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We prove new results concerning the relation between bifix codes,
episturmian words and subgroups of free groups. We study bifix
codes in factorial sets of words. We generalize most properties of
ordinary maximal bifix codes to bifix codes maximal in a recurrent
set F of words (F -maximal bifix codes). In the case of bifix codes
contained in Sturmian sets of words, we obtain several new results.
Let F be a Sturmian set of words, defined as the set of factors
of a strict episturmian word. Our results express the fact that
an F -maximal bifix code of degree d behaves just as the set of
words of F of length d. An F -maximal bifix code of degree d in a
Sturmian set of words on an alphabet with k letters has (k−1)d+1
elements. This generalizes the fact that a Sturmian set contains
(k − 1)d + 1 words of length d. Moreover, given an infinite word
x, if there is a finite maximal bifix code X of degree d such that x
has at most d factors of length d in X , then x is ultimately periodic.
Our main result states that any F -maximal bifix code of degree d
on the alphabet A is the basis of a subgroup of index d of the free
group on A.
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1. Introduction

This paper studies a new relation between three objects previously unrelated altogether: bifix
codes, episturmian words and subgroups of free groups.

We first give some elements on the background of the first two. The study of bifix codes goes
back to founding papers by Schützenberger [53] and by Gilbert and Moore [26]. These papers already
contain significant results. The first systematic study is in the papers of Schützenberger [54,55]. The
general idea is that the submonoids generated by bifix codes are an adequate generalization of the
subgroups of a group. This is illustrated by the striking fact that, under a mild restriction, the average
length of a maximal bifix code with respect to a Bernoulli distribution on the alphabet is an integer.
Thus, in some sense a maximal bifix code behaves as the uniform code formed of all the words of
a given length. The theory of bifix codes was developed in a considerable way by Césari. He proved
that all the finite maximal bifix codes may be obtained by internal transformations from uniform
codes [10]. He also defined the notion of derived code which allows to build maximal bifix codes by
increasing degrees [11].

Sturmian words are infinite words over a binary alphabet that have exactly n + 1 factors of length
n for each n � 0. Their origin can be traced back to the astronomer J. Bernoulli III. Their first in-
depth study is by Morse and Hedlund [42]. Many combinatorial properties were described in the
paper by Coven and Hedlund [16]. Note that, although Sturmian words appear first in the work of
Morse and Hedlund, their finitary version, Christoffel and standard words, appear much before in
the work of Christoffel [13] and, apparently independently, in the work of Markoff [39,40]; the latter
constructed the famous Markoff numbers by using them. The Markoff theory (which was designed to
study minima of quadratic forms) was revisited often by mathematicians, notably by Frobenius [25],
Dickson [21], Cohn [14], Cusick and Flahive [18] and Bombieri [8]. There, the connection with the free
group on two generators was established. Other connection of Christoffel words with the free group
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may be found in Osborne and Zieschang [43] and Kassel and Reutenauer [35]. Moreover, the Sturmian
morphisms (substitutions that preserve Sturmian words) are the positive endomorphisms of the free
group on two generators, see Wen and Wen [58], Mignosi and Séébold [41]. Thus Sturmian words are
closely related to the free group. This connection is one of the main points of the present paper.

Sturmian words were generalized to arbitrary alphabets. Following an initial work by Arnoux and
Rauzy [2] and developing ideas of De Luca [20], Droubay, Justin and Pirillo introduced in [23] the
notion of episturmian words which generalizes Sturmian words to arbitrary finite alphabets.

In this paper, we consider the extension of the results known for bifix codes maximal in the free
monoid to bifix codes maximal in more restricted sets of words, and in particular the sets of factors
of episturmian words.

We extend most properties of ordinary maximal bifix codes to bifix codes that are maximal in a
recurrent set F of words (F -maximal bifix codes). We show in particular that the average length of a
finite F -maximal bifix code of degree d in a recurrent set F with respect to an invariant probability
distribution on F is equal to d (Corollary 4.3.8).

Our main objective is the case of the set of factors of an episturmian word. We actually work with
the set of factors of a strict episturmian word, called simply a Sturmian set. The number of factors
of length d of a strict episturmian word over an alphabet of k letters is known to be (k − 1)d + 1.
Our main result is that a maximal bifix code of degree d in a Sturmian set over an alphabet of k
letters is always a basis of a subgroup of index d of the free group (Theorem 6.2.1). In particular,
it has (k − 1)d + 1 elements (Theorem 5.2.1). Since the set of all words of length d is a maximal
bifix code of degree d, this yields a strong generalization of the previous property. In particular, every
finite maximal bifix code of degree d over a two letter alphabet contains exactly d + 1 factors of any
Sturmian word.

Finally, bifix codes X contained in restricted sets of words are used to study the groups in the
syntactic monoid of the submonoid X∗ (Theorem 7.2.3). This aspect was first considered by Schützen-
berger in [56]. He has studied the conditions under which parameters linked with the syntactic
monoid M of a finitely generated submonoid X∗ of a free monoid A∗ can be bounded in terms
of Card(X) only. One of his results is that, apart from a special case where the group is cyclic, the
cardinality of a group contained in M is such a parameter. In [56], Schützenberger conjectured a
refinement of his result which was subsequently proved by Césari. This study led to the Critical Fac-
torization Theorem that we will meet again here (Theorem 5.3.8).

The extension of the results concerning codes in free monoids to codes in a restricted set of words
has already been considered by several authors. However, most of them have focused on general codes
rather than on the particular class of bifix codes. In [50] the notion of codes of paths in a graph has
been introduced. Such paths can also be viewed as words in a restricted set. The notion of a bifix
code of paths has been studied in [19] where the internal transformation is generalized. In [48], the
notion of code in a factorial set of words was introduced. The definition of a code X in a factorial
set F requires that the set X∗ of all concatenations of words in X is included in F . This approach
was pushed further in [30]. A more general notion was considered in [4]. It only requires that X ⊂ F
and that no word of F has two distinct factorizations but not necessarily that X∗ ⊂ F . The connection
with unambiguous automata was considered later in [5]. Codes in Sturmian sets have been studied
before in [9]. Finally, prefix codes X contained in restricted sets of words are used in [46] to study
the groups in the syntactic monoid of the submonoid X∗ .

Our paper is organized as follows.
First, in Section 2, we recall some definitions concerning prefix-closed, factorial, recurrent and

uniformly recurrent sets, in relation with infinite words. We also introduce probability distributions
on these sets.

In Section 3, we introduce prefix codes in factorial sets, especially maximal ones. We introduce
some basic notions on automata. We define the average length with respect to a probability distribu-
tion on the factorial set.

In Section 4, we develop the theory of maximal bifix codes in recurrent sets. We generalize most
of the properties known in the classical case. In particular, we show that the notion of degree and
that of derived code can be defined (Theorem 4.3.1). We show that, for a uniformly recurrent set F ,
any F -thin bifix code contained in F is finite (Theorem 4.4.3). In the case of Sturmian sets, we prove
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our main results. First, a bifix code of degree d maximal in a Sturmian set on a k-letter alphabet has
(k − 1)d + 1 elements (Theorem 5.2.1). Next, given an infinite word x, if there is a finite maximal bifix
code X of degree d such that x has at most d factors of length d in X , then x is ultimately periodic
(Corollary 5.3.3). The proof uses the Critical Factorization Theorem (see e.g. [36,17]).

Section 6 presents our results concerning free groups. Our main result (Theorem 6.2.1) in this area
states that for a Sturmian set F , a bifix code X ⊂ F is a finite and F -maximal bifix code of F -degree
d if and only if it is a basis of a subgroup of index d of the free group on A. Finally, we present in
Section 7 a consequence of Theorem 6.2.1 concerning syntactic groups. We show that any transitive
permutation group of degree d which can be generated by k elements is a syntactic group of a bifix
code with (k − 1)d + 1 elements (Theorem 7.2.3).

Many results of this paper are extensions or generalizations of results contained in [7]. We always
give the reference of the corresponding result in [7]. The proofs sometimes consist in the verifica-
tion that the proof of the book still holds in the more general setting, and sometimes require new
and more involved developments. In order to make the paper self-contained, and to avoid repetitive
references to the book, we have tried to always give complete proofs.

2. Factorial sets

In this section, we introduce the basic notions of prefix-closed, factorial, recurrent and uniformly
recurrent sets. These form a descending hierarchy. These notions are closely related with the anal-
ogous notions for infinite words which are defined in Section 2.2. In Section 2.4, we introduce
probability distributions on factorial sets.

We use the standard terminology and notation on words, in particular concerning prefixes, suf-
fixes and factors (see [36] for example). Let A be a finite alphabet. All words considered below are
supposed to be on the alphabet A. We denote by 1 the empty word. We denote by A∗ the set of all
words on A and by A+ the set of nonempty words.

The reversal of a word w = a1a2 · · ·an , where a1,a2, . . . ,an are letters, is the word w̃ = an · · ·a2a1.
In particular, the reversal of the empty word is the empty word. A set X of words is closed under
reversal if it contains the reversals of its elements.

Given a set X of words, we define, for a word u, the set u−1 X by

u−1 X = {
y ∈ A∗ ∣∣ uy ∈ X

}
.

Next, we say that a word is a prefix of X if it is a prefix of a word of X .
A nonempty set F ⊂ A∗ of words is said to be prefix-closed if it contains the prefixes of all its

elements. Symmetrically, it is said to be suffix-closed if it contains the suffixes of all its elements. It is
said to be factorial if it contains the factors of all its elements.

The right (resp. left) order of a word w with respect to F is the number of letters a such that
wa ∈ F (resp. aw ∈ F ).

A set F is said to be right essential if it is prefix-closed and if any w ∈ F has right order at least 1.
If F is right essential, then for any u ∈ F and any integer n � 1, there is a word v of length n such
that uv ∈ F . Symmetrically, a set F is said to be left essential if it is suffix-closed and if any w ∈ F has
left order at least 1.

2.1. Recurrent sets

A set F of words is said to be recurrent if it is factorial and if for every u, w ∈ F there is a v ∈ F
such that uv w ∈ F . A recurrent set F �= {1} is right and left essential.

Example 2.1.1. The set F = A∗ is recurrent.

Example 2.1.2. Let A = {a,b}. Let F be the set of words on A without factor bb. Thus F = A∗ \ A∗bb A∗ .
The set F is recurrent. Indeed, if u, w ∈ F , then uaw ∈ F .
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A set F is said to be uniformly recurrent if it is factorial and right essential and if, for any word
u ∈ F , there exists an integer n � 1 such that u is a factor of every word in F ∩ An .

Proposition 2.1.3. A uniformly recurrent set is recurrent.

Proof. Let u, w ∈ F . Let n be such that w is a factor of any word in F ∩ An . Since F is right essential,
there is a word v of length n such that uv ∈ F . Since w is a factor of v , we have v = rws for some
words r, s. Thus urw ∈ F . �

The converse of Proposition 2.1.3 is not true as shown in the example below.

Example 2.1.4. The set F = A∗ on A = {a,b} is recurrent but not uniformly recurrent since b ∈ F but
b is not a factor of an ∈ F for any n � 1.

2.2. Recurrent words

We denote by F (x) the set of factors of an infinite word x ∈ AN . The set F (x) is factorial and right
essential.

An infinite word x ∈ AN is said to be recurrent if for any word u ∈ F (x) there is a v ∈ F (x) such
that uvu ∈ F (x). Equivalently, each factor of a recurrent word x has an infinite number of occurrences
in x.

Proposition 2.2.1. For any recurrent set F there is an infinite word x such that F (x) = F .

Proof. Set F = {u1, u2, . . .}. Since F is recurrent and u1, u2 ∈ F , there is a word v1 such that
u1 v1u2 ∈ F . Further, since u1 v1u2, u3 ∈ F there is a word v2 such that u1 v1u2 v2u3 ∈ F . In this way,
we obtain an infinite word x = u1 v1u2 v2 · · · such that F (x) = F . �
Proposition 2.2.2. For any infinite word x, the set F (x) is recurrent if and only if x is recurrent.

Proof. Set F = F (x). Suppose first that F is recurrent. For any u in F , there is a v ∈ F such that
uvu ∈ F . Thus x is recurrent. Conversely, assume that x is recurrent. Let u, v be in F . Then there is
a factorization x = puy with p ∈ F and y ∈ AN . Since x is recurrent, the word v is a factor of y. Set
y = qvz with q ∈ F and z ∈ AN . Then uqv is in F . Thus F is recurrent. �

An infinite word x ∈ AN is said to be uniformly recurrent if the set F (x) is uniformly recurrent.
There exist recurrent infinite words which are not uniformly recurrent, as shown in the following
example.

Example 2.2.3. Let x be the infinite word obtained by concatenating all binary words in radix order:
by increasing length, and for each length in lexicographic order. Thus, x starts as follows.

x = ab aaabbabb aaaaababaabbbaababbbabbb · · · .
The infinite word x is recurrent since every factor occurs infinitely often. However, x is not uniformly
recurrent since each an , for n > 1, is a factor of x, thus two consecutive occurrences of say the let-
ter b may be arbitrarily far one from each other. The word x is closely related to the Champernowne
word [12].

We use indifferently the terms of morphism or substitution for a monoid morphism from A∗ into
itself. Let f : A∗ → A∗ be a morphism and assume there is a letter a ∈ A such that f (a) ∈ aA+ . The
words f n(a) for n � 1 are prefixes of one another. If | f n(a)| → ∞ with n, then we denote by f ω(a)

the infinite word which has all f n(a) as prefixes. It is called a fix-point of f .
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Example 2.2.4. Set A = {a,b}. The Thue–Morse morphism is the substitution f : A∗ → A∗ defined by
f (a) = ab and f (b) = ba. The Thue–Morse word x = abbabaab · · · is the fix-point f ω(a) of f . It is
uniformly recurrent (see [37], Example 1.5.10). We call Thue–Morse set the set of factors of the Thue–
Morse word.

