state i, we call it the initial
state as usual.

An automaton B is a subautomaton of an automaton A if its set of states is a subset
of the set of states of A which is closed under the next-state function of A.

Example 6 (Dyck automaton) The following automaton accepts the Dyck language.
The set of states is Q = N ∪ {∞}. The initial and unique final state is 0. The next
state function is given by n · 0 = n + 1 for n ≥ 0, n · 1 = n − 1 for n ≥ 1, 0 · 1 =
∞ and ∞ · 0 = ∞ · 1 = ∞. This automaton is depicted in Fig. 6. We call it the
Dyck automaton. The singleton {∞} is the unique proper subautomaton of the Dyck
automaton.

Given an arbitrary automaton A, we define inductively a sequence (∼h)h≥1 of
equivalence relations on Q as follows.

q ∼1 q ′ ⇐⇒ (q ∈ F ⇐⇒ q ′ ∈ F),

q ∼h+1 q ′ ⇐⇒ (q ∼h q ′ and ∀d ∈ D q · d ∼h q ′ · d).

These are well-known in the case of finite automata, and many properties extend to
general automata. We call ∼h the Moore equivalence of order h. The index of ∼h is
the number of equivalence classes of ∼h. The Moore minimization algorithm consists
in computing inductively the Moore equivalences.
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Example 7 We illustrate this definition on the Dyck automaton given in Example 6.
By definition the relation ∼1 has two classes: one contains all the final states and

the other contains all other states. Here, these classes are {0} and Q \ {0}. One easily
checks that the classes of ∼2 are the three sets {0}, {1} and Q \ {0,1}. It is easily
shown by induction that the classes of ∼h are the h + 1 sets {0}, {1}, . . . , {h − 1} and
Q \ {0,1, . . . , h − 1}.

We define the Nerode equivalence relation ∼ by ∼= ⋂
h≥1 ∼h. It is clear that

q ∼ q ′ holds if and only if LA(q) = LA(q ′) where LA(q) denotes the set of words
accepted by A with initial state q . We state here a few properties of the relations ∼h

and ∼. They are well-known for finite automata but hold also in the general case

– Each relation ∼h has finite index.
– The relation ∼ has finite index iff ∼ equals ∼h for some integer h.
– If ∼h+1=∼h for some integer h, then ∼h+k=∼h for each k ≥ 0 and ∼=∼h.
– If ∼h has index at most h, then ∼h=∼.
– The relation ∼ is a congruence. This means that for any states q and q ′ and any

letter d ∈ D, q ∼ q ′ implies q · d ∼ q ′ · d .

An automaton is minimal if its Nerode equivalence ∼ is the equality relation.
Many results concerning minimal finite automaton remain valid for infinite ones. For
each subset L of D∗, there is a unique minimal automaton accepting it. This minimal
automaton is equal to A/∼ for any automaton A accepting L. In particular, it can be
obtained from the automaton based on the complete binary tree as described above.

A subautomaton B of a minimal automaton A is itself minimal. The Nerode equiv-
alence of B is the restriction of the Nerode equivalence of A to the set of states of B.

Lemma 1 Let A be an automaton. For any states q, q ′ and any positive integer h,
one has

q ∼h q ′ ⇐⇒ (∀u ∈ D<h q · u ∈ F ⇐⇒ q ′ · u ∈ F) .

Proof The proof is an easy induction on h. Since D<1 = {ε}, the case h = 1 follows
from the definition of ∼1. The induction step follows then from the equality D<h+1 =
D<h ∪ DD<h. �

The equivalence ∼h+1 is a refinement of the equivalence ∼h. Thus the index
of ∼h+1 is at least the index of ∼h. An automaton is called slow if it is minimal
and if the index of ∼h is at most h + 1 for all h ≥ 1. If ∼h and ∼h+1 are different,
that there is one class c of ∼h which gives raise to two classes in ∼h+1. We say that
∼h+1 splits class c, or that class c is split by ∼h+1.

It is sometimes useful to distinguish, in a minimal automaton, two kinds of states.
A state p is rational if it has finitely many descendants in the automaton, viewed
as a graph or, equivalently, if it generates a finite subautomaton. States which are
not rational are called irrational. In the Dyck automaton of Example 7, the state ∞
is the only rational state. In the minimal automaton associated to the language of
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a tree, a state is rational if and only if it corresponds to the root of a rational
tree.

In a slow automaton, the index of each ∼h is exactly h + 1, as long as ∼h is dif-
ferent from ∼h−1. As soon as these relations are equal, they are the identity relation.

Given an infinite slow automaton A, we denote, for h ≥ 0, by ch the class of ∼h

that is split by ∼h+1 and, for h > 0, by c′
h and c′′

h the classes of ∼h obtained by
splitting ch−1 in ∼h.

The following easy property of slow automata is useful.

Lemma 2 Let A be an infinite slow automaton. For h > 0, there exists a letter ah+1

that maps all states of c′
h+1 into c′

h (or all states into c′′
h) and all states of c′

h+1 into
the other of the classes c′

h or c′′
h.

Proof Consider indeed ch = c′
h+1 ∪ c′′

h+1. There exist states q ′ ∈ c′
h+1 and q ′′ ∈ c′′

h+1
which are equivalent for ∼h but which are not equivalent for ∼h+1. By definition, this
means that there is a letter a = ah+1 such that q ′ · a �∼h q ′′ · a, but q ′ · a ∼h−1 q ′′ · a.
In other terms, the class of ∼h−1 containing both states q ′ · a and q ′′ · a is split by
∼h into classes c′

h and c′′
h. Furthermore, the letter a maps all states of c′

h+1 into c′
h

(or into c′′
h) and all states of c′′

h+1 into the other of these two classes c′
h and c′′

h, as
claimed. �

Observe that the lemma does not say anything about the letters distinct from ah+1.
However, since the automaton is slow, they also map the classes c′

h+1 and c′′
h+1 into

classes of ∼h.

Corollary 1 Let A be an infinite slow automaton. There exists an infinite sequence
of pairs (c′

h, c
′′
h) of classes of ∼h such that each c′

h ∪ c′′
h is the equivalence class of

∼h−1 split by ∼h, and letters ah, such that each ah maps all states of c′
h into states

of c′
h−1, and all states of c′′

h into states of c′′
h−1.

Proof This is a direct consequence of the previous lemma. �

Remark that for this corollary also the other letters of the alphabet do not split other
classes.

Let t be a complete tree over {a, b}. Recall that the language of t is the set t−1(a).
Let A be an automaton accepting t−1(a). The following proposition shows that the
classes of ∼h are in a one to one correspondence with the factors of t of height h.

Proposition 2 Let t be a complete tree and let A be an automaton over D accepting
the language of t , with initial state i. For any words w,w′ ∈ D∗ and any positive
integer h, one has

i · w ∼h i · w′ ⇐⇒ t[w,h] = t[w′, h].

Proof Set q = i · w and q ′ = i · w′.
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Fig. 7 Automaton of an
extension of the Dyck language

q ∼h q ′ ⇐⇒ (∀u ∈ D<h q · u ∈ F ⇐⇒ q ′ · u ∈ F)

⇐⇒ (∀u ∈ D<h t(wu) = a ⇐⇒ t (w′u) = a)

⇐⇒ t[w,h] = t[w′, h] .
�

Corollary 2 Let t be a complete tree and let A be an automaton over D accepting
the language of t . The tree t is Sturmian if and only if the minimal automaton of its
language is infinite and slow.

Example 8 We have seen in Example 7 that the relation ∼h for the Dyck automaton
of Example 6 has h + 1 classes. Thus this automaton is slow and the Dyck tree given
in Example 1 is Sturmian. The automaton of Fig. 6 is just one special case of an un-
countable family of slow automata defined in a quite similar way and which provide
an uncountable family of Sturmian trees.