An infinite word x ∈ AN avoids a set X of words if F (x) ∩ X = ∅. We denote by S X the set of
infinite words avoiding a set X ⊂ A∗ . A (one sided) shift space is a set S of infinite words of the form
S X for some X ⊂ A∗ .

A shift space S ⊂ AN is minimal if for any shift space T ⊂ S , one has T = ∅ or T = S .1

For any infinite word x ∈ AN , we denote by S(x) the set of infinite words y ∈ AN such that
F (y) ⊂ F (x). The set S(x) is a shift space. Indeed, we have y ∈ S(x) if and only if F (y) ⊂ F (x) or
equivalently F (y) ∩ X = ∅ for X = A∗ \ F (x).

The following property is standard (see for example [37], Theorem 1.5.9).

Proposition 2.2.5. An infinite word x ∈ AN is uniformly recurrent if and only if S(x) is minimal.

2.3. Episturmian words

A Sturmian word is an infinite word x on a binary alphabet A such that the set F (x)∩ An has n + 1
elements for any n � 0.

Example 2.3.1. Set A = {a,b}. The Fibonacci morphism is the substitution f : A∗ → A∗ defined by
f (a) = ab and f (b) = a. The Fibonacci word

x = abaababaabaababaababaabaababaabaab · · ·
is the fix-point f ω(a) of f . It is a Sturmian word (see [37], Example 2.1.1). We call Fibonacci set the
set of factors of the Fibonacci word.

Episturmian words are an extension of Sturmian words to arbitrary finite alphabets.
Recall that, given a set F of words over an alphabet A, the right (resp. left) order of a word u in F

is the number of letters a such that ua ∈ F (resp. au ∈ F ). A word u is right-special (resp. left-special)
if its right order (resp. left order) is at least 2. A right-special (resp. left-special) word is strict if its
right (resp. left) order is equal to Card(A). In the case of a 2-letter alphabet, all special words are
strict.

By definition, an infinite word x is episturmian if F (x) is closed under reversal and if F (x) contains,
for each n � 1, at most one word of length n which is right-special.

Since F (x) is closed under reversal, the reversal of a right-special factor of length n is left-special,
and it is the only left-special factor of length n of x. A suffix of a right-special factor is again right-
special. Symmetrically, a prefix of a left-special factor is again left-special.

As a particular case, a strict episturmian word is an episturmian word x with the two following
properties: x has exactly one right-special factor of each length and moreover each right-special factor
u of x is strict, that is satisfies the inclusion u A ⊂ F (x) (see [23]).

It is easy to see that for a strict episturmian word x on an alphabet A with k letters, the set
F (x) ∩ An has (k − 1)n + 1 elements for each n. Thus, for a binary alphabet, the strict episturmian
words are just the Sturmian words, since a Sturmian word has one right-special factor for each length
and its set of factors is closed under reversal.

An episturmian word s is called standard if all its left-special factors are prefixes of s. For any
episturmian word s, there is a standard one t such that F (s) = F (t). This is a rephrasing of Theorem 5
in [23].

1 Note that we use in all the paper the symbol ⊂ to denote the inclusion allowing the equality.
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Example 2.3.2. Consider the following generalization of the Fibonacci word to the ternary alphabet
A = {a,b, c}. Consider the morphism f : A∗ → A∗ defined by f (a) = ab, f (b) = ac and f (c) = a. The
fix-point

f ω(a) = abacabaabacababacabaabacabacabaabacab · · ·
is the Tribonacci word. It is a strict standard episturmian word (see [33]).

The following is, in the case of Sturmian words, Proposition 2.1.25 in [37]. The general case results
from Theorems 2 and 5 in [23].

Proposition 2.3.3. An episturmian word x is uniformly recurrent and S(x) is minimal.

The converse is false as shown by the following example.

Example 2.3.4. The Thue–Morse word of Example 2.2.4 is not Sturmian. Indeed, it has four factors of
length 2.

We recall now some notions and properties concerning episturmian words. A detailed exposition
with proofs is given in [33,23,31,32]. See also the survey paper [27]. For a ∈ A, denote by ψa the
morphism of A∗ into itself, called elementary morphism, defined by

ψa(b) =
{

ab if b �= a,

a otherwise.

Let ψ : A∗ → End(A∗) be the morphism from A∗ into the monoid of endomorphisms of A∗ which
maps each a ∈ A to ψa . For u ∈ A∗ , we denote by ψu the image of u by the morphism ψ . Thus, for
three words u, v , w , we have ψuv(w) = ψu(ψv (w)).

A palindrome is a word w which is equal to its reversal. Given a word w , we denote by w(+) the
palindromic closure of w . It is, by definition, the shortest palindrome which has w as a prefix.

The iterated palindromic closure of a word w is the word Pal(w) defined recursively as follows.
One has Pal(1) = 1 and for u ∈ A∗ and a ∈ A, one has Pal(ua) = (Pal(u)a)(+) . Since Pal(u) is a proper
prefix of Pal(ua), it makes sense to define the iterated palindromic closure of an infinite word x as
the infinite word which is the limit of the iterated palindromic closure of the prefixes of x.

Justin’s Formula is the following. For every words u and v , one has

Pal(uv) = ψu
(
Pal(v)

)
Pal(u).

This formula extends to infinite words: if u is a word and v is an infinite word, then

Pal(uv) = ψu
(
Pal(v)

)
. (2.1)

There is a precise combinatorial description of standard episturmian words (see e.g. [33,27]).

Theorem 2.3.5. An infinite word s is a standard episturmian word if and only if there exists an infinite word
Δ = a0a1 · · · , where the an are letters, such that

s = lim
n→∞ un,

where the sequence (un) is defined by un = Pal(a0a1 · · ·an−1). Moreover, the word s is episturmian strict if
and only if every letter appears infinitely often in Δ.
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The infinite word Δ is called the directive word of the standard word s. The description of the
infinite word s can be rephrased by the equation

s = Pal(Δ).

As a particular case of Justin’s Formula, one has

un+1 = ψa0···an−1(an)un. (2.2)

The words un are the only prefixes of s which are palindromes.

Example 2.3.6. The Fibonacci word x of Example 2.3.1 is a standard episturmian word. It has the di-
rective word (ab)ω , that is x = Pal((ab)ω) [27]. The Tribonacci word of Example 2.3.2 has the directive
word Δ = (abc)ω [33]. The corresponding sequence (un) starts with u1 = a, u2 = aba, u3 = abacaba.
Observe that ψab(c) = abac, so that indeed u3 = abacu2, as claimed in (2.2).

Example 2.3.7. Let A = {a,b, c} and Δ = c(ab)ω . Then, we have u1 = c, u2 = cac, u3 = cacbcac, u4 =
cacbcacacbcac. By Justin’s Formula 2.1, the limit is the word x = ψc(y), where y = Pal((ab)ω) is the
Fibonacci word on {a,b}. This means that x is obtained from y by inserting a letter c before every
letter of y. The word x is not strict. Indeed, the letters a and b are not right-special and the letter c
is not strict right-special since cc is not a factor.

Example 2.3.8. Let A = {a,b, c} and Δ = abcω . It is easily checked that Pal(Δ) is the periodic word
(abac)ω [27]. The only right-special factors of this word are 1 and a.

2.4. Probability distributions

Let F ⊂ A∗ be a prefix-closed set of words. For w ∈ F , denote by S(w) the set S(w) = {a ∈ A |
wa ∈ F }. A right probability distribution on F is a map π : F → [0,1] such that

(i) π(1) = 1,
(ii)

∑
a∈S(w) π(wa) = π(w), for any w ∈ F .

For a right probability distribution π on F and a set X ⊂ F , we denote π(X) = ∑
x∈X π(x). See [7]

for the elementary properties of right probability distributions. Note in particular that for any u ∈ F
and n � 0, one has, as a consequence of condition (ii),

π
(
u An ∩ F

) = π(u). (2.3)

In particular, if π is a right probability distribution on F , then π(F ∩ An) = 1 for all n � 0.
The distribution is said to be positive on F if π(x) > 0 for any x ∈ F .
Symmetrically, for a suffix-closed set F , a left probability distribution is a map π : F → [0,1] satis-

fying condition (i) above and

(iii)
∑

a∈P (w) π(aw) = π(w), for any w ∈ F ,

with P (w) = {a ∈ A | aw ∈ F }.
When F is factorial, an invariant probability distribution is both a left and a right probability distri-

bution.

Proposition 2.4.1. There exists a positive right probability distribution π on a set F of words if and only if it is
right essential.
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Proof. The condition is clearly necessary. Assume conversely that F is right essential. Consider the
map π : F → [0,1] defined for w = a1a2 · · ·an by

π(w) = 1

d0d1 · · ·dn−1

where di = Card(S(a1 · · ·ai)) for 0 � i < n. Since F is right essential, di �= 0 for 0 � i < n. By conven-
tion, π(1) = 1.

Let us verify that π is a right probability distribution on F . Indeed, let w = a1a2 · · ·an . The set
S(w) is nonempty. Let a ∈ S(w), we have π(wa) = 1/(d0d1 · · ·dn). Since Card(S(w)) = dn , we obtain
that π satisfies condition (ii) and thus it is a right probability distribution. It is clearly positive. �

We will now turn to the existence of positive invariant probability distributions.
A topological dynamical system is a pair (S, σ ) of a compact metric space S and a continuous map σ

from S into S . Any shift space S becomes a topological dynamical system when it is equipped with
the shift map defined by σ(x0x1 · · ·) = x1x2 · · ·. Indeed, we consider AN as a metric space for the
distance defined for x = x0x1 · · · and y = y0 y1 · · · by d(x, y) = 0 if x = y and d(x, y) = 2−n where n is
the least integer such that xn �= yn otherwise.

A subset T of a topological dynamical system (S, σ ) is said to be stable under σ or stable for short
if σ(T ) ⊂ T . A stable subset is also called (topologically) invariant.

The following property is well known (although usually stated for two sided-infinite words, see
for example Proposition 1.5.1 in [37]).

Proposition 2.4.2. The shift spaces are the stable and closed subsets of (AN, σ ).

Proof. It is clear that a shift space is both closed and stable. Conversely, let S ⊂ AN be closed and
stable under the shift. Let X be the set of words which are not factors of words of S . Then S = S X .
Indeed, if y ∈ S , then F (y) ∩ X = ∅ and thus y ∈ S X . Conversely, let y ∈ S X . Let wn be the prefix of
length n of y. Since wn /∈ X there is an infinite word y(n) ∈ S such that wn ∈ F (y(n)). Since S is stable
under the shift, we may assume that wn is a prefix of y(n) . The sequence y(n) converges to y. Since
S is closed, this forces y ∈ S . �

Let S be a metric space. The family of Borel subsets of S is the smallest family F of subsets of S
containing the open sets and closed under complement and countable union. A function μ from F
to R is said to be countably additive if μ(

⋃
n�0 Xn) = ∑

n�0 μ(Xn) for any sequence (Xn) of pairwise
disjoint Borel subsets of S . A Borel probability measure on S is a function μ from F into [0,1] which
is countably additive and such that μ(S) = 1.

Let (S, σ ) be a topological dynamical system. A Borel probability measure μ on S is said to be
invariant if μ(σ−1(B)) = μ(B) for any B ∈F . Note that since σ is continuous, σ−1(B) ∈F and thus
μ(σ−1(B)) is well defined.

The following result is from [47, Theorem 4.2].

Theorem 2.4.3. For any topological dynamical system, there exist invariant Borel probability measures.

A dynamical system (S, σ ) is said to be minimal if the only closed stable subsets of S are S and ∅.
Note that, by Proposition 2.4.2, this definition is consistent with the definition of a minimal shift
space. A Borel probability measure μ on S is positive if μ(U ) > 0 for every nonempty open set U ⊂ S .

Proposition 2.4.4. Any invariant Borel probability measure on a minimal topological dynamical system is
positive.

Proof. Let μ be an invariant Borel probability measure on the topological dynamical system (S, σ ).
Let U ⊂ S be a nonempty open set. Let Y = ⋃

n�0 σ−n(U ) and Z = S \ Y . Since U is open and σ
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Fig. 2.1. The invariant probability distribution on the Fibonacci set.

is continuous, each σ−n(U ) is open. Thus Y is open and Z is closed. The set Z is also stable. In-
deed, if for z ∈ Z we had σ(z) /∈ Z , then there would be an integer n � 0 such that σ(z) ∈ σ−n(U ).
Thus z ∈ σ−n−1(U ) ⊂ Y , a contradiction. Thus σ(Z) ⊂ Z . Since (S, σ ) is minimal, this implies that
Z = ∅ or Z = S . Since U is nonempty, we have Z = ∅ and thus Y = S . Since μ is invariant, we have
μ(σ−1(U )) = μ(U ) and thus, by induction, μ(σ−n(U )) = μ(U ) for all n � 0. Hence we cannot have
μ(U ) = 0 since it would imply μ(S) �

∑
n�0 μ(σ−n(U )) = 0, a contradiction since μ(S) = 1. �

Corollary 2.4.5. For any recurrent set F there exists an invariant probability distribution on F . When F is
uniformly recurrent, such a distribution is positive.

Proof. Let F be a recurrent set. By Proposition 2.2.1 there is a recurrent infinite word x such that
F (x) = F , and if F is uniformly recurrent, then x is uniformly recurrent.

By Theorem 2.4.3 there is an invariant Borel probability measure μ on S = S(x).
Let π be the map from F to [0,1] defined by π(w) = μ(w AN ∩ S). Let us verify that π is an

invariant probability distribution. Indeed, one has π(1) = μ(S) = 1. Next, for w ∈ F

∑
a∈S(w)

π(wa) =
∑

a∈S(w)

μ
(

waAN ∩ S
) = μ

(
w AN ∩ S

) = π(w).