These automata differ from the Dyck automaton by the behavior of the next-state
function for the letter 0: instead of having n · 0 = n + 1 for n ≥ 1, we require only
that n · 0 ≥ n, and in addition that each state n is accessible from the initial state 0.
An example is given in Fig. 7. It is easily checked that again that the classes of ∼h

are the h + 1 sets {0}, {1}, . . . , {h − 1} and Q \ {0,1, . . . , h − 1}. So these automata
are all slow.

We consider now the automata for the examples of Sturmian trees of the previous
section.

Example 9 (Indicator tree) We consider the automaton of an indicator tree, as defined
in Example 4. Let x = x0x1x2 · · · be an infinite word over D. The indicator tree of x

is the complete tree t defined by

t (w) =
{

a if w is a prefix of x,

b otherwise.

Recall that for d ∈ D, we write d̄ for the opposite letter, that is 0̄ = 1 and 1̄ = 0. Let
x = x0x1x2 · · · be an infinite words over D and let us consider the tree tx defined in
the previous example. The minimal automaton accepting the language t−1

x (a) has set
of states Q = N∪{∞}, with initial state i = 0 and set of final states F = N. The next-
state function is given by n · xn = n+ 1, n · x̄n = ∞ and ∞· 0 = ∞· 1 = ∞. Figure 8
shows the automaton accepting the prefixes of the Fibonacci word x = 01001010 · · · .
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Fig. 8 Automaton accepting the prefixes of 01001010 · · · . All states excepted ∞ are final

Fig. 9 Automaton of the band indicator tree of width 1 for the Fibonacci word 01001010 · · · . Only one
state is not final

By Theorem 1 below, indicator trees of Example 4 are Sturmian for Sturmian
words. However, indicator trees are sufficiently simple to allow a direct proof. By
Corollary 2, it suffices to show that each equivalence relation ∼h on the automaton of
the previous example has h+1 classes. The classes of ∼1 are the two sets N and {∞}.
Let h be a positive integer. We claim that two states n and n′ satisfy n ∼h n′ if and
only if xn · · ·xn+h−2 = xn′ · · ·xn′+h−2. Indeed, a word u ∈ D<h satisfy n · u ∈ F if
and only if u is a prefix of xn · · ·xn+h−2. For a word w of length k over D, we denote
by Nw the set {n | xn · · ·xn+k−1 = w}. Note that Nw is non empty if w is a factor
of x. It follows then that the classes of ∼h are the set {∞} and the h sets of the form
Nw where w is a factor of length h − 1 of x. Therefore, the tree tx of Example 4 is
Sturmian if and only if x is Sturmian.

Example 10 We give in Fig. 9 the automaton for a band indicator tree, as defined in
Example 5.

Example 11 Let x and x′ be two Sturmian words over D that have exactly the same
factors but share no common suffix: for each factorization x = uy, x′ = u′y′, one has
y �= y′.

Such words do exist. Indeed, it is known that the set of Sturmian words having
exactly the same fixed set of factors is a minimal subshift, and since it is infinite, it is
uncountable. On the other side, for each (of the countably many) suffix of an infinite
word, there are only countably many infinite words sharing this suffix.
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Fig. 10 Automaton of tx,x′ for x = 01001010 · · · and x′ = 10100100 · · ·

Fig. 11 Three Rauzy graphs for the Fibonacci word

We define a tree tx,x′ by giving a (minimal) automaton accepting t−1
x,x′(a). Let Q

be the set N ∪ {n′ | n ∈ N} ∪ {∞}. The only final state is ∞. See Fig. 10.
To prove that tx,x′ is Sturmian, one shows that the automaton is slow and minimal.

The automaton is indeed minimal because the two words share no common suffix,
and it is slow because the two words are Sturmian and have the same set of factors.

4 Rauzy Graphs

We define here the Rauzy graphs of a tree. This notion extends to trees the Rauzy
graphs of words [1]. Recall that, for an infinite word x, the Rauzy graph of order h,
or the Rauzy graph for short, is a graph whose vertices are the factors of length h of
x, and whose edges are in bijection with the factors of length h + 1 of x as follows.
The pair (u, v) is an edge if u = cw, v = wd for some letters c, d , and ud = cv is a
factor of x, see Fig. 11. Rauzy graphs are special de Bruijn graphs.

The h-Rauzy graph of an infinite word x can be viewed as the quotient of an
infinite automaton. Define indeed an infinite automaton A(x) = (N,0,F ) over a one
letter alphabet with next-state function n �→ n + 1, and set of final states F = {n |
xn = a}. This automaton recognizes the set of prefixes of x ending with the letter a,
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Fig. 12 Automaton for the Fibonacci infinite word f . A state i is final if fi = a. The state 0 is initial.
Final states are gray

Fig. 13 An edge (tε, t0, t1) of a Rauzy graph. The factor tε is the prefix of some factor f of height h + 1,
and t0 and t1 are the left and right subtrees of height h of f

Fig. 14 The three factors of
height 2 of the Dyck tree, named
α, β and γ

see Fig. 12. The Moore equivalence ∼h of order h of A(x) satisfies

n ∼h n′ if and only if [n + i ∈ F ⇔ n′ + i ∈ F (0 ≤ i < h)]
thus n ∼h n′ if and only if the factors x(n,n + h) and x(n′, n′ + h) of x are equal.
The quotient A(x)/∼h has its vertices in bijection with the factors of length h of x,
and there is an edge (u, v) precisely if u = x(n,n + h) and v = x(n + 1, n + 1 + h)

for some n. This shows that the quotient A(x)/∼h is precisely the Rauzy graph of x.
Observe that if x is Sturmian, there is exactly one class of ∼h that splits into two
classes of ∼h+1. This corresponds to the unique right special factor of length h, that
is to the state in A(x)/∼h which has two outgoing states.

The situation for trees is more involved. Roughly speaking, the vertices of the
h-Rauzy graph of a tree are the factors of height h and its edges are the factors of
height h + 1. It turns out that these graphs are in fact hypergraphs since each edge is
a triple of vertices.

Let t be a complete tree. For an integer h, the h-Rauzy graph of t is a graph whose
vertices are the factors of height h of t . Its edges are triples of the form (tε, t0, t1)

where tε , t0 and t1 are three vertices, that is, three factors of height h of t . Each
factor f of height h + 1 of t , define an edge (tε, t0, t1) by tε = f [ε,h], t0 = f [0, h]
and t1 = f [1, h]. The edges of the h-Rauzy graph are in bijection with the factors of
height h + 1 of t , since a factor of height h + 1 is entirely defined by its three factors
of height h.

An edge (tε, t0, t1) of a Rauzy graph is drawn as in Fig. 13. If the tree t is Stur-
mian, its h-Rauzy graph has h + 1 vertices and h + 2 edges. Furthermore, since each
factor of height h is the prefix of at least one factor of height h + 1, there is at least
one edge starting in each vertex. Consequently, there is precisely one vertex which
has two edges starting in it.
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Fig. 15 The four factors of height 3, and the five factors of height 4 of the Dyck tree

Fig. 16 The 1, 2, and 3-Rauzy graphs of the Dyck tree. There is exactly one edge starting in each vertex,
excepted for b, γ and u

Example 12 Let us consider the Dyck tree given in Example 1. Its factors of height
2, 3 and 4 are shown in Figs. 14 and 15. Its 1, 2 and 3-Rauzy graphs are given in
Fig. 16.

The states of the 1-Rauzy graphs are the two factors of height 1, that is the letters
a and b. The edges of the 2-Rauzy graph are the three factors of height 2 named α, β

and γ for convenience.
The states of the 2-Rauzy graph are the three factors α, β and γ , and the edges are

the four factors of height 3 are named r , s, t , and u.
The states of the 3-Rauzy graph are the four factors r , s, t , and u, and its edges

are the five factors given in the second row of Fig. 15

Let t be a complete tree over {a, b} and let A be an automaton accepting t−1(a).
Let h be an integer. We construct a hypergraph A/∼h as follows. The vertices of
A/∼h are the equivalence classes of ∼h. The edges of this graph are the triples of
the form ([q], [q · 0], [q · 1]) where q ranges over the states of A and [q] denotes the
class of q .

Proposition 3 Let t be a complete tree. The graph A/∼h is the h-Rauzy graph of t .

Proof By Proposition 2, there is a one to one correspondence between vertices
of A/∼h and vertices of the h-Rauzy graph. Furthermore, two states satisfy [q] =
[q ′], [q · 0] = [q ′ · 0], and [q · 1] = [q ′ · 1] iff they satisfy q ∼h+1 q ′. Again by Propo-
sition 2, there is a one to one correspondence between edges of A/∼h and edges of
the h-Rauzy graph. �
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5 Rank and Degree

Recall that a branch of a tree is a (finite or infinite) word x over D such that each
prefix of x is a node of the tree.

A node w of a tree t is called rational if the suffix t[w] is a rational tree. It is called
irrational otherwise. The rank of a tree t is the number of distinct rational suffixes
of t . This number is either a nonnegative integer or infinite.

If w is an irrational node, then its prefixes also are irrational. Furthermore, at least
one of the two words w0 and w1 also is irrational. The set of irrational nodes of a
tree is a tree domain in which any finite branch is the prefix of an infinite branch.

In a Sturmian tree t , a node w is irrational if and only if t[w] is a Sturmian tree.
The degree of a tree t is the number of infinite branches composed of irrational

nodes. This number is either a nonnegative integer or infinite. If the degree is 0, the
tree t is rational.

As a first example, consider the Dyck tree defined in Example 1. It has rank 1
and has infinite degree. A node w of this tree is rational if it is not a prefix of some
Dyck word. The set of rational nodes is thus the set L1D∗ where L is the set of Dyck
words. On the contrary, each branch in 00∗10ω only contains irrational nodes. The
degree of the Dyck tree is thus infinite.

Next, let t be the indicator tree of a Sturmian word x, as defined in Example 4.
A node w of t is irrational if and only if it is a prefix of x. Thus, the word x itself
is the only infinite branch composed of irrational nodes, and therefore the degree of
this tree is 1. All rational subtrees are the same, so this tree has rank 1.

These examples show that there are Sturmian trees of degree 1 or of infinite de-
gree. It turns out that there exist also Sturmian trees of finite degree greater than 1.
In Sect. 7, we construct a Sturmian tree of degree 2 but this construction is rather
involved.

Here is a table summarizing the relations between degree and rank for Sturmian
trees. A tree with rank 0 always has infinite degree since there is no rational node.

rank
degree finite infinite

1 characterized in Theorem 1 Example 14
Indicator tree (rank 1)
Band width tree (rank d + 1)

≥ 2, finite empty by Proposition 6 Example 15
infinite Uniform tree (rank 0) Example 14(a)

Left branch tree (rank 0)
Example 11 (rank 0)
Dyck tree (rank 1)

The main result of the paper is the characterization of Sturmian trees of degree 1
and with finite rank by a structural property of the minimal automaton of its language.
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6 Trees with Finite Rank

We start with an observation concerning the occurrences of subtrees of fixed height
in a Sturmian tree of finite rank.

Let t be a Sturmian tree. For any h ≥ 0, each of the h + 1 factor trees of height h

of t has infinitely many occurrences in t . Indeed, assume the contrary. Then there is
an integer N such that some factor tree of height h does not occur in the subtrees t[w]
with |w| ≥ N . But then these subtrees are all rational and t is rational, contradiction.

We now turn to the question of how these infinitely many occurrences are dis-
tributed in a Sturmian tree. This question arises as a natural extension of the same
question concerning Sturmian words: one knows that every factor of a Sturmian word
appears infinitely times (words sharing this property are called recurrent), and more-
over the difference between consecutive occurrences of the same factor in a Sturmian
word is bounded, for each factor (words with this property are called uniformly recur-
rent). For Sturmian trees, it is clearly false that every factor tree of height h appears
on every infinite branch, because there exist infinite branches of rational nodes, as
soon as the rank of the tree is positive. However, we have the following property
which shows that there exist branches which are in some sense recurrent.

Proposition 4 In any Sturmian tree of finite rank, there exists an infinite branch
composed of irrational nodes such that every factor tree having its root on this branch
appears infinitely many times on this branch.

Proof Let r be the rank of the Sturmian tree t and let t (1), . . . , t (r) be the distinct
rational subtrees of t . For each irrational node w, the irrational tree t[w] rooted at w

is distinct from t (1), . . . , t (r). Therefore, there exists an integer Hw such that the prefix
t[w,Hw] of height Hw of t[w] differs from the prefixes of height Hw of t (1), . . . , t (r).

We claim that for every pair v, v′ of irrational nodes, and for every h > 0,
there exists an irrational node v′′ such that v′′ is a proper descendent of v′ and
t[v,h] = t[v′′, h]. Indeed, let H ≥ max(h,Hv), where Hv is defined as above. Since
v′ is irrational, there exists a proper descendent v′′ of v′ such that t[v′′,H ] = t[v,H ].
Since H ≥ Hv , the tree t[v′′,H ] is not a prefix of one of the rational trees. Thus v′′
is an irrational node. Since H ≥ h, one has t[v,h] = t[v′′, h].

The proposition is derived from the claim by constructing an infinite branch as
follows, for h = 1,2, . . . . For h = 1 the claim (with v = v′ = ε) shows that there exist
an irrational node w �= ε such that t (ε) = t (w). Denote by z0 = ε, z1, . . . , zn = w the
path from ε to w. For h = 1, consider the factor trees t[z0, h] and t[z1, h]. By the
claim, there exists path zn, zn+1, . . . , zn+m to an irrational node such that t[z0, h] =
t[zn+m,h], and a path zn+m, zn+m+1, . . . , zn+m+m′ to an irrational node zn+m+m′
such that t[z1, h] = t[zn+m+m′ , h].

The general step is as follows. One considers the h factor trees t[z0, h], t[z1, h],
. . . , t[zh−1, h] that are rooted on the first h nodes of the irrational path z0, . . . , zmh

already constructed. For each of these factor trees, one extends the irrational path by
paths zmh

→ zmh+p0 , zmh+p0 → zmh+p1, . . . , zmh+ph−2 → zmh+ph−1 in such a way
that t[z0, h] = t[zmh+p0, h], t[z1, h] = t[zmh+p1, h], . . . , t[zh−1, h] = t[zmh+ph−1, h].
In this way, the irrational path has been extended from node zmh

to node zmh+ph−1 ,
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and on this path there is a copy of each of the factor trees of height h which are rooted
on the first h nodes of the irrational path. This ensures that all factor trees of height
at most h that are rooted on the first h nodes of the path appear at least twice, and in
fact infinitely often when this construction is repeated. This concludes the proof. �

Observe that we do not claim that for every infinite branch composed of irrational
nodes, every subtree of height h appears infinitely many times (of course, at least
one does so). Observe also that our proof does not show that subtrees of height h

appear with bounded gaps. So we have shown that the subtrees appear as factors in a
recurrent word, but we do not know if they may appear in some uniformly recurrent
way.

We shall see later (Example 16) an example showing that the proposition does not
hold if the tree has infinite rank.

6.1 A Tree of Degree One

In this section, we give an example of a family of Sturmian trees with finite rank and
of degree 1. These trees are generalizations of the band indicator trees of Example 5.
We describe the family of automata accepting their languages. These (infinite) au-
tomata are based on a finite slow automaton. In this automaton, a path (called a lazy
path) is distinguished. The infinite automaton is obtained by repeating the lazy path
and intertwining the copies with symbols taken from an infinite Sturmian word, as
we will see below.