In the same way

∑
a∈P (w)

π(aw) =
∑

a∈P (w)

μ
(
aw AN ∩ S

) = μ
(
σ−1(w AN ∩ S

)) = μ
(

w AN ∩ S
) = π(w).

If x is uniformly recurrent, by Proposition 2.2.5, the shift space S = S(x) is minimal. By Proposi-
tion 2.4.4, the measure μ is positive. Since w AN ∩ S is a nonempty open set for any w ∈ F , we have
π(w) = μ(w AN ∩ S) > 0 and thus π is positive. �

In some cases, there exists a unique invariant probability distribution on the set F . A morphism
f : A∗ → A∗ is primitive if there exists an integer k such that, for all a,b ∈ A, the letter b appears
in f k(a). If f is a primitive morphism and if f (a) starts with the letter a for some a ∈ A, then
x = f ω(a) is a fix-point of f and there is a unique invariant probability distribution πF on the set F (x)
[47, Theorem 5.6]. Moreover, this distribution is positive. We illustrate this result by the following
examples.

Example 2.4.6. Let F be the Fibonacci set (see Example 2.3.1). Since the morphism f defined by
f (a) = ab and f (b) = a is primitive, there is a unique invariant probability distribution on F . Its
values on the words of length at most 4 are shown in Fig. 2.1 with λ = (

√
5 − 1)/2. The values of
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Fig. 2.2. The invariant probability distribution on the Thue–Morse set.

πF can be obtained as follows (see [47]). The vector v = [πF (a) πF (b) ] is an eigenvector for the
eigenvalue 1/λ of the A × A-matrix M defined by Mab = | f (a)|b . Here, we have

M =
[

1 1
1 0

]
.

This implies v = [λ 1 − λ ]. The other values can be computed using conditions (ii) and (iii) of the
definition of an invariant probability distribution.

Example 2.4.7. Let F be the Thue–Morse set (see Example 2.2.4). Since the Thue–Morse morphism is
primitive, there is a unique invariant probability distribution on F . Its values on the words of length
at most 4 are shown in Fig. 2.2.

3. Prefix codes in factorial sets

In this section, we study prefix codes in a factorial set. We will see that most properties known
in the usual case are also true in this more general situation. Some of them are even true in the
more general case of a prefix-closed set instead of a factorial set. In particular, this holds for the link
between prefix codes and probability distributions (Proposition 3.3.4).

Recall that a set X ⊂ A+ of nonempty words over an alphabet A is a code if the relation

x1 · · · xn = y1 · · · ym

with n,m � 1 and x1, . . . , xn, y1, . . . , ym ∈ X implies n = m and xi = yi for i = 1, . . . ,n. For the general
theory of codes, see [7].

3.1. Prefix codes

The prefix order is defined, for u, v ∈ A∗ , by u � v if u is a prefix of v . Two words u, v are prefix-
comparable if one is a prefix of the other. Thus u and v are prefix-comparable if and only if there are
words x, y such that ux = v y or, equivalently, if and only if u A∗ ∩ v A∗ �= ∅. The suffix order, and the
notion of suffix-comparable words, are defined symmetrically.

A set X ⊂ A+ of nonempty words is a prefix code if any two distinct elements of X are incompara-
ble for the prefix order. A prefix code is a code.

The dual notion of a suffix code is defined symmetrically with respect to the suffix order.
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The submonoid M generated by a prefix code satisfies the following property: if u, uv ∈ M then
v ∈ M . Such a submonoid of A∗ is said to be right unitary. One can show that conversely, any right
unitary submonoid of A∗ is generated by a prefix code (see [7]). The symmetric notion of a left unitary
submonoid is defined by the condition v, uv ∈ M implies u ∈ M .

A formal series with coefficients in a field K is a function S : A∗ → K . We denote by (S, w) the
image by S of the word w .

We denote by X the characteristic series of a set X ⊂ A∗ . By definition, for any x ∈ A∗ ,

(X, x) =
{

1 if x ∈ X,

0 otherwise.

The following is Proposition 3.1.6 in [7].

Proposition 3.1.1. Let X be a prefix code and let U = A∗ \ X A∗ . Then

A∗ = X∗U and X − 1 = U (A − 1). (3.1)

3.2. Automata

We recall the basic results on deterministic automata and prefix codes (see [7] for a more detailed
exposition).

We denote A= (Q , i, T ) a deterministic automaton with Q as set of states, i ∈ Q as initial state
and T ⊂ Q as set of terminal states. For p ∈ Q and w ∈ A∗ , we denote p · w = q if there is a path
labeled w from p to the state q and p · w = ∅ otherwise.

The set recognized by the automaton is the set of words w ∈ A∗ such that i · w ∈ T . A set of words
is rational if is recognized by a finite automaton.

All automata considered in this paper are deterministic and we call them simply automata.
The automaton A is trim if for any q ∈ Q , there is a path from i to q and a path from q to some

t ∈ T .
An automaton is called simple if it is trim and if it has a unique terminal state which coincides

with the initial state.
An automaton A = (Q , i, T ) is complete if for any state p ∈ Q and any letter a ∈ A, one has

p · a �= ∅.
For a set X ⊂ A∗ , we denote by A(X) the minimal automaton of X . The states of A(X) are the

nonempty sets u−1 X = {v ∈ A∗ | uv ∈ X} for u ∈ A∗ . The initial state is the set X and the terminal
states are the sets u−1 X for u ∈ X .

Let X ⊂ A∗ be a prefix code. Then there is a simple automaton A= (Q ,1,1) that recognizes X∗ .
Moreover, the minimal automaton of X∗ is simple.

Let X be a prefix code and let P be the set of proper prefixes of X . The literal automaton of X∗ is
the simple automaton A= (P ,1,1) with transitions defined for p ∈ P and a ∈ A by

p · a =
{

pa if pa ∈ P ,

1 if pa ∈ X,

∅ otherwise.

One verifies that this automaton recognizes X∗ .
Let A= (Q , i, T ) be an automaton. For w ∈ A∗ , we denote ϕA(w) the partial map from Q to Q

defined by pϕA(w) = q if p · w = q. The transition monoid of A is the monoid of partial maps from
Q to Q of the form ϕA(w) for w ∈ A∗ .

3.3. Maximal prefix codes

Let F be a subset of A∗ . A set X ⊂ A∗ is right dense in F ⊂ A∗ , or right F -dense, if any u ∈ F is a
prefix of X .
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A set X ⊂ F is right complete in F , or right F -complete, if X∗ is right dense in F , that is if every
word in F is a prefix of X∗ .

A prefix code X ⊂ F is maximal in F , or F -maximal, if it is not properly contained in any other
prefix code Y ⊂ F . The notion of an F -maximal suffix code is symmetrical.

The following propositions are extensions of Propositions 3.3.1 and 3.3.2, and of Theorem 3.3.5
in [7].

Proposition 3.3.1. Let F be a subset of A∗ . For any prefix code X ⊂ F , the following conditions are equivalent.

(i) Every element of F is prefix-comparable with some element of X ,
(ii) X is an F -maximal prefix code.

Proof. (i) implies (ii). Any word u ∈ F is prefix-comparable with some word of X . This implies that if
u /∈ X , then X ∪ u is no longer a prefix code. Thus X is an F -maximal prefix code.

(ii) implies (i). Assume that u ∈ F is not prefix-comparable to any word in X . Then X ∪ u is prefix,
and X is not an F -maximal prefix code. �
Proposition 3.3.2. Let F be a factorial subset of A∗ . For any set X ⊂ F of nonempty words, the following
conditions are equivalent.

(i) Every element of F is prefix-comparable with some element of X ,
(ii) X A∗ is right F -dense,

(iii) X is right F -complete.

Proof. (i) implies (ii). Let u ∈ F . Let x ∈ X be prefix-comparable with u. Then there exist v, w such
that uv = xw . Thus X A∗ is right F -dense.

(ii) implies (iii). Consider a word u ∈ F . Let us show that u is a prefix of X∗ . Since X A∗ is right F -
dense, one has uw = xw ′ for some word x ∈ X and w, w ′ ∈ A∗ . If u is a prefix of X , there is nothing
to prove. Otherwise, x is a prefix of u. Thus u = xu′ for some u′ ∈ A∗ . Since u is in F and since F is
factorial, we have u′ ∈ F . Since x �= 1, we have |u′| < |u|. Arguing by induction, the word u′ is a prefix
of X∗ . Thus u is a prefix of X∗ .

(iii) implies (i). Let u ∈ F . Then u is a prefix of X∗ , and consequently u is prefix-comparable with
a word in X . �

The propositions have a dual formulation, replacing prefix by suffix, and right by left.

Example 3.3.3. The set X = {a,ba} is a maximal prefix code in the Fibonacci set F since X A∗ is right
F -dense.

The following is a generalization of Propositions 3.7.1 and 3.7.2 in [7].

Proposition 3.3.4. Let F be a right essential set. Let π be a positive right probability distribution on F . Any
prefix code X ⊂ F satisfies π(X) � 1. If X is finite, it is F -maximal if and only if π(X) = 1.

Proof. Assume first that X is finite. Let n be the maximal length of the words in X . We have⋃
x∈X

xAn−|x| ∩ F ⊂ An ∩ F (3.2)

and the terms of the union are pairwise disjoint. Thus, using Eq. (2.3)

π(X) =
∑
x∈X

π
(
xAn−|x| ∩ F

)
� π

(
An ∩ F

) = 1. (3.3)
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If X is maximal in F , any word in F ∩ An has a prefix in X . Thus we have equality in (3.2) and thus
also in (3.3). This shows that π(X) = 1. The converse is clear since π is positive on F .

If X is infinite, then π(Y ) � 1 for any finite subset Y of X . Thus π(X) � 1. �
The statement has a dual for a suffix code included in a factorial set F with a positive left proba-

bility distribution on F .

Example 3.3.5. Let F be the Fibonacci set. The set X = {a,ba} is a maximal prefix code (Exam-
ple 3.3.3). One has πF (X) = 1 where πF is defined in Example 2.4.6.

We will use the following result in the proof of Proposition 4.4.5.

Proposition 3.3.6. Let F be a right essential subset of A∗ , and let G ⊂ F be a right essential subset of F . For
any finite F -maximal prefix code X ⊂ F , the set X ∩ G is a finite G-maximal prefix code.

Proof. Set Y = X ∩ G . The set Y is clearly a finite prefix code. We show that every u ∈ G is prefix-
comparable with some word in Y . This will imply that Y is G-maximal by Proposition 3.3.1. Let u ∈ G .
Since G is right essential, there are arbitrary long words w such that uw ∈ G . Choose the length of
uw larger than the maximal length of the words of X . Since X is an F -maximal prefix code, uw has
a prefix x in X . This prefix x is in Y since uw ∈ G . Thus u is prefix-comparable to x ∈ Y . �

The following example shows that Proposition 3.3.6 is false for infinite prefix codes.

Example 3.3.7. Let F ⊂ A∗ be a right essential set with F �= A∗ , and let x be a word which is not in F .
Let X = A∗x\ A∗xA+ be the prefix code of words in A∗ ending with x and having no other occurrence
of x. X is a maximal prefix code, and X ∩ F = ∅ is not F -maximal.

We will use later the following result on transformations of prefix codes. It is adapted from Propo-
sition 3.4.9 in [7].

Proposition 3.3.8. Let F be a factorial set and let X ⊂ F be an F -maximal prefix code. Let w be a nonempty
prefix of X and set D = w−1 X. The set Y = (X \ w D) ∪ w is an F -maximal prefix code.

Proof. It is clear that Y is a prefix code. To show that it is F -maximal, we apply Proposition 3.3.1 and
prove that every word u ∈ F is prefix-comparable with a word of Y . So consider a word u ∈ F . Since
X is F -maximal, u is prefix-comparable with a word of X . Thus u is prefix-comparable with a word
of X \ w D or it is prefix-comparable with a word of w D . In the second case, either u is a prefix of
a word wd with d ∈ D or u has wd as a prefix. Consequently, u is prefix-comparable with w . This
proves that u is prefix-comparable with a word of Y . �

Proposition 3.3.8 has a dual formulation for suffix codes.

3.4. Average length

Let F be a right essential set and let π be a right probability distribution on F . Let X ⊂ F be a
prefix code such that π(X) = 1. The average length of X with respect to π is the sum

λ(X) =
∑
x∈X

|x|π(x).

Proposition 3.4.1. Let F be a right essential set and let π be a positive right probability distribution on F .
Let X ⊂ F be a finite F -maximal prefix code and let P be the set of proper prefixes of X . Then π(X) = 1 and
λ(X) = π(P ).
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Proof. We already know that π(X) = 1 by Proposition 3.3.4. Let us show that for any p ∈ P ,

π(p) =
∑

x∈p A+∩X

π(x). (3.4)

Let indeed n be an integer larger than the lengths of the words of X . Then by Eq. (2.3), π(p) =
π(p An ∩ F ). Since X is an F -maximal prefix code, each word of p An ∩ F has a prefix in X , and
conversely, each word in X which has p as a prefix is itself a prefix of p An ∩ F . Thus

p An ∩ F =
⋃

x∈p A+∩X

xAn+|p|−|x| ∩ F .

Since π(xAn+|p|−|x| ∩ F ) = π(x), this proves Eq. (3.4).
By Eq. (3.4), one gets∑

p∈P

π(p) =
∑
p∈P

∑
x∈p A+∩X

π(x) =
∑
x∈X

∑
p∈P : x∈p A+

π(x) =
∑
x∈X

|x|π(x).