In the next section, we show that conversely, any Sturmian tree of degree 1 and
with finite rank can be obtained by this construction.

Let A = (Q, {i},F ) be a finite deterministic automaton over the alphabet D with
N states. We assume that A has the two following properties. First, A is slow. Re-
call that by definition, this means that the automaton is minimal and that the Moore
minimization algorithm splits just one equivalence class into two new classes at each
step.

Next, we suppose that there is a lazy path in A: by definition, this is a path

π : q0
a0−→ q1

a1−→ q2 · · ·qh−1
ah−1−−→ qh

of length h, where q0 and qh are the two states which are separated in the last step in
the Moore algorithm together with the condition that

qh−1 · āh−1 = q0 or qh

where ā = 1−a for a ∈ D. If N ≥ 2, the first of these conditions means that q0 ∼N−2
qh and q0 �∼N−1 qh. As a consequence, the second property means that if the states
qh−1 · āh−1 and qh−1 · ah−1 are distinct, they cannot be separated before the very last
step of the Moore algorithm.

Example 13 The automaton Â given in Fig. 17 has a subautomaton A composed of
the states {p, s, r}. This subautomaton is slow: the first partition is into {p, r} and {s},
and the second partition is equality. The finite subautomaton A in Fig. 17 admits for
example the lazy path π : p 0−→ s

0−→ p
0−→ s

1−→ r , and indeed s
0−→ p. Here h = 4.
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Fig. 17 A slow automaton Â for the Fibonacci word x0x1 · · · = 01001010 · · · . The final states are
p, r,0,2,4, . . .

Given the finite slow automaton A, the lazy path π and an infinite word x =
x0x1x2 · · · over D, we now define an infinite automaton Â which accepts the set of
nodes labeled a of a tree t . The automaton Â will be minimal as soon as x is not
eventually periodic. We will show that if x is a Sturmian word, then t is a Sturmian
tree of degree 1. This automaton is the extension of A by π and x, and is denoted by
Â = A(π, x).

The set of states of Â is Q ∪ N. For convenience, we use a mapping q : N →
{q0, . . . , qh−1} defined by q(n) = qn mod h for any n ∈ N. Here and below q0, . . . , qh

are the states of the lazy path of A and a0, . . . , ah−1 are the letters labeling the path.
The initial state of Â is 0 and its set of final states is F ∪ q−1(F ). The next-state
function of A is extended to Â by setting, for n ∈ N,

(α) if n �≡ h − 1 mod h, then n · an mod h = n + 1 and n · ān mod h = q(n) · ān mod h,
(β) if n = ih + h − 1 for some i ≥ 0, then n · xi = n + 1 and n · x̄i = q0.

The infinite path through the integer states of the automaton Â is composed of
an infinite sequence of copies of the lazy path of A. For each state q(n) inside each
of the copies of the lazy path, the next-state for the “other” letter, that is the letter
ān mod h, maps q(n) back into A. Two consecutive copies of the lazy path, say the
ith and i + 1th, are linked together by the letter xi of the infinite word x driving the
automaton (see Fig. 17).

Proposition 5 Let Â = A(π, x) be the extension of the finite slow automaton A by a
lazy path π and an infinite word x. If the word x is Sturmian, then Â defines a tree t

which is Sturmian, of degree 1, and having finite rank.

The tree defined by this automaton has degree 1 since the only irrational states are
the integer states n and they all lie on a single branch. Its rank is the number of states
of the automaton A. We claim that this tree is also Sturmian. The proof is through
three lemmas.

We denote by ∼k the Moore equivalence on the states. The next three lemmas just
prove that the automaton has the required properties. We fix the automaton A, set N

to be the number of its states, and we fix the lazy path π : q0
a0−→ q1

a1−→ · · · ah−1−−→ qh.
We also use the notation q(n) = qn mod h. However, in the three following lemmas, x

is not required to be Sturmian.
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Fig. 18 The tree showing the evolution of the Moore equivalence relations on the automaton given in
Fig. 17. Each level describes a partition. Each level has one class splitting into two classes at the next level

Lemma 3 For 1 ≤ k ≤ N − 1 and any n ≥ 0, one has n ∼k q(n).

Proof By induction on k. The result clearly holds for k = 1 since the set of final states
is F ∪ q−1(F ). Assume that n ∼k q(n) for any n ≥ 0 and k ≤ N − 2. We prove that
n ∼k+1 q(n) holds for any n ≥ 0.

If n �≡ h−1 mod h, then setting a = an mod h, one has n ·a = n+1 ∼k q(n+1) =
q(n) · a and n · ā = q(n) · ā. From n ∼k q(n), it follows that n ∼k+1 q(n).

Suppose now that n = ih + h − 1 for some i ≥ 0. One has n · xi = n + 1 ∼k q0,
n · x̄i = q0 and qh−1 · xi, qh−1 · x̄i ∈ {q0, qh}. Furthermore, q0 ∼k qh because k ≤
N − 2. This, together with n ∼k q(n), shows that q(n) ∼k+1 qh−1. �

Example 13 (continued) In our example, one has h = 4 and q(n) = p if n ≡
0,2 mod h, and q(n) = s otherwise. Also, the first two Moore equivalence classes
group together integer states with their images by the mapping q . Observe that each
class in ∼2 contains exactly one state of the {p, s, r}.

Lemma 4 Let k, � ≥ 0 be integers with k + � = h − 1.

1. If (n mod h) < �, then n ∼N+k q(n).
2. If (n mod h) ≥ �, then n �∼N+k p for any p ∈ Q, and n ∼N+k n′ iff n ≡ n′ mod h.

Example 13 (continued) In our example, the next h steps (with h = 4) split away
classes of integer states, in the decreasing order of their labels mod 4: first the states
n ≡ 3 mod h, then the states n ≡ 2 mod h and so on. After these steps, the states
p, s, r are singleton classes.

Proof of Lemma 4 The proof is by induction on k.
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First, assume k = 0, that is � = h − 1.
If 0 ≤ n mod h ≤ h − 2, then n �≡ h − 1 mod h. By the previous lemma, one has

n ∼N−1 q(n). Setting a = an mod h for short, one has n · a = n + 1 ∼N−1 q(n + 1) =
q(n) · a and n · ā = q(n) · ā. This proves that n ∼N q(n).

If n = ih + h − 1, then for the first claim, it suffices to prove that n �∼N q(n). To
show this, observe that the letter ah−1 separates n and q(n) = qh−1. Indeed, first one
has qh−1 · ah−1 = qh and second, n · xi = n + 1 ∼N−1 q0 and n · x̄i = q0. Conse-
quently, n · ah−1 ∼N−1 q0 �∼N−1 qh. This proves the first claim.

For the second claim, consider n ≡ n′ mod h and set n′ = h′ +h−1. Then n ∼N−1
n′ by the previous lemma, and moreover n · xi = n + 1 ∼N−1 q0, n · x̄i = q0, and
n′ · xi′ = n′ + 1 ∼N−1 q0, n′ · x̄i′ = q0. This proves that n ∼N n′. Suppose conversely
that n �≡ h − 1 mod h. One has n′ ∼N q(n′) by Claim (1) and n �∼N p for any p ∈ Q.
Thus n �∼N n′. This proves that n ∼N n′ iff n ≡ n′ mod h.

Assume now that k > 0 and that the result holds for k − 1. If n is such that
n mod h < �, then n + 1 mod h < � + 1 and by the induction hypothesis, one has
n+ 1 ∼N+k−1 q(n+ 1). Setting a = an mod h for short, one has n ·a = n+ 1 ∼N+k−1
q(n + 1) and n · ā = q(n) · ā. Since n ∼N+k−1 q(n) holds by induction, this shows
that n ∼N+k q(n).