Thus

π(P ) =
∑
p∈P

π(p) =
∑
x∈X

|x|π(x) = λ(X). �

A dual statement of Proposition 3.4.1 holds for a suffix code and its set of proper suffixes, for a
positive left probability distribution.

Example 3.4.2. Let F be the Fibonacci set and let X = {a,ba}. We have already seen in Example 3.3.5
that X is an F -maximal prefix code and that πF (X) = 1 where πF is the unique invariant probability
distribution on F defined in Example 2.4.6. We have λ(X) = λ + 2(1 − λ) = 2 − λ. On the other hand
the set of proper prefixes of X is P = {1,b} and thus πF (P ) = 1 + (1 − λ) = 2 − λ.

4. Bifix codes in recurrent sets

In this section, we study bifix codes contained in a recurrent set. Since A∗ itself is a recurrent set,
it is a generalization of the usual situation. We will see that all results on maximal bifix codes can
be generalized in this way. In particular, the notions of degree, of kernel and of derived code can be
defined in this more general framework.

4.1. Parses

Recall that a set X of nonempty words is a bifix code if any two distinct elements of X are incom-
parable for the prefix order and for the suffix order.

A parse of a word w with respect to a set X is a triple (v, x, u) such that w = vxu with v ∈
A∗ \ A∗ X , x ∈ X∗ and u ∈ A∗ \ X A∗ .

Proposition 4.1.1. Let F be a factorial set and let X ⊂ F be a bifix code. For any factorization w = uv of w ∈ F ,
there is a parse (s, yz, p) of w with y, z ∈ X∗ , sy = u and v = zp.

Proof. Since v ∈ F , there exist, by Proposition 3.1.1, words z ∈ X∗ and p ∈ A∗ \ X A∗ such that v = zp.
Symmetrically, there exist y ∈ X∗ and s ∈ A∗ \ A∗ X such that u = sy. Then (s, yz, p) is a parse of w
which satisfies the conditions of the statement. �



Author's personal copy

J. Berstel et al. / Journal of Algebra 369 (2012) 146–202 161

The number of parses of a word w with respect to X is denoted by δX (w). The function δX :
A∗ → N is the parse enumerator with respect to X .

The indicator of a set X is the series L X defined for w ∈ A∗ by (L X , w) = δX (w).

Example 4.1.2. Let X = ∅. Then δX (w) = |w| + 1.

The following is a reformulation of Proposition 6.1.6 in [7].

Proposition 4.1.3. Let F be a factorial set and let X ⊂ F be a prefix code. For every word w ∈ F , the number
δX (w) is equal to the number of prefixes of w which have no suffix in X.

Proof. For every prefix v of w which is in A∗ \ A∗ X , there is a unique parse of w of the form (v, x, u).
Since any parse is obtained in this way, the statement is proved. �

Proposition 4.1.3 has a dual statement for suffix codes.
Note that, as a consequence of Proposition 4.1.3, we have for two prefix codes X, Y , and for all

words w ,

X ⊂ Y ⇒ δY (w) � δX (w). (4.1)

Indeed, a word without suffixes in Y is also a word without suffixes in X .

Proposition 4.1.4. Let X be a prefix code and let V = A∗ \ A∗ X. Then

V = L X (1 − A). (4.2)

If X is bifix, one has

1 − X = (1 − A)L X (1 − A). (4.3)

Proof. Set L = L X . Let U = A∗ \ X A∗ . By definition of the indicator, we have L = V X∗U . Since X is
prefix, we have by Proposition 3.1.1, the equality A∗ = X∗U . Thus we obtain L = V A∗ (note that this
is actually equivalent to Proposition 4.1.3). Multiplying both sides on the right by (1 − A), we obtain
Eq. (4.2).

If X is suffix, we have by the dual of Proposition 3.1.1, the equality 1 − X = (1 − A)V . This gives
Eq. (4.3) by multiplying both sides of Eq. (4.2) on the left by 1 − A. �

The following is Proposition 6.1.11 in [7].

Proposition 4.1.5. A function δ : A∗ → N is the parse enumerator of some bifix code if and only if it satisfies
the following conditions.

(i) For any a ∈ A and w ∈ A∗

0 � δ(aw) − δ(w) � 1. (4.4)

(ii) For any w ∈ A∗ and a ∈ A

0 � δ(wa) − δ(w) � 1. (4.5)
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(iii) For any a,b ∈ A and w ∈ A∗

δ(aw) + δ(wb) � δ(w) + δ(awb). (4.6)

(iv) δ(1) = 1.

The following is a reformulation of Proposition 6.1.12 in [7].

Proposition 4.1.6. Let X be a prefix code. For any u ∈ A∗ and a ∈ A, one has

δX (ua) =
{

δX (u) if ua ∈ A∗ X,

δX (u) + 1 otherwise.
(4.7)

Proof. This follows directly from Proposition 4.1.3. �
Proposition 4.1.6 has a dual for suffix codes expressing δX (au) in terms of δX (u).
Recall also that by Proposition 6.1.8 in [7], for a bifix code X and for all u, v, w ∈ F such that

uv w ∈ F , one has

δX (v) � δX (uv w). (4.8)

Moreover, if uv w ∈ X and u, w ∈ A+ then the inequality is strict, that is,

δX (v) < δX (uv w). (4.9)

4.2. Maximal bifix codes

Let F be a set of words. A set X ⊂ F is said to be thin in F , or F -thin, if there exists a word of F
which is not a factor of a word in X .

The following example shows that there exist a uniformly recurrent set F , and a bifix code X ⊂ F
which is not F -thin.

Example 4.2.1. Let F be the Thue–Morse set, which is the set of factors of a fix-point of the sub-
stitution f defined by f (a) = ab, f (b) = ba (see Example 2.2.4). Set xn = f n(a) for n � 1. Note
that xn+1 = xnx̄n where u → ū is the substitution defined by ā = b and b̄ = a. Note also that
u ∈ F if and only if ū ∈ F . Consider the set X = {xnxn | n � 1}. We have X ⊂ F . Indeed, for n � 1,
xn+2 = xn+1 x̄n+1 = xnx̄nx̄nxn implies that x̄n x̄n ∈ F and thus xnxn ∈ F . Next X is a bifix code. Indeed,
for n < m, xm begins with xnx̄n , and thus cannot have xnxn as a prefix. Similarly, since xm ends with
x̄nxn or with xnx̄n , it cannot have xnxn as a suffix. Finally any element of F is a factor of a word in X .
Indeed, any element u of F is a factor of some xn , and thus of xnxn ∈ X .

A simpler proof uses Theorem 4.4.3 proved later.

An internal factor of a word x is a word v such that x = uv w with u, w nonempty. Let F ⊂ A∗ be
a factorial set and let X ⊂ F be a set. Denote by

I(X) = {
w ∈ A∗ ∣∣ A+w A+ ∩ X �= ∅}

the set of internal factors of words in X .2

2 The set I(X) is denoted by H(X) in [7].



Author's personal copy

J. Berstel et al. / Journal of Algebra 369 (2012) 146–202 163

Fig. 4.1. The relation ϕu,v (case (ii)).

When F is right essential and left essential, then X is F -thin if and only if F \ I(X) �= ∅. Indeed,
the condition is necessary. Conversely, if w is in F \ I(X), let a,b ∈ A be such that awb ∈ F . Since
awb cannot be a factor of a word in X , it follows that X is F -thin.

We say that a bifix code X ⊂ F is maximal in F , or F -maximal, if it is not properly contained in
any other bifix code Y ⊂ F .

The following is a generalization of Proposition 6.2.1 in [7].

Theorem 4.2.2. Let F be a recurrent set and let X ⊂ F be an F -thin set. The following conditions are equivalent.

(i) X is an F -maximal bifix code.
(ii) X is a left F -complete prefix code.

(ii′) X is a right F -complete suffix code.
(iii) X is an F -maximal prefix code and an F -maximal suffix code.

As a preparation for the proof of Theorem 4.2.2, we introduce the following notation. Let F be a
recurrent set and let X ⊂ F .

A factorization of a word u is a pair (p, s) of words such that u = ps. We denote by Fact(u) the set
of factorizations of u.

Let C(X, F ) be the set of pairs (u, v) of words such that uvu ∈ F , v �= 1 and u is not an internal
factor of X . We define for each pair (u, v) ∈ C(X, F ) a relation ϕu,v on the set Fact(u) as follows. For
π = (p, s),ρ = (q, t) ∈ Fact(u), one has (π,ρ) ∈ ϕu,v if and only if the pair (π,ρ) satisfies one of the
following conditions (see Fig. 4.1).

(i) px = q for some x ∈ X ,
(ii) svq = x1 · · · xn with n � 1 and xi ∈ X for 1 � i � n, s is a proper prefix of x1 and q is a proper

suffix of xn .

Since ps = qt , condition (i) is equivalent to s = xt . This means that both conditions are symmetric for
reading from left to right or from right to left.

Example 4.2.3. Let A = {a,b} and let F be the set of words without factor bb (Example 2.1.2). The set
X = {aaa,aaba,ab,baa,baba} is a finite F -maximal bifix code. As an example of computation of the
relation ϕu,v , note that for u = aaa and v = b, we have Fact(u) = {π1,π2,π3,π4} with π1 = (1,aaa),
π2 = (a,aa), π3 = (aa,a), π4 = (aaa,1). The function ϕu,v is the cycle (π1π4π3) and fixes π2.

We prove a series of lemmas concerning the relations ϕu,v (see Exercise 6.2.1 in [7]).

Lemma 4.2.4. Let F be a recurrent set and let X ⊂ F be an F -thin set. If X is a prefix code, then for all pairs
(u, v) ∈ C(X, F ), the relation ϕu,v is a partial function from Fact(u) into itself, that is

(π,ρ),
(
π,ρ ′) ∈ ϕu,v ⇒ ρ = ρ ′. (4.10)

Conversely, if X is an F -maximal suffix code, and if (4.10) holds for all pairs (u, v) ∈ C(X, F ), then X is a prefix
code.

Define the transpose ϕ′
u,v of the relation ϕu,v by the condition (ρ,π) ∈ ϕ′

u,v if (π,ρ) ∈ ϕu,v . Then
(4.10) expresses the fact that the transpose ϕ′

u,v is injective.
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Fig. 4.2. The factorizations (p, s), (q, t) and (q′, t′) with t′ = wt .

Fig. 4.3. ϕu,v is not a partial function.

Proof. Assume first that X is a prefix code. For (u, v) ∈ C(X, F ), let π = (p, s), ρ = (q, t), ρ ′ = (q′, t′)
be three factorizations of u such that (π,ρ), (π,ρ ′) ∈ ϕu,v . We prove that ρ = ρ ′ . By definition, the
following cases may occur for (π,ρ), (π,ρ ′).

(1) px = q and px′ = q′ , with x, x′ ∈ X ,
(2) px = q with x ∈ X , and svq′ = x′

1 · · · x′
m , with m � 1 and x′

1, . . . , x′
m ∈ X , and moreover s is a proper

prefix of x′
1 and q′ is a proper suffix of x′

m ,
(3) px′ = q′ with x′ ∈ X and svq = x1 · · · xn , with n � 1 and x1, . . . , xn ∈ X , and moreover s is a proper

prefix of x1 and q is a proper suffix of xn ,
(4) svq = x1 · · · xn and svq′ = x′

1 · · · x′
m , with n � 1, m � 1, x1, . . . , xn, x′

1, . . . , x′
m ∈ X , and moreover s

is a proper prefix both of x1 and of x′
1, q is a proper suffix of xn and q′ is a proper suffix of x′

m .

(1) Assume that px = q, px′ = q′ , with x, x′ ∈ X . Since q and q′ are prefixes of u, they are prefix-
comparable. Thus x and x′ are also prefix-comparable. Since X is a prefix code, it follows that x = x′ ,
whence q = q′ and ρ = ρ ′ .

(2) We show that this case is impossible. Indeed, x is a prefix of s (by ps = qt = pxt) and s is a
proper prefix of x′

1, thus x is a proper prefix of x′
1, and this is impossible because X is a prefix code.

The same argument holds in the symmetric case (3).
(4) Since u = qt = q′t′ , the words q and q′ are prefix-comparable. We may suppose that q = q′w

(see Fig. 4.2). Since svq, svq′ are in X∗ and X is a prefix code, we have w ∈ X∗ . Since X is a code,
the decompositions svq = x1 · · · xn = svq′w = x′

1 · · · x′
m w coincide. Consequently, w = xm+1 · · · xn . By

hypothesis, q = q′w = q′xm+1 · · · xn is a proper suffix of xn . This forces n = m, w = 1 and q = q′ , hence
ρ = ρ ′ .

Conversely, assume that X is an F -maximal suffix code and that it is not a prefix code. Let x′ , x′′
be distinct words in X such that x′ is a prefix of x′′ . Set x′′ = x′r′ with r′ �= 1.

Since X is F -thin, there is a word w ∈ F \ I(X). Since F is recurrent, there is a word r′′ such that
x′′r′′w ∈ F . Let u = r′r′′w . Then x′′r′′w = x′u ∈ F . Let t be a word such that utx′u ∈ F . Set v = tx′ . Thus
(u, v) ∈ C(X, F ) (see Fig. 4.3). By the dual of Eq. (3.1), there exist p ∈ A∗ \ A∗ X and z ∈ X∗ such that
ut = pz.

Since X is left F -complete, p is a proper suffix of a word in X . Since u /∈ I(X), p is a prefix of u.
Thus z = 1 = t or z ∈ X+ . In the latter case, set moreover z = z1 · · · zn with zi ∈ X . Since ut = pz, one
of the following two cases holds:

(1) u = pz′ , with z′ ∈ X∗ and thus t ∈ X∗ ,
(2) there is an i with 1 � i � n such that zi = rs with u = pz1 · · · zi−1r, t = szi+1 · · · zn , and r �= 1,

s �= 1.
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In case (1), consider the three factorizations π = (u,1), ρ = (1, u), ρ ′ = (r′, r′′w) of u. Since r′ �= 1,
we have ρ �= ρ ′ . We have v = tx′ ∈ X+ , and thus (π,ρ) ∈ ϕu,v (this is case (ii) of the definition with
s = q = 1). Next, vr′ = tx′r′ = tx′′ ∈ X+ , with t ∈ X∗ and where r′ is a proper suffix of x′′ . Hence
(π,ρ ′) ∈ ϕu,v . Thus, ϕu,v is not a partial function.

In case (2), let π = (pz1 · · · zi−1, r) and let ρ,ρ ′ be as above. We have rv = rtx′ = rszi+1 · · ·
znx′ ∈ X+ , whence (π,ρ) ∈ ϕu,v . Next, rvr′ = rszi+1 · · · znx′r′ = rszi+1 · · · znx′′ ∈ X+ , and r′ is a proper
suffix of x′′ . Thus (π,ρ ′) ∈ ϕu,v . Since ρ �= ρ ′ , ϕu,v is not a partial function. �

Lemma 4.2.4 has a dual formulation for suffix codes: if X is a suffix code, then for all pairs (u, v) ∈
C(X, F ), the relation ϕu,v is injective: if (π,ρ), (π ′,ρ) ∈ ϕu,v , then π = π ′ . Conversely, if X is an F -
maximal prefix code, and if this implication holds for all pairs (u, v) ∈ C(X, F ), then X is a suffix
code.

Recall that a set X ⊂ F is right F -complete if any word of F is a prefix of X∗ .

Lemma 4.2.5. Let F be a recurrent set and let X ⊂ F be an F -thin set. The set X is right F -complete if and
only if, for all pairs (u, v) ∈ C(X, F ), the relation ϕu,v contains a total function from Fact(u) into itself, that is
for every π ∈ Fact(u), there exists ρ ∈ Fact(u) such that (π,ρ) ∈ ϕu,v .

Proof. Assume first that X is right F -complete. Let u, v ∈ F be such that (u, v) ∈ C(X, F ). Let π =
(p, s) ∈ Fact(u). Suppose first that s has a prefix x in X . Let s = xt , with x ∈ X . Thus u = ps = pxt . Let
q = px and ρ = (q, t). Then (π,ρ) ∈ ϕu,v . Suppose next that s has no prefix in X . Since X is right
F -complete, there exists a word w such that svuw = x1 · · · xm , with x1, . . . , xm ∈ X .

Let n be the smallest integer such that sv is a prefix of x1 · · · xn , 1 � n � m. Let q be the prefix of
uw such that svq = x1 · · · xn . Since sv �= 1, q is a proper suffix of xn . The word q is a prefix of u since
u is not an internal factor of X . Set u = qt and ρ = (q, t). Since s has no prefix in X , the word s is a
proper prefix of x1. Therefore, (π,ρ) ∈ ϕu,v . This shows that ϕu,v contains a total function.

Conversely, assume that for all (u, v) ∈ C(X, F ), the relation ϕu,v contains a total function from
Fact(u) into itself. We show that any u ∈ F is prefix-comparable with a word of X . By Proposi-
tion 3.3.2, this implies that X is right F -complete.

Let u ∈ F . Since X is F -thin, the set F \ I(X) is nonempty. Let w ∈ F \ I(X) and let v be such that
uv w ∈ F . Set r = uv w . Note that r ∈ F \ I(X). Let z �= 1 be such that rzr ∈ F . Then (r, z) ∈ C(X, F ).
Set π = (1, r). Since ϕr,z contains a total function, there is a factorization ρ = (q, t) of r such that
(π,ρ) ∈ ϕr,z . If q ∈ X , then r has the prefix q in X , the word u is prefix-comparable with q, and we
obtain the conclusion. Otherwise, we have uv wzq = x1 · · · xn with xi ∈ X and uv w is a prefix of x1,
whence our conclusion again. �

Lemma 4.2.5 has a dual formulation for left F -complete sets: the set X is left F -complete if and
only if, for all pairs (u, v) ∈ C(X, F ), the transpose of the relation ϕu,v contains a total function from
Fact(u) into itself.

Proposition 4.2.6. Let F be a recurrent set and let X ⊂ F be an F -thin and F -maximal prefix code. Then X is
a suffix code if and only if it is left F -complete.

Proof. Since X is an F -maximal prefix code, by Lemmas 4.2.4 and 4.2.5, for any pair (u, v) ∈ C(X, F ),
the relation ϕu,v is a total function from Fact(u) into itself.

Assume first that X is a suffix code. Then, by the dual of Lemma 4.2.4, for any pair (u, v) ∈ C(X, F ),
the function ϕu,v from Fact(u) into itself is injective. Since Fact(u) is a finite set, ϕu,v is also surjective
for any pair (u, v) ∈ C(X, F ). This implies by the dual of Lemma 4.2.5 that X is left F -complete.

Assume conversely that X is left F -complete. By the dual of Lemma 4.2.5, the function ϕu,v maps
Fact(u) onto itself for every pair (u, v) ∈ C(X, F ). This implies as above that it is also injective. By the
dual of Lemma 4.2.4, and since X is an F -maximal prefix code, X is a suffix code. �

Proposition 4.2.6 has a dual formulation for an F -maximal suffix code.



Author's personal copy

166 J. Berstel et al. / Journal of Algebra 369 (2012) 146–202

Proof of Theorem 4.2.2. We first show that (i) implies (ii). If X is an F -maximal suffix code, then X
is left F -complete and thus condition (ii) is true. Assume next that X is an F -maximal prefix code.
Since X is suffix, by Proposition 4.2.6, it is left F -complete and thus (ii) holds. Finally assume that X
is neither an F -maximal prefix code nor an F -maximal suffix code. Let y, z ∈ F be such that X ∪ y is
prefix and X ∪ z is suffix. Since F is recurrent, there is a word u such that yuz ∈ F . Then X ∪ yuz is
bifix and thus we get a contradiction.

The proof that (i) implies (ii′) is similar.
(ii) implies (iii). Consider the set Y = X \ A+ X . It is a suffix code by definition. It is prefix since it

is contained in X . It is left F -complete. Indeed, one has A∗ X = A∗Y and thus A∗Y is left F -dense by
the dual of Proposition 3.3.2. Hence Y is an F -maximal suffix code. By the dual of Proposition 4.2.6,
the set Y is right F -complete. Thus Y is an F -maximal prefix code. This implies that X = Y and thus
that X is an F -maximal prefix code and an F -maximal suffix code.

The proof that (ii′) implies (iii) is similar. It is clear that (iii) implies (i).

The following example shows that Theorem 4.2.2 is false if F is not recurrent.

Example 4.2.7. Let F = a∗b∗ . Then X = {aa,ab,b} is an F -maximal prefix code. It is not a suffix code
but it is left F -complete as it can be easily verified.

Let F ⊂ A∗ be a factorial set. The F -degree, denoted dF (X), of a set X ⊂ A∗ is the maximal number
of parses of words of F with respect to X , that is

dF (X) = max
w∈F

δX (w).

The F -degree of a set X is finite or infinite. The A∗-degree is called the degree, and is denoted d(X).
Observe that dF (X) = dF (X ∩ F ), and that dF (X) � d(X).

The following is a generalization of Theorem 6.3.1 in [7].

Theorem 4.2.8. Let F be a recurrent set and let X ⊂ F be a bifix code. Then X is an F -thin and F -maximal
bifix code if and only if its F -degree dF (X) is finite. In this case,

I(X) = {
w ∈ F

∣∣ δX (w) < dF (X)
}
. (4.11)

Proof. Assume first that X is an F -thin and F -maximal bifix code. Since X is F -thin, F \ I(X) is not
empty. Let u ∈ F \ I(X) and w ∈ F . Since F is recurrent, there is a word v ∈ F such that uv w ∈ F .
Since X is prefix, by Proposition 4.1.3, the number of parses of u is equal to the number of prefixes of
u which have no suffix in X . Since X is left F -complete, the set of words in F which have no suffix in
X coincides with the set S of words which are proper suffixes of words in X . Since u is not an internal
factor of a word in X , any prefix of uv w which is in S is a prefix of u. Thus δX (uv w) = (S A∗, uv w) =
(S A∗, u) = δX (u). Since by Eq. (4.8), δX (w) � δX (uv w), we get δX (w) � δX (u). This shows that δX is
bounded, and thus that the F -degree of X is finite. Moreover, this shows that F \ I(X) is contained
in the set of words of F with maximal value of δX . Conversely, consider w ∈ I(X). Then there exists
w ′ ∈ X and p, s ∈ A+ such that w ′ = pws. Then by Eq. (4.9) δX (w ′) > δX (w), and thus δX (w) is not
maximal. This proves Eq. (4.11).

Conversely, let w ∈ F be a word with δX (w) = dF (X). For any nonempty word u ∈ F such that
uw ∈ F we have uw ∈ X A∗ . Indeed, set u = au′ with a ∈ A and u′ ∈ F . Then δX (au′w) � δX (u′w) �
δX (w) by Eq. (4.8). This implies δX (au′w) = δX (u′w) = δX (w). By the dual of Eq. (4.7) we obtain that
uw ∈ X A∗ .

This implies first that X is F -thin and next that X A∗ is right F -dense. Indeed suppose that w is
an internal factor of a word in X . Let p, s ∈ F \ 1 be such that pws ∈ X . Since pw ∈ F , the previous
argument shows that pw ∈ X A∗ , a contradiction. Thus w ∈ F \ I(X). This shows that X is F -thin.
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Next, and since F is recurrent, for any v ∈ F , there is a word u ∈ F such that vuw ∈ F . Then
vuw ∈ X A∗ by using again the above argument. Thus X A∗ is right F -dense and X is an F -maximal
bifix code by Theorem 4.2.2. �
Example 4.2.9. Let F be the Fibonacci set. The set X = {a,bab,baab} is a finite bifix code. Since it
is finite, it is F -thin. It is an F -maximal prefix code as one may check in Fig. 2.1. Thus it is, by
Theorem 4.2.2, an F -thin and F -maximal bifix code. The parses of the word bab are (1,bab,1) and
(b,a,b). Since bab is not in I(X), one has dF (X) = 2.

Example 4.2.10. Let F be the Fibonacci set. The set X = {aaba,ab,baa,baba} is a bifix code. It is F -
maximal since it is right F -complete (see Fig. 2.1). It has F -degree 3. Indeed, the word aaba has three
parses (1,aaba,1), (a,ab,a) and (aa,1,ba) and it is in F \ I(X).

The following result establishes the link between maximal bifix codes and F -maximal ones.

Theorem 4.2.11. Let F be a recurrent set. For any thin maximal bifix code X ⊂ A+ of degree d, the set Y =
X ∩ F is an F -thin and F -maximal bifix code. One has dF (Y ) � d with equality when X is finite.

Proof. Recall that dF (Y ) = dF (X ∩ F ) = dF (X) � d. Thus dF (Y ) is finite and by Theorem 4.2.8, Y is an
F -thin and F -maximal bifix code. If X is finite, then each word which is in F and is longer than the
longest words in X has d parses. Thus dF (X) = d, whence dF (Y ) = d. �
Example 4.2.12. The set X = a ∪ ba∗b is a maximal bifix code of degree 2. Let F be the Fibonacci set.
Then X ∩ F = {a,baab,bab} (see Fig. 2.1).

As another example, let Z = {a3,a2ba,a2b2,ab,ba2,baba,bab2,b2a,b3}. The set Z is a finite maxi-
mal bifix code of degree 3 (see [7]). Then Z ∩ F = {a2ba,ab,ba2,baba} (see Fig. 2.1).

Example 4.2.13. Let F be the Thue–Morse set. Consider again X = a ∪ ba∗b. Then X ∩ F =
{a,baab,bab,bb} is a finite F -maximal bifix code of F -degree 2 (see Fig. 2.2).

The following examples show that a strict inequality can hold in Theorem 4.2.11. The second
example shows that this may happen even if all letters occur in the words of F .

Example 4.2.14. Let A = {a,b} and let X = a ∪ba∗b. The set X is a maximal bifix code of degree 2. Let
F = a∗ . Then F is a recurrent set. We have Y = X ∩ F = a. The F -degree of Y is 1.

Example 4.2.15. Let A = {a,b} and let X = {aa,ab,ba} ∪ b2(a+b)∗b. Then X is a maximal bifix code. It
is of degree 3 because the word bba is not an internal factor and has 3 parses. Let K = {aa,ab,ba}.
Let F be the Fibonacci set. Since K = A2 ∩ F , K is an F -maximal bifix code. Since K ⊂ X ∩ F and K
is F -maximal, one has X ∩ F = K . Next K = A2 ∩ F and Theorem 4.2.11 imply that dF (K ) = 2. Thus
d(X) = 3 and dF (X ∩ F ) = 2.

4.3. Derivation

We first show that the notion of derived code can be extended to F -maximal bifix codes. The
following result generalizes Proposition 6.4.4 in [7].

The kernel of a set of words X is the set of words in X which are internal factors of words in X .
We denote by K (X) the kernel of X . Note that K (X) = I(X) ∩ X .

Theorem 4.3.1. Let F be a recurrent set. Let X ⊂ F be a bifix code of finite F -degree d � 2. Set I = I(X) and
K = K (X). Let G = (I A ∩ F )\ I and D = (AI ∩ F )\ I . Then the set X ′ = K ∪ (G ∩ D) is a bifix code of F -degree
d − 1.
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The code X ′ is called the derived code of X with respect to F or F -derived code.
The proof uses two lemmas. Let P be the set of proper prefixes of X and let S be the set of proper

suffixes of X .