Let n be such that � ≤ n mod h. If � + 1 ≤ n mod h, then n �∼N+k−1 p for each
p ∈ Q which implies that n �∼N+k p for each p ∈ Q. In the last case n mod h = �, it
suffices to show that n �∼N+k q(n). For this, observe that by the induction hypothesis,
one has n + 1 �∼N+k−1 q(n + 1). Next, n · a = n + 1 and q(n) · a = q(n + 1) where
a = an mod h. This proves that n �∼N+k q(n).

Suppose now that n ≡ n′ mod h and set again n = ih + h − 1, n′ = i′h + h − 1. If
n ≡ h− 1 mod h, then n · xi = n+ 1, n · x̄i = q0, n′ · xi′ = n′ + 1 and n · x̄i′ = q0, and
it follows from n ∼N+k−1 n′ and n + 1 ∼N+k−1 n′ + 1 ∼N+k−1 q0 that n ∼N+k n′.

If, on the contrary, n �≡ h − 1 mod h, then n · a = n + 1, n′ · a = n′ + 1 and
n · ā = n′ · a = q(n + 1), and it follows from n ∼N+k−1 n′ and n + 1 ∼N+k−1 n′ + 1
that n ∼N+k n′.

In order to prove the converse, suppose now that n ∼N+k n′. Set m = n mod h

and m′ = n′ mod h. Assume that m �= m′ and without loss of generality m < m′. If
m′ < �, then by Claim (1), n ∼N+k q(n) and n′ ∼N+k q(n′), a contradiction because
q(n) �∼N q(n′). Thus m′ ≥ �. Set �′ = m′ and k′ = h − �′ − 1. Then k′ ≤ k and
m < �′ = m′. Therefore, n ∼N+k′ q(n) and n′ �∼N+k′ p for any p ∈ Q. This implies
n �∼N+k′ n′ and also n �∼N+k n′ since k′ ≤ k. �

Lemma 5 Let k, � ≥ 0 be integers with k + � = h − 1. Let n ≡ n′ mod h and set
i = �n/h� and i′ = �n′/h�. For all integer j ≥ 1,

n ∼N+jh+k n′ ⇐⇒
{

xi · · ·xi+j−2 = xi′ · · ·xi′+j−2 if (n mod h) < �,

xi · · ·xi+j−1 = xi′ · · ·xi′+j−1 otherwise.

The proof is very similar to that of the previous lemma and it is therefore omitted.

Example 13 (continued) In our example, the infinite word is the Fibonacci word
x0x1 · · · = 01001 · · · and h = 4. The first partition is into states ih + h − 1 with



464 Theory Comput Syst (2010) 46: 443–478

xi = 0 and with xi = 1. After 4 steps, the next partition is into states ih + h − 1 with
xixi+1 = 00, with xixi+1 = 01 and with xixi+1 = 10.

Proof of Proposition 5 It suffices to count the number of trees of a given height in t ,
and by Corollary 2, it suffices to show that Â is slow. For this purpose, we compute
the index of ∼n. By Lemma 3, the index of ∼N−1 is N , by Lemma 4 the index
of ∼N+h−1 equals N +h, and by Lemma 5, the index of the equivalence ∼N+jh+h−1

is equal to N +hcx(j) where cx(j) is the number of distinct factors of length j in x. If
x is Sturmian, then cx(j) = j +1, and thus the index of ∼N+jh+h−1 is N +h(j +1).
We have shown that the index of ∼n is n + 1 for infinitely many n, and this implies
immediately that the index is n + 1 for all n. �

6.2 Characterization

In this section, we give a characterization of Sturmian trees of degree 1 which have
finite rank by describing the family of automata accepting their languages. These
(infinite) automata are extensions of a finite automaton by a lazy path and a Sturmian
word.

Theorem 1 Let t be a Sturmian tree of degree one having finite rank, and let Â be
the minimal automaton of the language of t . Then Â is the extension of a slow finite
automaton A by a lazy path π and a Sturmian word x, i.e. Â = A(π, x).

We start with a general lemma which will also be of use later. Consider a tree t

having finite rank. Let Â be the minimal automaton of the language of t . Each of
the finitely many distinct rational subtrees of t contributes a state to this automaton.
Let Q be the finite set of states corresponding to rational subtrees. Recall that a state
in Q is what we called a rational state. The next-state function maps rational states
into rational states, so that the restriction of Â to the set Q is a subautomaton that we
denote by A. This subautomaton is itself minimal.

Given a tree t and some Moore equivalence ∼h on its minimal automaton, it is
convenient to call an equivalence class of ∼h an irrational class if it is entirely com-
posed of irrational states. It is a rational class otherwise. A rational class contains at
least one rational state, and may contain even infinitely many irrational states.

Lemma 6 Let Â be the minimal automaton of some (not necessarily Sturmian) tree t .
Assume that, for some integer h, the equivalence ∼h only splits irrational classes.
Then for all h′ ≥ h, ∼h′ only splits irrational classes.

Proof Let Q be the set of rational states in Â. Let P be the union of the rational
classes of ∼h−1. Then P ⊃ Q, and at least one class c that is split in ∼h is disjoint
from P . The set P is stable for the next-state function: indeed, each state p in P is
equivalent for ∼h−1 to some state q in Q. The states p and q are mapped, by each
letter a, into the same class for ∼h−1 because ∼h does not split any class contained
in P . Thus both states q · a and p · a are in P .
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This shows that P is the set of states of a subautomaton, and since ∼h−1 and ∼h

are identical on this subautomaton, it is minimal and there will never be any splitting
of one of its classes. So all splittings concern only classes that do not contain any
element in Q. �

Note that if the tree t in Lemma 6 has infinite rank, then each ∼h also splits a
rational class. Note also that if t is Sturmian and has infinite rank, there is no irrational
class at all. Thus the lemma is of interest for trees with finite rank.

Corollary 3 Let t be a Sturmian tree with finite rank. Let Â be the minimal automa-
ton of the language of t . Assume that, for some integer h, the equivalence ∼h splits
some irrational class. Then for all h′ ≥ h, ∼h′ always splits an irrational class. �

Lemma 7 Let t be a Sturmian tree with finite rank. Let N be the number of rational
states. The Moore equivalence ∼N−1 has index N and each of these classes contains
exactly one rational state.

Proof This is because the subautomaton composed of rational states is slow and min-
imal. �

Lemma 8 Let t be a Sturmian tree with finite rank. Either there is an integer n such
that all rational classes of ∼n are singletons, or there exists, for each irrational state,
an integer n such that the class of this state in ∼n is a singleton.

Proof Assume that the first of the two possibilities is not realized. Then for all n,
there exists a class containing both rational and irrational states. We call here such
a class a mixed class. Thus a mixed class is a rational class which contains at least
one irrational state. We consider an n ≥ N , where N is the number of rational states,
so each mixed class contains exactly one rational state, and at least one irrational
state. For each n ≥ N the class split in ∼n must be a mixed class, because otherwise
in view of Corollary 3, this class will never be split. The same argument shows that
every irrational class is a singleton. Let p be any irrational state in some mixed class c,
containing a unique rational state, say r . Since p �= r and the automaton is minimal,
there exists an integer m such that r and p are in different classes for ∼m. The class
of p is irrational because r is in another class for ∼m. In view of Corollary 3, the
class of p will never split, so it is a singleton class. �

We will see later examples of Sturmian trees of degree greater than one. In these
examples, the trees have finite rank. This is due to the following property of Sturmian
trees.

Proposition 6 The degree of a Sturmian tree with finite rank is either one or infinite.