Lemma 4.3.2. One has G ⊂ S and D ⊂ P .

Proof. By Theorem 4.2.8, the parse enumerator of X is bounded on F and F \ I(X) = F \ I is the set
of words in F with maximal value dF (X). Let y = ha be in G with h ∈ I and a ∈ A. Since y /∈ I , we
have δX (ha) > δX (h). Thus, by Proposition 4.1.6, y = ha does not have a suffix in X . Since A∗ X is left
F -dense, this implies that y is a proper suffix of a word in X . Thus y is in S . The proof that D ⊂ P is
symmetrical. �
Lemma 4.3.3. For any x ∈ X \ K , the shortest prefix of x which is not in I is in X ′ .

Proof. Since x /∈ K , we have x /∈ I . Let x′ be the shortest prefix of x which is not in I or, equivalently
such that δX (x′) = dF (X). Let us show that x′ ∈ X ′ . First, x′ is a proper prefix of x. Set indeed x = pa
with p ∈ A∗ and a ∈ A. Since x ∈ X , we have by Eq. (4.7), δX (x) = δX (p). Thus p /∈ I and x′ is a prefix
of p.

Since 1 ∈ I , we have x′ �= 1. Set x′ = p′a′ with p′ ∈ A∗ and a′ ∈ A. By definition of x′ we have p′ ∈ I .
Thus x′ ∈ G = (I A ∩ F ) \ I .

Next, set x′ = a′′s with a′′ ∈ A and s ∈ A∗ . Since x′ /∈ X A∗ , we have by the dual of Eq. (4.7), δX (s) <

δX (x′). Thus s is in I . This shows that x′ ∈ D . Thus we conclude that x′ ∈ G ∩ D ⊂ X ′ . �
There is a dual of Lemma 4.3.3 concerning the shortest suffix of a word in X \ K .

Proof of Theorem 4.3.1. We first prove that X ′ is a prefix code. Suppose first that k ∈ K is a prefix
of a word z in G ∩ D . By Lemma 4.3.2, a word in D is a proper prefix of X . Thus k ∈ X would be a
proper prefix of X , which is impossible since X is prefix.

Suppose next that a word u of G ∩ D is a prefix of a word k in K . Since k is in I , it follows that u
is in I , a contradiction.

Finally, no word y ∈ G ∩ D can be a proper prefix of another word y′ in G ∩ D , otherwise y′ =
yz, with z ∈ A+ . Therefore, since G ⊂ S by Lemma 4.3.2, there is t ∈ A+ such that ty′ = tyz ∈ X .
Consequently, y ∈ G ∩ I , a contradiction.

Thus X ′ is a prefix code. To show that it is F -maximal, it is enough to show that any word in X
has a prefix in X ′ .

Consider indeed x ∈ X . If x is in K then x ∈ X ′ . Otherwise, let x′ be the shortest prefix of x which
is not in I . By Lemma 4.3.3, we have x′ ∈ X ′ .

Thus X ′ is an F -maximal prefix code.
A symmetric argument shows that X ′ is an F -maximal suffix code.
Let us show that dF (X ′) = dF (X) − 1. We first note that G ∩ D �= ∅. Indeed, let x ∈ X be such that

δX (x) is maximal on X . If x were an internal factor of a word y ∈ X , then by Eq. (4.9) δX (x) < δX (y)

which contradicts our assumption. Thus x /∈ K . This shows that K is not an F -maximal bifix code and
thus that X ′ \ K = G ∩ D �= ∅. Consider x′ ∈ G ∩ D . Since (G ∩ D)∩ I(X) is empty, and since I(X ′) ⊂ I(X),
x′ cannot be in I(X ′). Thus the number of parses of x′ with respect to X ′ is dF (X ′).

Let P ′ be the set of proper prefixes of X ′ . We show that x′ has dF (X) − 1 suffixes which are in P ′ .
This will show that dF (X ′) = dF (X) − 1 by the dual of Proposition 4.1.3.

Since x′ ∈ F \ I , we have δX (x′) = dF (X). Thus x′ has dF (X) suffixes in P . One of them is x′ itself
since x′ ∈ D ⊂ P . Let p be a proper suffix of x′ which is in P . Let us show that p does not have a
prefix in X ′ . Indeed, arguing by contradiction, assume that x′′ ∈ X ′ is a prefix of p. We cannot have
x′′ ∈ K since p is a proper prefix of a word in X . We cannot have either x′′ ∈ G ∩ D . Indeed, since x′
is in AI , p is in I and thus also x′′ ∈ I . Thus p cannot have a prefix in X ′ . Since X ′ is an F -maximal
prefix code, this implies that p is a proper prefix of X ′ . Thus, the dF (X) − 1 proper suffixes of x′
which are in P are in P ′ . �
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Example 4.3.4. Let F be the Fibonacci set. Let X = {a,bab,baab}. The set X is an F -thin and F -
maximal bifix code of F -degree 2 (see Example 4.2.9). We have K = {a}, I = {1,a,aa}, G = {b,ab,aab}
and D = {b,ba,baa}. Thus X ′ = {a,b}.

The following is a generalization of Proposition 6.3.14 in [7].

Proposition 4.3.5. Let F be a recurrent set. Let X ⊂ F be a bifix code of F -degree d � 2. Let S be the set of
proper suffixes of X and set I = I(X). The set S \ I is an F -maximal prefix code and the set S ∩ I is the set of
proper suffixes of the derived code X ′ .

The proof uses the following lemma.

Lemma 4.3.6. Let F be a recurrent set. Let X ⊂ F be an F -thin and F -maximal bifix code. Let S be the set of
proper suffixes of X and set I = I(X). For any w ∈ F \ I the longest prefix of w which is in S is not in I .

Proof. Let s be the longest prefix of w which is in S . Set w = st . Let us show that for any prefix t′
of t , we have δX (st′) = δX (s). It is true for t′ = 1. Assume that it is true for t′ and let a ∈ A be the
letter such that t′a is a prefix of t . Since st′a /∈ S , we have st′a ∈ A∗ X . Thus by Eq. (4.7), this implies
δX (st′a) = δX (st′). Thus δX (st′a) = δX (s). We conclude that δX (st) = δX (s). Since w = st is in F \ I , and
since F \ I is the set of words in F with maximal value of δX , this implies that s ∈ F \ I . �

This lemma has a dual statement for the longest suffix of a word in w ∈ F \ I which is in P .

Proof of Proposition 4.3.5. Set Y = S \ I . Let us first show that Y is prefix. Assume that u, uv ∈ Y .
Since uv ∈ S there is a nonempty word p such that puv ∈ X . Since u /∈ I , this forces v = 1. Thus Y is
prefix.

We show next that Y A∗ is right F -dense. Consider u ∈ F and let w ∈ F \ I . Since F is recurrent,
there exists v ∈ F such that uv w ∈ F . Let s be the longest word of S which is a prefix of uv w . By
Lemma 4.3.6, we have s ∈ F \ I . Thus s ∈ S \ I = Y and uv w ∈ Y A∗ . This shows that Y A∗ is right
F -dense.

Let us now show that the set S ′ of proper suffixes of the words of X ′ is S ∩ I . Let s be a proper
suffix of a word x′ ∈ X ′ . If x′ ∈ K , then s is in S ∩ I . Suppose next that x′ ∈ G ∩ D . Since G ⊂ S by
Lemma 4.3.2, we have s ∈ S . Furthermore, since D ⊂ AI , we have s ∈ I . This shows that s ∈ S ∩ I .

Conversely, let s be in S ∩ I . Let x ∈ X be such that s is a proper suffix of x. If x is in K then x
is in X ′ and thus s is in S ′ . Otherwise, let y be the shortest suffix of x which is in not in I . By the
dual of Lemma 4.3.3, the word y is in X ′ . Then s is a proper suffix of y (since s ∈ I and y /∈ I) and
therefore s is in S ′ . �

There is a dual version of Proposition 4.3.5 concerning the set of proper prefixes of an F -thin and
F -maximal bifix code X ⊂ F .

The following property generalizes Theorem 6.3.15 in [7].

Theorem 4.3.7. Let F be a recurrent set. Let X be a bifix code of finite F -degree d. The set of its nonempty
proper suffixes is a disjoint union of d − 1 F -maximal prefix codes.

Proof. Let S be the set of proper suffixes of X . If d = 1, then S \ 1 is empty. If d � 2, by Proposi-
tion 4.3.5, the set Y = S \ I is an F -maximal prefix code and the set S ∩ I is equal to the set S ′ of
proper suffixes of the words of the derived code X ′ . Arguing by induction, the set S ′ \ 1 is a disjoint
union of d − 2 F -maximal prefix codes. Thus S \ 1 = Y ∪ (S ′ \ 1) is a disjoint union of d − 1 F -maximal
prefix codes. �

The following generalizes Corollary 6.3.16 in [7], with two restrictions. First, it applies only in
the case of finite maximal bifix codes instead of thin bifix codes (in order to be able to use Proposi-
tion 3.3.4). Next, it applies only for recurrent sets such that there exists a positive invariant probability
distribution (in order to be able to use Proposition 3.4.1).
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Corollary 4.3.8. Let F be a recurrent set such that there exists a positive invariant probability distribution π
on F . Let X be a finite bifix code of finite F -degree d. The average length of X with respect to π is equal to d.

Proof. Let π be a positive invariant probability distribution on F . By the dual of Proposition 3.4.1, one
has λ(X) = π(S). In view of Theorem 4.3.7, we have S \ 1 = Y1 ∪ · · · ∪ Yd−1 where each Yi is a finite
F -maximal prefix code. By Proposition 3.3.4, we have π(Yi) = 1 for 1 � i � d − 1. Thus λ(X) = d. �
Example 4.3.9. Let F be the Fibonacci set and let X = {a,bab,baab} (Example 4.3.4). The set X is an
F -maximal bifix code of F -degree 2. With respect to the unique invariant probability distribution of
F (Example 2.4.6), we have λ(X) = λ + 3(2 − 3λ) + 4(2λ − 1) = 2.

Now we show that an F -thin and F -maximal bifix code is determined by its F -degree and its
kernel. We first prove the following generalization of Proposition 6.4.1 from [7].

Proposition 4.3.10. Let F be a recurrent set. Let X ⊂ F be a bifix code of finite F -degree d and let K be the
kernel of X . Let Y be a set such that K ⊂ Y ⊂ X. Then for all w ∈ I(X) ∪ Y ,

δY (w) = δX (w). (4.12)

For all w ∈ F ,

δX (w) = min
{

d, δY (w)
}
. (4.13)

Proof. Denote by F (w) the set of factors of the word w . Notice that Eq. (4.3) is equivalent to L X =
A∗(1 − X)A∗ . Thus, to prove (4.12), we have to show that for any w ∈ I(X) ∪ Y one has F (w) ∩ X =
F (w) ∩ Y . The inclusion F (w) ∩ Y ⊂ F (w) ∩ X is clear. Conversely, if w is in I(X), then F (w) ∩ X ⊂ K
and thus F (w) ∩ X ⊂ F (w) ∩ Y . Next, assume that w is in Y . The words in F (w) ∩ X other than w
are all in K . Thus we have again F (w) ∩ X ⊂ F (w) ∩ Y .

To show Eq. (4.13), assume first that w ∈ I(X). Then δX (w) < d by Theorem 4.2.8. Moreover,
δX (w) = δY (w) by Eq. (4.12). Thus Eq. (4.13) holds. Next, suppose that w ∈ F \ I(X). Then δX (w) = d.
Since Y ⊂ X , we have δX (w) � δY (w) by Eq. (4.1). This proves (4.13). �

Proposition 4.3.10 will be used to prove the following generalization of Theorem 6.4.2 in [7].

Theorem 4.3.11. Let F be a recurrent set and let X ⊂ F be a bifix code of finite F -degree d. For any w ∈ F , one
has

δX (w) = min
{

d, δK (X)(w)
}
.

In particular X is determined by its F -degree and its kernel.

Proof. Take Y = K (X) in Proposition 4.3.10. Then the formula follows from Eq. (4.13). Next X is
determined by L X , and so by δX , through Eq. (4.3). �

We now state the following generalization of Theorem 6.4.3 in [7].

Theorem 4.3.12. Let F be a recurrent set. A bifix code Y ⊂ F is the kernel of some bifix code of finite F -degree
d if and only if

(i) Y is not an F -maximal bifix code,
(ii) max{δY (y) | y ∈ Y } � d − 1.
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Fig. 4.4. The three F -maximal bifix codes of F -degree 2 in the Fibonacci set F .

Proof. Let X be an F -thin and F -maximal bifix code of F -degree d and let Y = K (X) be its kernel.
Condition (i) is satisfied because X = Y implies that X is equal to its derived code which has F -degree
d−1. Moreover, for every y ∈ Y one has δX (y) � d−1. Since δX (y) = δY (y) by Eq. (4.12), condition (ii)
is also satisfied.

Conversely, let Y ⊂ F be a bifix code satisfying conditions (i) and (ii). Let δ : A∗ → N be the func-
tion defined by

δ(w) = min
{

d, δY (w)
}
.

It can be verified that the function δ satisfies the four conditions of Proposition 4.1.5. Thus δ is the
parse enumerator of a bifix code Z . Let X = Z ∩ F . Then δX and δ have the same restriction to F .
Since δ is bounded on F , the same holds for δX . This implies that the code X is an F -thin and F -
maximal bifix code by Theorem 4.2.8. Since the code Y is not an F -maximal bifix code, the parse
enumerator δY is not bounded. Consequently max{δ(w) | w ∈ F } = d, showing that X has F -degree d.
Let us prove finally that Y is the kernel of X . Since, by condition (ii), max{δY (y) | y ∈ Y } � d − 1, we
have Y ⊂ I(X).

Moreover, for w ∈ I(X) we have δX (w) = δY (w). Let L (resp. LY ) be the indicator of X (resp.
of Y ). Since 1 − X = (1 − A)L(1 − A) and 1 − Y = (1 − A)LY (1 − A) by Eq. (4.3), we conclude that for
w ∈ I(X), we have (X, w) = (Y , w). This implies that if w ∈ I(X), then w is in X if and only if w is
in Y . Thus K (X) = I(X) ∩ X = I(X) ∩ Y = Y and Y is the kernel of X . �
Example 4.3.13. Let A = {a,b} and let F ⊂ A∗ be the Fibonacci set. There are three maximal bifix
codes of F -degree 2 in F represented in Fig. 4.4. Indeed, by Theorem 4.3.12, the possible kernels are
∅, {a} and {b}.

4.4. Finite maximal bifix codes

The following generalizes Theorem 6.5.2 of [7].

Theorem 4.4.1. For any recurrent set F and any integer d � 1 there is a finite number of finite F -maximal bifix
codes X ⊂ F of F -degree d.

Proof. The only F -maximal bifix code of F -degree 1 is F ∩ A. Arguing by induction on d, assume that
there are only finitely many finite F -maximal bifix codes of F -degree d. Each finite F -maximal bifix
code X ⊂ F of F -degree d + 1 is determined by its kernel which is a subset of its derived code X ′ .
Since X ′ is a finite F -maximal bifix code of F -degree d, there are only a finite number of kernels and
we are done. �
Example 4.4.2. Let A = {a,b} and let F be the set of words without factor bb. There are two finite
F -maximal bifix codes of F -degree 2, namely the code {aa,ab,ba} with empty kernel and the code
{aa,aba,b} with kernel b. The code of F -degree 2 with kernel a is a ∪ ba+b, and thus is infinite.

The following result shows that the case of a uniformly recurrent set contrasts with the case
F = A∗ since in A∗ , as soon as Card(A) � 2, there exist infinite maximal bifix codes of degree 2 and
thus of all degrees d � 2; see e.g. [7, Example 6.4.7] for degree 2 and [7, Theorem 6.4.6] for the
general case.
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Theorem 4.4.3. Let F be a uniformly recurrent set. Any F -thin set X ⊂ F is finite. Any finite bifix code is
contained in a finite F -maximal bifix code.

Proof. Let X ⊂ F be an F -thin set. Since X is F -thin, there exists a word w ∈ F \ I(X). Since F is
uniformly recurrent there is an integer r such that w is factor of every word in Fr = F ∩ Ar . Assume
Fk ∩ X �= ∅ for some k � r + 2, and let x ∈ Fk ∩ X . Set x = pqs, with q ∈ Fr ∩ I(X), and p, s nonempty.
Then w is factor of q, hence w is in I(X), a contradiction. We deduce that each x in X has length at
most r + 1. Thus X is finite.

Let X ⊂ F be a finite bifix code which is not F -maximal. Let d = max{δX (x) | x ∈ X}. By Theo-
rem 4.3.12, X is the kernel of an F -thin and F -maximal bifix code Z ⊂ F of F -degree d + 1. By the
previous argument, Z is finite. �

By Theorem 6.6.1 of [7], any rational bifix code is contained in a maximal rational bifix code. We
have seen that the situation is simpler for bifix codes in uniformly recurrent sets.

Example 4.4.4. Let F be the Fibonacci set. Let X = {a,bab}. Then X is contained in the bifix code
{a,bab,baab} which has F -degree 2 (see Fig. 4.4). It is also the kernel of {a,baabaab,baababaab,bab}
which is a bifix code of F -degree 3 (see Table 5.1).

The following is a generalization of Proposition 6.2.10 in [7]. The equality d(Y ) = d(X) is stated as
a comment following Proposition 6.3.9 in [7, p. 243], in a more general framework.

Proposition 4.4.5. Let F be a recurrent set, let X ⊂ F be a finite F -maximal bifix code and let w be a nonempty
word in F . Let G = X w−1 , and D = w−1 X. If

G �= ∅, D �= ∅, and G w ∩ w D = ∅,

then the set

Y = (
X ∪ w ∪ (G w D ∩ F )

) \ (G w ∪ w D) (4.14)

is a finite F -maximal bifix code with the same F -degree as X.

We use in the proof the following proposition which is an extension of Corollary 3.4.7 of [7].

Proposition 4.4.6. Let F be a recurrent set and let X ⊂ F be an F -maximal prefix code. Let X = X1 ∪ X2 be a
partition of X into two prefix codes and let Y be a finite prefix code such that Y ∩ x−1 F is x−1 F -maximal for
all x ∈ X2 . Then the set Z = X1 ∪ (X2Y ∩ F ) is an F -maximal prefix code.

Proof. We first prove that Z is a prefix code. Let z and z′ be distinct words in Z . We show that they
are not prefix-comparable. Since X1 is a prefix code, this holds if both words are in X1. Assume next
that z ∈ X2Y . Then z = xy with x ∈ X2 and y ∈ Y .

If z′ is in X1, then z′ and x are not prefix-comparable because they are distinct since z′ ∈ X1 and
x ∈ X2, and so z and z′ are not prefix-comparable.

If z′ ∈ X2Y , set z′ = x′ y′ with x′ ∈ X2 and y′ ∈ Y . Either x and x′ are not prefix-comparable, and
then so are z and z′ , or x = x′ . In the latter case, y and y′ are not prefix-comparable because Y is a
prefix code, and again z and z′ are not prefix-comparable. Thus Z is a prefix code.

Let us show that Z is F -maximal. Let u ∈ F . Since X is an F -maximal prefix code, there is an x ∈ X
which is prefix-comparable with u. If x is in X1, then x ∈ Z and thus u is prefix-comparable with a
word of Z . Otherwise, we have x ∈ X2.

Suppose first that u is a prefix of x. Since Y ∩ x−1 F is a finite x−1 F -maximal prefix code, it is not
empty and u is a prefix of xv for every v ∈ Y ∩ x−1 F .
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Fig. 4.5. Construction of ϕ(p) (second case).

Suppose next that u = xv for some word v . Since v is in x−1 F and since Y ∩ x−1 F is an x−1 F -
maximal prefix code, the word v is prefix-comparable with some y ∈ Y ∩ x−1 F . Thus u is prefix-
comparable with xy ∈ Z . �
Proof of Proposition 4.4.5. The condition G �= ∅ (resp. D �= ∅) means that w is a suffix of X (resp. a
prefix of X ). The condition G w ∩ w D = ∅ implies that w is not in X .

By Theorem 4.2.2, the set X is an F -maximal prefix code. By Proposition 3.3.8, the set Y1 =
(X ∪ w) \ w D is an F -maximal prefix code. Next, we have

Y = (Y1 \ G w) ∪ (G w D ∩ F ).

We show that Y is an F -maximal prefix code, by applying Proposition 4.4.6. Indeed, consider the
partition Y1 = X1 ∪ X2 with X1 = Y1 \G w and X2 = G w . Then Y = X1 ∪(X2 D ∩ F ). Clearly D is a finite
w−1 F -maximal prefix code. Since (g w)−1 F is a subset of w−1 F for all g ∈ G , the set D ∩ (g w)−1 F
is a finite (g w)−1 F -maximal prefix code for all g ∈ G by Proposition 3.3.6. So the claim follows from
by Proposition 4.4.6. This proves that Y is an F -maximal prefix code. Since Y it is also a suffix code,
it follows that Y is an F -maximal bifix code by Theorem 4.2.2.

To show that X and Y have the same degree, consider a word u ∈ F which is not an internal factor
of X nor Y . Such a word exists since X and Y are finite. Let P (resp. Q ) be the set of proper prefixes
of the words of X (resp. Y ). We define a bijection ϕ between the set P (u) of suffixes of u which are
in P and the set Q (u) of suffixes of u which are in Q . This will imply that dF (X) = dF (Y ) by the
dual of Proposition 4.1.3.

Let p ∈ P be a suffix of u and set u = rp. If w is not a prefix of p, then p is in Q . Otherwise, set
p = ws. Since the words in P starting with w are all prefixes of w D , the word s is a proper prefix
of D . Since G is an F w−1-maximal suffix code, r is suffix-comparable with a word of G . If r is a
proper suffix of G , then u = rws is an internal factor of G w D , a contradiction. Thus r has a suffix
g ∈ G . This suffix is unique because G is a suffix code. Since gp = g ws, the word gp is a proper prefix
of G w D , and thus a proper prefix of Y . Thus gp ∈ Q (u). We set (see Fig. 4.5)

ϕ(p) =
{

p if p /∈ w A∗,
gp if p ∈ w A∗ and g ∈ G is the suffix of r in G.

Thus ϕ maps P (u) into Q (u). We show that it is injective. Suppose that ϕ(p) = ϕ(p′) for some
p, p′ ∈ P (u). Assume that ϕ(p) = gp and ϕ(p′) = g′ p′ with g, g′ ∈ G . Since p and p′ start with w ,
the word gp = g′ p′ starts with the words g w and g′w which are in X . This shows that g = g′ and
thus p = p′ . Assume next that p = g′p′ with g′ ∈ G and p′ ∈ w A∗ . But then g′w is a prefix of p, with
p in P and g′w in X , a contradiction.

To show that ϕ is surjective, consider q ∈ Q (u). Assume first that q has a prefix x in X (see
Fig. 4.6). By Eq. (4.14), one has x = g w and q = g ws for some g ∈ G and s a proper prefix of the word
d in D . Thus ws is a proper prefix of w D ⊂ X , and consequently ws is a proper prefix of X . Since
ws is a suffix of q, it is a suffix of u. Thus ws ∈ P (u). Set u = rws. Then g is a suffix of r. Moreover
ws ∈ w A∗ . Consequently ϕ(ws) = q.

Finally, if q has no prefix in X , then q is a proper prefix of X . Moreover, since q is a prefix of Y ,
either q is a proper prefix of w or q is not a prefix of w D . In both cases, w is not a prefix of q and
therefore ϕ(q) = q. Thus ϕ is surjective. �

The set Y defined by Eq. (4.14), is said to be obtained from X by internal transformation (with
respect to w).
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Fig. 4.6. Reconstruction of the factorization.

Example 4.4.7. Let F be the Fibonacci set. The set X = {aa,ab,ba} is an F -maximal bifix code of F -
degree 2. Then Y = {aa,aba,b} is a bifix code of F -degree 2 which is obtained from X by internal
transformation with respect to w = b. Indeed, here G = D = {a}, G w = {ab}, w D = {ba} and G w D =
{aba}.

The following theorem is due to Césari. It is Theorem 6.5.4 in [7].

Theorem 4.4.8. For any finite maximal bifix code X over A of degree d, there is a sequence of internal trans-
formations which, starting from the code Ad, gives the code X.

Theorem 4.4.8 has been generalized to finite F -maximal bifix codes when F is the set of paths in
a strongly connected graph (see [19]). It is not true in any recurrent, or even uniformly recurrent set,
as shown by the following example.

Example 4.4.9. Let F be the Fibonacci set. The set X = {a,bab,baab} is a finite bifix code of F -
degree 2. It cannot be obtained by a sequence of internal transformations from the code A2 ∩ F =
{aa,ab,ba}. Indeed, the only internal transformation which can be realized is with respect to w = b.
The result is {aa,aba,b} by Example 4.4.7. Next, no internal transformation can be realized from this
code. See also Fig. 4.4.

A more general form of internal transformation is described in [7] in Proposition 6.2.8. We do not
know whether its adaptation to finite F -maximal bifix codes allows one to obtain all finite F -maximal
bifix codes of F -degree d starting with the code Ad ∩ F .

5. Bifix codes in Sturmian sets

In this section, we study bifix codes in Sturmian sets. This time, the situation is completely specific.
First of all, as we have already seen, any F -thin bifix code included in a uniformly recurrent set F is
finite (Theorem 4.4.3). Next, in a Sturmian set F , any bifix code of finite F -degree d on k letters has
(k − 1)d + 1 elements (Theorem 5.2.1). Since Ad is a bifix code of degree d, this generalizes the fact
that Card(F ∩ Ad) = (k − 1)d + 1 for all d � 1.

Additionally, if an infinite word x is X-stable, that is if, for some thin maximal bifix code X , one
has dF (y)(X) = dF (x)(X) for all suffixes y of x, then the inequality Card(X ∩ F (x)) � dF (x)(X) implies
that x is ultimately periodic (Theorem 5.3.2).

5.1. Sturmian sets

Let F be a factorial set on the alphabet A. Recall that a word w is strict right-special if w A ⊂ F . It
is strict left-special if Aw ⊂ F . A suffix of a (strict) right-special word is (strict) right-special, a prefix
of a (strict) left-special word is (strict) left-special.

A set of words F is called Sturmian if it is the set of factors of a strict episturmian word. By
Proposition 2.3.3 a Sturmian set F is uniformly recurrent. Moreover, every right-special (left-special)
word in F is strict.

The following statement gives a direct definition of Sturmian sets.
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Proposition 5.1.1. A set F is Sturmian if and only if it is uniformly recurrent and

(i) it is closed under reversal,
(ii) for each n, there is exactly one right-special word in F of length n, and this right-special word is strict.

Proof. If F = F (x) for some strict episturmian word, then the conclusions of the proposition hold.
Conversely, assume that F has the required properties. For each n, the reversal of the strict right-

special word of length n is a strict left-special word. Since all these left-special words are prefixes
one of the other, there is an infinite word x that such that all its prefixes are these strict left-special
words. Clearly, F (x) ⊂ F . To show that x is strict episturmian, we verify that F (x) is closed under
reversal. Let u ∈ F (x). Then u ∈ F . Since F is uniformly recurrent, there is an integer m such that u is
a factor of the right-special word w of F of length m. Consequently the reversal ũ of u is a factor of
the left-special word w̃ of length m, and therefore is in F (x).