Proof Let t be a Sturmian tree with finite rank, and assume it has finite degree d > 1.
A node w of t is a fork if both w0 and w1 are irrational nodes. Since t has degree d ,
it has exactly d − 1 fork nodes.
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A state of the minimal automaton of t is a fork state if it is the state of a fork
node. The automaton has at most d − 1 fork states. We want to show that for large
enough n, an equivalence class of ∼n containing a fork state is a singleton.

In view of Lemma 8, there are two cases. Either there is an integer n such that
all rational states are singletons for ∼n. Then a class of ∼n containing a fork state
contains only fork states since indeed a state that is not a fork state maps to a rational
state by at least one letter, whereas a fork state does not. So any class containing a
fork state is finite, and therefore will be split eventually into singleton classes.

In the other case described by Lemma 8, every irrational state will be in singleton
classes for large enough n. Since there are only finitely many fork states, each of
these will be in a singleton irrational class of ∼n for some n.

Consider now an integer H such that each fork state is a singleton class of ∼H .
This means that the Nerode equivalence and the equivalence ∼H coincide for these
states, and consequently two fork nodes in the tree define the same state in the au-
tomaton if and only if they are the roots of the same subtree of height H . According
to Remark 1, there are infinitely many occurrences of any subtree of height H in
Sturmian tree, there are infinitely many nodes that correspond to the same fork state,
so there are infinitely many fork nodes. This yields the desired contradiction. �

Assume now that the tree t has degree 1. Each of the subtrees of the infinite ir-
rational branch contributes a state to Â. Denote by N the set of states of the infinite
branch. We number these states so that the next-state function of Â maps a state n in
N to the state n + 1 in N by one of the two letters, and to a rational state by the other.

The next statements show that after some additional steps, each of the rational
states constitutes a singleton class of the corresponding Moore equivalence. Recall
that an equivalence class is an irrational class if it is composed only of irrational
states, and a rational class otherwise.

Lemma 9 If the tree t is Sturmian and has degree one, then there is some integer n

such that ∼n splits an irrational class.

Proof Assume the contrary: at each step, the class cn−1 split by ∼n contains a rational
state. We assume n ≥ N , so each class of these classes contains exactly one rational
state.

In view of Corollary 1, there exists an infinite sequence of pairs (c′
n, c

′′
n) of classes

of ∼n such that each cn−1 = c′
n ∪ c′′

n is the equivalence class of ∼n−1 which is split
by ∼n. There are also letters an, such that each an maps all states of c′

n into states
of c′

n−1, and all states of c′′
n into states of c′′

n−1. One of the classes c′
n, c

′′
n contains

the rational state. If this holds for c′
n, then it holds for c′

n−1 since a rational state is
mapped into a rational state. Next, the classes c′′

n never split since they are irrational
classes. Since the automaton is minimal, this implies that these classes are singleton
classes. Set c′′

n = {rn}. Then there is an infinite path · · · rn an−→ rn−1
an−1−−→ · · · aN+1−−−→ rN ,

which is impossible since then 0 ≤ rn = rn−1 − 1 < rn−1 for all n, and the rn are a
strictly decreasing sequence of positive integers. �

From now on, the tree t is assumed to be a Sturmian tree of degree 1 and with
finite rank. In particular, the previous lemma holds.
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Fig. 19 The class cn−1 of ∼n−1 is split into two classes c′
n and c′′

n of ∼n . The letter an maps states of
cn−1 into states of the class c′

n−1 and states of the class c′′
n−1 into states of the class c′′

n−1. Observe that

the classes c′
n−1 and c′′

n−1 are those created at the preceding step

Corollary 4 Let H be the smallest integer such that ∼H splits an irrational class.
Then all rational equivalence classes of ∼H−1 are singletons.

Proof Indeed consider a rational class c of ∼H−1. By Lemma 3, the class c will never
be split again. Since the automaton is minimal, it must be a singleton. �

Lemma 10 Let H be the smallest integer such that ∼H splits an irrational class,
and set h = H − N , where N is the number of rational states. Then there is a lazy
path

π : q0
b0−→ q1

b1−→ · · ·qh−1
bh−1−−→ qh

with qh−1 · b̄h = q0 or qh, where q0, . . . , qh are rational states, and q0 ∼N−2 qh.

Proof According to the previous statements, the equivalence ∼N−1 contains N

classes, and each of its classes contains exactly one rational state. The equivalence
∼H−1 contains H classes. N of theses classes are singleton classes composed of a
rational state, the H − N other classes are irrational classes. Each of the equivalence
relations ∼n, for n = N, . . . ,H − 1, splits a rational class cn−1 containing a single
rational state into a (smaller) class c′

n containing this state, and an irrational class c′′
n .

See Fig. 19.
In view of Corollary 1, there are letters an such that states of c′

n are mapped into
states of c′

n−1 by an and states of c′′
n are mapped by an into states of c′′

n−1.
Each of the rational classes c′

n is mapped, by one letter, into the class c′
n−1, and

by the other letter into some rational class, whereas each of the irrational classes c′′
n

is mapped, by one letter, into the irrational class c′′
n−1 and by the other letter into a

rational class.
The H − N irrational classes produced during these steps will not be changed

before ∼H : so all these irrational classes produced during these steps are also classes
of ∼H−1. Indeed, otherwise a relation splits an irrational class, and by Lemma 3 the
classes containing rational states will not be split anymore. Denote by sn the rational
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Fig. 20 The classes of ∼H−1. The classes c′′
N

,c′′
N+1, . . . , c′′

H−1 are irrational, and the (rational) classes
containing the states sN , sN+1, . . . , sH−1 are singletons

Fig. 21 The class cH−1 of ∼H−1 is split into two classes c′
H

and c′′
H

of ∼H . The letter aH maps states
of c′

H
into states of the class c′

H−1 and states of the class c′′
H

into states of the class c′′
H−1 whereas the

letter āH has the opposite behavior: it maps c′
H

into c′′
H−1 and c′′

H
into c′

H−1

state in the class c′
n, for n = N, . . . ,H − 1. There is a path

sH−1
aH−1−−−→ sH−2

aH−2−−−→ · · · aN+3−−−→ sN+2
aN+2−−−→ sN+1

aN+1−−−→ sN .

Also, sN is mapped by each letter to a rational state. see Fig. 20.
Consider now the equivalence ∼H ; it contains two fresh classes c′

H and c′′
H , ob-

tained by splitting a class cH−1 of ∼H−1. Since all rational classes are singletons
in ∼H−1, the class cH−1 is an irrational class. This means that cH−1 is one of the
H − N irrational classes c′′

N, c′′
N, . . . , c′′

H−1. We prove that cH−1 = c′′
N .

Since the class cH−1 is an irrational class, each of its states is mapped, by one
letter, onto some rational state, and by the other letter onto an irrational state. Let aH

be the letter that maps all states of c′
H onto the state sH−1, and all states of c′′

H into
the irrational class c′′

H−1. It follows that the letter āH maps all states of c′
H (those

mapped by aH onto the rational state) into some irrational class, and all states of c′′
H

(those mapped into irrational states by aH ) onto some rational state. See Fig. 21.
The class cH−1 = c′

H ∪ c′′
H is a subset of an equivalence class of ∼H−2. Con-

sequently each of the letters maps all states of cH−1 onto states that are equivalent
mod ∼H−2, and so belong to a class mod ∼H−2 containing both a rational state and
irrational states. As we observed earlier, this class is cH−2 = c′

H−1 ∪ c′′
H−1.
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Fig. 22 The class c′
N−1 of ∼N−1 contains a rational state q ′ , the class c′′

N−1 contains a rational state q ′′ .
The class cH−2 is a subset of c′′

N−1, and c′′
N

= cH−1

Thus the letter āH maps states of c′
H into c′′

H−1 and states of c′′
H onto sH−1, that

is, the letter āH has the opposite behavior of letter aH .
We have shown that each letter maps some of the states of the irrational class cH−1

to an irrational state, and at least one of its states to a rational one. Since each class
c′′
n , for N < n ≤ H − 1, is mapped, by the letter an, into an irrational class, the class

cH−1 cannot be one of the classes c′′
n for N < n ≤ H − 1, and so cH−1 is the only

remaining irrational class, that is cH−1 = c′′
N .

Recall that sn denotes the rational state in class c′
n, for n = N, . . . ,H − 1, and that

there is a path

sH−1
aH−1−−−→ sH−2

aH−2−−−→ · · · aN+3−−−→ sN+2
aN+2−−−→ sN+1

aN+1−−−→ sN .

The state sN is mapped by each letter to a rational state. Now the equivalence ∼N−1
splits the class cN−2 of ∼N−2 into two equivalence classes c′

N−1 and c′′
N−1, contain-

ing each one rational state, say q ′ ∈ c′
N−1 and q ′′ ∈ c′′

N−1. Denote by aN the letter
that maps c′

N into c′
N−1 and c′′

N into c′′
N−1. The states q ′ and q ′′ are the last rational

states separated in Moore’s algorithm. See Fig. 22.
The class cH−1 is mapped, by both letters, into the class cH−2 (see Fig. 21). The

only rational state in cH−2 is sH−1. The class cH−1 = c′′
N is mapped by the letter aN

into c′′
N−1. This implies that cH−2 ⊆ c′′

N−1 and consequently sH−1 = q ′′. Since the
class c′

N is mapped by aN into c′
N−1, the state sN is mapped by aN to q ′, and by āN

to one of the two rational states in cN−2, thus to q ′ or to q ′′.
In order to fit with the notations of the lazy path, it suffices now to set h = H −N ,

and qi = sH−1−i and bi = aH−1−i , and qh = q ′′. Then the path becomes

q0
b0−→ q1

b1−→ · · ·qh−2
bh−1−−→ qh−1.

Moreover, there is a transition qh−1 · bh = qh, and for the other letter b̄h, either qh−1 ·
b̄h = q0 or qh−1 · b̄h = qh, and indeed q0, qh are the rational states that are equivalent
in ∼N−2. �

According to the (proof of the) preceding lemma, the irrational classes of ∼H−1
and of ∼H behave as depicted in Figs. 23 and 24.
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Fig. 23 The irrational classes of ∼H−1

Fig. 24 The irrational classes of ∼H and sH−1

It remains to exhibit a Sturmian word x such that Â is an extension of the claimed
form. As already mentioned, each of the subtrees of the infinite irrational branch
contributes a state to Â. The states of the infinite branch are denoted by N. They are
numbered such that the next-state function of Â maps a state n in N to the state n+ 1
in N by one of the two letters, and to a rational state by the other.

The irrational path of the tree is labeled by an infinite word

y = y0y1y2 · · · ∈ {0,1}ω

and corresponds in Â to the infinite path

0
y0−→ 1

y1−→ 2 −→ · · · −→ n
yn+1−−→ n + 1 −→ · · · .

For each state n, the letter ȳn maps n into a rational state. It follows from the previous
properties of ∼H−1 that

n ∼H−1 n′ ⇐⇒ n ≡ n′ mod h .

We suppose for simplicity that 0 ∈ c′′
H−1, and we define the infinite word x = x0x1 · · ·

by x0 = yh−1, x1 = y2h−1, and in general xi = y(i+1)h−1. We prove that x is a Stur-
mian word, by showing that it has n + 1 factors of length n for each n ≥ 0.

The key lemma is the following

Lemma 11 Let k, � ≥ 0 be integers with k + � = h − 1. Let n ≡ n′ mod h and set
i = �n/h� and i′ = �n′/h�. For all integer j ≥ 0,

n ∼H+jh+k n′ ⇐⇒
{

xi · · ·xi+j−1 = xi′ · · ·xi′+j−1 if (n mod h) < �,

xi · · ·xi+j = xi′ · · ·xi′+j otherwise.
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Observe that this is Lemma 5, but the assumptions are different. Indeed, in
Lemma 5, the word x defines an automaton and a property of the Moore equiva-
lences is looked for. Here we know the Moore equivalences and we want to describe
a property of a word x that will allow us to show that it is Sturmian. However, the
arguments of the proof are quite similar, so we sketch only one basic, but typical step.

The proof is by induction on H + jh + k. For j = k = 0, there is nothing to prove
except when n ≡ h − 1 mod h. In this case, the claim becomes that n ≡H n′ if and
only if xi = xi′ , with n = ih + h − 1.

By definition, one has n
xi−→ n+ 1 and n′ xi′−→ n′ + 1. Now, the equivalence relation

≡H splits the irrational class c′′
H−1 of ∼H−1 containing both n,n′ into two irrational

classes c′
H and c′′

H of∼H (see Figs. 23 and 24). The states n,n′ are in the same of
these classes iff they are mapped by the same letter xi into an irrational state. Thus
xi = x′

i .
It remains to count the number of factors of the word x. Set k = h − 1, � = 0

in the previous lemma. There are H + (j + 1)h classes in the equivalence relation
∼H+jh+h−1. Among them, N = H −h are rational classes, so there are (j +2)h irra-
tional classes. Any two classes containing integers n,n′ which are congruent modulo
h define the same factor of length j +1 of x, so there are exactly j +2 distinct factors
of length j + 1 in the infinite word x. This concludes the proof of Theorem 1.

7 Trees with Infinite Rank

There exist Sturmian trees with infinite rank. The following example gives a Sturmian
tree with infinite rank and of degree 1.

Example 14 We define a tree by giving a (minimal) automaton accepting its lan-
guage. The set of states of the automaton is Q = {n ∈ N | n ≥ 3} × {0,1}. The set of
final states is the set {(n, b) ∈ Q} with even n. The set E of transitions is defined as
follows. Let n = 2km where m ≥ 1 is odd. The integer 2k is the greatest power of 2
which divides n.

(n, b) · 0 =
{

(2k−1 + 1,0) if m = 1 and b = 0,

(n + 1, b) otherwise,

(n, b) · 1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(3,0) if k = 0,

(4,0) if k = 1,

(4,0) if k = 2, m = 1 and b = 0,

(2k−2 + 1,0) if k > 2, m = 1 and b = 0,

(2k−1 + 1,0) otherwise.

For making the description more readable, we write
�

�

�

�
n for (n,0) and n for

(n,1). In Fig. 25 we give a picture of this automaton.
The next table gives the explicit values of the next-state function for values of n up

to 16. The states are arranged in order to make the state splitting more easy to follow.
Recall that even states are final.
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Fig. 25 Final states are dark. Observe the fractal-like structure, with a doubling of the size of each block
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In order to show that the automaton is slow, we describe how the Moore algorithm
behaves. This will show that the automaton is minimal. We start by considering the
very first splittings. We use the shorthand a + bN for the arithmetic progression {a +
bm | m ≥ 0}.

The minimization algorithm starts with an equivalence relation composed of the
two classes of even (final) and odd (nonfinal) states.

In the first step of partition refinement, only the letter 1 induces a splitting: it splits
the even states into two classes, one composed of

�

�

�

�
4 and the states with numbers in

6 + 4N, the other containing 4 and the states with numbers in 8 + 4N. Observe that
after this splitting, the siblings 4 and

�

�

�

�
4 are in distinct equivalence classes.

At the next step, again only one new class is created. The letter 0 splits the odd
states into two classes, the first composed of

�

�

�

�
3 and of the states with numbers in

5 + 4N, the second composed of 3 and the states in 7 + 4N. Observe that at this
stage, there are four equivalence classes, and the siblings 4 and

�

�

�

�
4 , and the siblings

3 and
�

�

�

�
3 are in distinct equivalence classes.

In the next step, the letter 0 isolates state
�

�

�

�
4 , that is

�

�

�

�
4 is a singleton class. Indeed,

it is mapped on
�

�

�

�
3 whereas all states with numbers in 6 + 4N are mapped on states

in 7 + 4N.
As a consequence, in the next step

�

�

�

�
3 is itself isolated, since it is mapped by 0 on

�

�

�

�
4 whereas the states in 5 + 4N are mapped on states in 6 + 4N. At this stage, there
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are six equivalence classes, namely the states
�

�

�

�
4 and

�

�

�

�
3 which are singletons and the

classes composed of states with numbers in 5 + 4N and 6 + 4N, the class containing
4 and states with numbers in 8 + 4N, and finally the class containing 3 and states

with numbers in 7 + 4N.
Consider one more step. The letter 1 splits the class containing 4 and states with

numbers in 8 + 4N since
�

�

�

�
8 and states with numbers in 12 + 8N are mapped on

�

�

�

�
3

whereas 8 and states with numbers in 16+8N are mapped on
�

�

�

�
5 . Thus in particular,

this step puts 8 and
�

�

�

�
8 in distinct equivalence classes.

We are now able to give an overview of the minimization process. It operates on
the automaton by levels, each level taking care of the states up to the next power
of two (both rational and irrational). Thus the first level operates on the four states
numbered 3 and 4, the second level operates on the eight states numbered from 5 to
8, and so on.

Each level is composed of a separation phase, followed by an isolation phase. Each
step in the separation phase puts the states n and

�

�

�

�
n in distinct equivalence classes.

This separation phase is by decreasing numbers, starting with a power of two. The
isolation phase creates singleton classes. Each step creates a singleton class

�

�

�

�
n , again

by decreasing numbers.
Thus the four steps of the two phases in level 1 are summarized by

1
�

�

�

�
4 4 separated

01
�

�

�

�
3 3 separated

001
�

�

�

�
4 isolated

0001
�

�

�

�
3 isolated

Thus the eight steps of the two phases in level 1 are summarized by

1031
�

�

�

�
8 8 separated

01031
�

�

�

�
7 7 separated

001031
�

�

�

�
6 6 separated

0001031
�

�

�

�
5 7 separated

041031
�

�

�

�
8 isolated

051031
�

�

�

�
7 isolated

061031
�

�

�

�
6 isolated

071031
�

�

�

�
5 isolated

In the first column we have given a word that separates or isolates the corresponding
states.

This description shows why the automaton is minimal: states of the form
�

�

�

�
n even-

tually become singleton classes, states of the form n never become singleton classes,
but two such states will eventually be separated.

Remark 2 The automaton of the previous example may be modified in two ways,
giving still a slow automaton.
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(a) The first modification consists in defining mapping each state (n, b) with n odd by
both letters onto the state (n + 1, b). One observes that the Moore minimization
algorithm behaves in the same way. Now, both the rank and the degree of the tree
are infinite.

(b) The other modification is to map all states that where mapped on 3 in the initial
automaton on state

�

�

�

�
3 . Again, the minimization process does not change. There

are no rational states anymore, so the rank is 0 and the degree is infinite.

This second modification gives some additional information about the splitting of
irrational states in a slow automaton. We have seen examples, as the Dyck automaton,
where splitting is by isolating irrational states. There were also examples such as the
automaton of the indicator trees, where irrational classes are never singletons. Here
we get an example where some of the states are isolates (all states

�

�

�

�
n ) and others are

never (the states n ).

The previous example of a Sturmian tree of degree one having infinite rank can
be extended to an example of a Sturmian tree of degree two which must have infinite
rank in view of Proposition 6.

Example 15 We define a tree by giving a (minimal) automaton accepting its lan-
guage. The set of states of the automaton is the following set Q

Q = {(n,0) | n ≥ 2}
∪ {(n,1) | n = 3 or 3k+2 − 4 · 3k + 1 ≤ n ≤ 3k+2 with k ≥ 0}
∪ {(n,2) | n ∈ {2,3} or 3k+2 − 3k + 1 ≤ n ≤ 3k+2 with k ≥ 0}.

The set of final states is the set {(n, b) ∈ Q mid n ≡ 0 mod 2}. The set E of transitions
is defined as follows. Let n = 2k3�m where m �≡ 0 mod 2 and m �≡ 0 mod 3. The
integers 2k and 3� are the greatest powers of 2 and 3 which divide n.

(n, b) · 0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(3�−1 + 1,0) if k = 0, m = 1 and b = 0,

(3�+1 − 4 · 3�−1 + 1,1) if k = 0, m = 1 and b = 1,

(3�−1 − 2 · 3�−1 + 1,2) if k = 0, m = 1 and b = 2,

(n + 1, b) otherwise,

(n, b) · 1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(3,1) if n = 2 and b = 2,

(3,0) if n = 3 or � = 0,

(3�−2 + 1,0) if k = 0, � ≥ 2 and m = 1,

(3�−1 + 1,0) if k = 0, � ≥ 1 and m ≥ 2,

(3� + 2,0) otherwise.

In Fig. 26 we give a picture of this automaton; states of the form (n,0) are drawn as
circles n© and states of the form (n,1) as squares n and states of the form (n,2) as
lozenges n .

The Moore algorithm here is again slow. It is more complicated. The circled and
square states are used in a very similar way to that of Example 14, but with powers
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of 3. The powers of 3 work for circles and lozenges. It remains to check that the two
processes never collide (which would produce more than a single split in some step).
We leave the formal verification to the reader.

Example 16 We define a tree by giving a (minimal) automaton accepting its lan-
guage. The set of states of the automaton is Q = {(n,0) ∈ N | n ≥ 3} ∪ {(n,1) ∈
N | n ≥ 0} ∪ {(2k,2) ∈ N | k ≥ 1}. The set of final states is the set {(n, b) ∈ Q}
with even n. The set E of transitions is defined as follows. Let n = 2km where
m ≥ 1 is odd. The integer 2k is the greatest power of 2 which divides n. First
(n,2) · 0 = (n,2) · 1 = (n + 1,0) for all n. Next (0,1) · 0 = (0,1) · 1 = (1,1). For
n ≥ 1 and b = 0,1,

(n, b) · 0 =
{

(2k−1 + 1,0) if m = 1 and b = 0,

(n + 1, b) otherwise,

(n, b) · 1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(3,0) if k = 0,

(4,0) if k = 1,

(2k−2,2) if k > 2, m = 1 and b = 0,

(2k−1,2) otherwise.

In Fig. 27 we give a picture of this automaton; again states of the form (n,0) are
drawn as circles n© and states of the form (n,1) as squares n and states of the form
(n,2) as lozenges n .

The initial state (0,1) is the only irrational state for which both outgoing edges
lead to nonfinal states. Since it has no incoming edge, this ensures that it cannot ap-
pear in an irrational path in an other place than the root. Thus the example shows that
Proposition 4 does not hold in this case. However this tree is Sturmian. In particu-
lar, observe that rational states (2n,2) correspond to rational nodes in the tree which
share the same prefix tree of increasing finite height than the root (0,1).

8 Concluding Remarks

We have introduced the notion of Sturmian trees and we have considered two para-
meters, the degree and the rank. We have described the structure of Sturmian trees of
finite rank and finite degree. This is the main contribution of this paper.

We have given several examples of Sturmian trees of finite rank and infinite degree.
We have also given examples of Sturmian trees of infinite rank. These have some kind
of fractal structure. We have built Sturmian trees of infinite rank and of degree two,
and with both infinite degree and infinite rank. These examples show that the structure
of general Sturmian trees is quite involved, and there seems not to be such a concise
characterization as it exists in the case of Sturmian words.

Acknowledgements We thank the referees for their careful reading of the manuscript and for their
comments which greatly improved the exposition.
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Fig. 26 Sturmian tree of degree 2
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Fig. 27 A tree with infinite
rank. Final states are dark
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