To prove that F ⊂ F (x), let u ∈ F . Since F is uniformly recurrent, there is an integer m such that u
is a factor of the left-special word w of length m. Since w is a prefix of x, this shows that u ∈ F (x). �

The following statement is a direct consequence of the previous proof.

Proposition 5.1.2. Let F be a Sturmian set of words. There is a unique strict standard episturmian infinite
word s such that F = F (s).

As a consequence of Proposition 5.1.2, for every left-special word w of a Sturmian set F , exactly
one of the words wa, for a ∈ A, is left-special in F . Symmetrically, for every right-special word w
in F , exactly one of the words aw for a ∈ A is right-special in F . More generally, for every n � 1 there
is exactly one word u of length n such that uw is a right-special word in F .

Proposition 5.1.3. Any word in a Sturmian set F is a prefix of some right-special word in F .

Proof. Let indeed u ∈ F . Since F is uniformly recurrent, there is an integer n such that u is a factor
of any word in F of length n. Let w be the right-special word of length n. Then u is a factor of w ,
thus w = pus for some words p, s. Since w is right-special, its suffix us is also right-special. Thus u
is a prefix of a right-special word. �

The following example shows that for a Sturmian set F , there exists bifix codes X ⊂ F which
are not F -thin (we have seen such an example for a uniformly recurrent but not Sturmian set in
Example 4.2.1).

Example 5.1.4. Let F be a Sturmian set. Consider the following sequence (xn)n�1 of words of F . Set
x1 = a, for some a ∈ A.

Suppose inductively that x1, . . . , xn have been defined in such a way that Xn = {x1, x2, . . . , xn} is
bifix and not F -maximal bifix. Define xn+1 as follows. By Theorem 4.2.2, Xn is not right F -complete,
thus there is a word u in F which is incomparable for the prefix order with the words of Xn . By
Proposition 5.1.3, the word u is a prefix of a right special word v in F . Symmetrically, since Xn is not
an F -maximal bifix code, there is a word w ∈ F which is incomparable with the words of Xn for the
suffix order. Since F is recurrent, there is a word t such that vat w ∈ F . Then we choose xn+1 = vat w .

The set Xn+1 = Xn ∪ xn+1 is a bifix code since xn+1 is incomparable with the words of Xn for the
prefix and for the suffix order. It is not an F -maximal prefix code since vb, for all letters b �= a, is
incomparable for the prefix order with the words of Xn+1: indeed, its prefix u is incomparable for
the prefix order with all words in Xn and vb is incomparable with xn+1. Since it is finite, it is not an
F -maximal bifix code by Theorem 4.2.2. The infinite set X = {x1, x2, . . .} is a bifix code included in F
and it is not F -thin by Theorem 4.4.3.
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Proposition 5.1.5. Let F be a Sturmian set and let X ⊂ F be a prefix code. Then X contains at most one
left-special word. If X is a finite F -maximal prefix code, it contains exactly one left-special word.

Proof. Assume that x, y ∈ X are left-special words. We may assume that |x| � |y|. Let x′ be the prefix
of y of length |x|. Then x′ is left-special and thus x, x′ are two left-special words of the same length.
This implies that x = x′ . Thus x is a prefix of y. Since X is prefix, this implies that x = y.

Assume now that X is a finite F -maximal prefix code. Let n be the maximal length of the words
in X . Let u ∈ F be the left-special word of length n. Since X A∗ is right F -dense, there is a prefix x of
u which is in X . Thus x is a left-special element of X . It is unique by the previous statement. �

A dual of Proposition 5.1.5 holds for suffix codes and right-special words.

5.2. Cardinality

The following result shows that Theorem 4.4.3 can be made much more precise for Sturmian sets.

Theorem 5.2.1. Let F be a Sturmian set on an alphabet with k letters. For any finite F -maximal bifix code
X ⊂ F , one has Card(X) = (k − 1)dF (X) + 1.

The following corollary is a strong generalization of a result related to Sturmian words.

Corollary 5.2.2. Let x be a Sturmian word over A = {a,b}, and let X ⊂ A+ be a finite maximal bifix code of
degree d. Then Card(X ∩ F (x)) = d + 1.

Indeed, since Ad is a finite maximal bifix code of degree d, this corollary (re)proves that any
Sturmian word x has d + 1 factors of length d, and it extends this to arbitrary finite maximal bifix
code of degree d. A similar extension holds for strict episturmian words.

Proof of Corollary 5.2.2. Set F = F (x). In view of Theorem 4.2.11, one has d = dF (X ∩ F ). Consequently,
by the formula of Theorem 5.2.1, Card(X ∩ F ) = dF (X) + 1 = d + 1. �

The proof of Theorem 5.2.1 uses two lemmas.

Lemma 5.2.3. Let F be a Sturmian set. Let X ⊂ F be a finite bifix code of finite F -degree d and let P be the set
of proper prefixes of X . There exists a right-special word u ∈ F such that δX (u) = d. The d suffixes of u which
are in P are the right-special words contained in P .

Proof. Let n � 1 be larger than the length of the words of X . By definition, there is a right-special
word u of length n. Then u is not a factor of a word of X . By Theorem 4.2.8 it implies that δX (u) =
dF (X).

By the dual of Proposition 4.1.3, the word u has dF (X) suffixes which are in P . They are all right-
special words. Furthermore, any right-special word p contained in P is a suffix of u. Indeed, the suffix
of u of the same length than p is the unique right-special word of this length. �

The next lemma is a well-known property of trees translated into the language of prefix codes.
Let X be a prefix code or the set {1} and let P be the set of proper prefixes of X . For p ∈ P , let
d(p) = Card{a ∈ A | pa ∈ P ∪ X}.

Lemma 5.2.4. Let A be an alphabet with k letters. Let X ⊂ A∗ be a finite prefix code or the set {1} and let P
be the set of proper prefixes of the words of X . Assume that for all p ∈ P , d(p) = k or 1. Let Q X = {p ∈ P |
d(p) = k}. Then, Card(X) = (k − 1)Card(Q X ) + 1.
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Table 5.1
The 13 F -maximal bifix codes of F -degree 3 in the Fibonacci set F .

Code Kernel Derived code

aab,aba,baa,bab ∅ aa,ab,ba
aa,aba,baab,bab aa
aaba,ab,baa,baba ab
aab,abaa,abab,ba ba
aa,ab,baaba,baba aa,ab
aa,abaab,abab,ba aa,ba
aabaa,aababaa,ab,ba ab,ba

a,baabaab,baabab,babaab a a,baab,bab
a,baab,babaabaabab,babaabab a,baab
a,baabaab,baababaab,bab a,bab

aaba,abaa,ababa,b b aa,aba,b
aa,abaaba,ababa,b aa,b
aabaa,aababaa,aba,b aba,b

Fig. 5.1. The F -maximal bifix code of F -degree 3 with kernel {a,baab}.

Proof. Let us prove the property by induction on the maximal length n of the words in X . The
property is true for n = 0 since in this case X = {1} and P = Q X = ∅. Assume n � 1. If 1 /∈ Q X ,
then all words of X begin with the same letter a. We have then X = aY , Y is a prefix code
or the set {1} and Card(Q Y ) = Card(Q X ). Hence, by induction hypothesis Card(X) = Card(Y ) =
(k − 1)Card(Q Y ) + 1 = (k − 1)Card(Q X ) + 1. Otherwise, X = ⋃

a∈A aXa . Set ta = Card(Q Xa ). We have∑
a∈A ta = Card(Q X ) − 1. By induction hypothesis, Card(Xa) = (k − 1)ta + 1. Therefore, Card(X) =∑
a∈A Card(Xa) = ∑

a∈A(k − 1)ta + k = (k − 1)Card(Q X ) + 1. �
Proof of Theorem 5.2.1. Let P be the set of proper prefixes of X . An element p of P satisfies
p A ⊂ P ∪ X if and only it is right-special. Thus the conclusion follows directly by Lemmas 5.2.3 and
5.2.4. �
Example 5.2.5. Let F be the Fibonacci set. We have seen in Example 4.3.13 that there are 3 F -maximal
bifix codes of F -degree 2. It appears that there are 13 F -maximal bifix codes of degree 3 listed in Ta-
ble 5.1. These codes are determined by their derived F -maximal bifix codes of F -degree 2, and by the
choice of the kernel. The construction of the code can be done by Theorem 4.3.11. By Theorem 5.2.1,
all these codes have 4 elements.

Example 5.2.6. We may illustrate the proof of Theorem 5.2.1 on the code X = {a,baab,babaabaabab,

babaabab} (see Table 5.1). According to Lemma 5.2.3, the right-special word ababaaba (which is the
reversal of the prefix abaababa of the Fibonacci word) has exactly three suffixes which are proper
prefixes of words of X , namely 1, ba and babaaba (these are the “fork nodes”, that is the nodes with
two children, indicated in black in Fig. 5.1). This implies, by Lemma 5.2.4, that X has four elements.

The following example shows that Theorem 5.2.1 is not true for the set of factors of an episturmian
word which is not strict.

Example 5.2.7. Set A = {a,b, c}. Let y be the Fibonacci word and let x = ψc(y) be the infinite word
of Example 2.3.7. It is an episturmian word which is not strict. Set F = F (x). Let ψ : A∗ → G be
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Fig. 5.2. An F -maximal bifix code with 10 elements. The numbers in the vertices are for later use.

the morphism from A∗ onto the group G = (Z/2Z)3 defined by ψ(a) = (1,0,0), ψ(b) = (0,1,0) and
ψ(c) = (0,0,1). Let Z be the bifix code such that Z∗ = ψ−1(0,0,0). Since G has 8 elements, the
degree of Z is 8 (see Proposition 6.1.5 below). The bifix code X = Z ∩ F has 10 elements obtained by
inserting c in two possible ways in the 5 words of the bifix code Z ∩ F (y). The latter has degree 4 by
Theorem 5.2.1. The bifix code X = Z ∩ F is given in Fig. 5.2. The numbering of the nodes is for later
use, in Example 7.2.7.

By Theorem 4.2.11, X is an F -maximal bifix code. Its F -degree is 8. Indeed, the word acbcacbc has
8 parses. Thus Theorem 5.2.1 is not true in this case.

As a consequence of Theorem 5.2.1, an internal transformation does not change the cardinality of
a finite F -maximal bifix code for a Sturmian set F . Indeed, by Proposition 4.4.5, an internal transfor-
mation preserves the F -degree.

Actually, if Y is obtained from X by internal transformation with respect to w , we have

Y = (
X ∪ w ∪ (G w D ∩ F )

) \ (G w ∪ w D) (5.1)

and

Card(Y ) = Card(X) + 1 + Card(G w D ∩ F ) − Card(G) − Card(D).

The fact that internal transformations preserve the cardinality can be proved directly by the fol-
lowing statement. This statement applies to the internal transformation (5.1) because G w ∪ w D is
a bifix code, which implies property (i) and D A∗ = w−1 X A∗ (resp. A∗G = A∗ X w−1) which implies
property (ii) (resp. (iii)).

Proposition 5.2.8. Let F be a Sturmian set, let w ∈ F be a nonempty word and let D, G be finite sets such that

(i) any word u has at most one factorization u = g wd with g ∈ G and d ∈ D,
(ii) w D is a prefix code contained in F and D A∗ is right w−1 F -dense,

(iii) G w is a suffix code contained in F and A∗G is left F w−1-dense.

Then Card(G w D ∩ F ) = Card(G) + Card(D) − 1.

Proof. Let V = (1 ⊗ G) ∪ (D ⊗ 1) be a set made of copies of G and D . The tensor product notation is
used to emphasize that the copies of G and D are disjoint. Let H = (V , E) be the undirected graph
having V as set of vertices and as edges the pairs {1⊗ g,d ⊗1} such that g wd ∈ F (this graph is close
to, but slightly different from the incidence graph for G w D as it will be defined in Section 6.3). We
have Card(V ) = Card(G)+ Card(D) and, by condition (i), Card(E) = Card(G w D ∩ F ). We show that the
graph H is a tree. This implies our conclusion since, in a tree, one has Card(E) = Card(V ) − 1.
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Fig. 5.3. The graphs H ′ and H .

Fig. 5.4. The codes X , Y and the graph H .

Let us prove that the graph H is a tree by induction on the sum of the lengths of the words of D ,
assuming that the pair G, D satisfies conditions (ii) and (iii). Assume first that D = {1}. Since G w ⊂ F ,
one has G w D ⊂ F . Consequently, {1 ⊗ g,1 ⊗ 1} ∈ E for any g ∈ G . Thus H is a tree.

Next, assume that D �= {1}. Let d ∈ D be of maximal length. Set d = d′a with a ∈ A.
Suppose first that d′ A ∩ D = {d}. Let D ′ = (D ∪ d′) \ d. Since D A∗ is right w−1 F -dense, the word

wd′ is not right-special. Thus for each g ∈ G , we have g wd′ ∈ F if and only if g wd ∈ F . This shows
that the graph H is isomorphic to the graph H ′ corresponding to the pair (G, D ′). The set D ′ satisfies
condition (ii). By induction H ′ is a tree. Consequently H is a tree.

Suppose next that d′ A ∩ D has more than one element. Then d′ is right-special and d′ A ∩ D = d′ A.
Let D ′ = (D ∪ d′) \ d′ A. Then D ′ satisfies condition (ii). Let H ′ be the graph corresponding to the pair
(G, D ′). By induction hypothesis, the graph H ′ is tree. Since w D ⊂ F , wd′ is right-special. Let uwd′ be
a right-special word such that u is longer than any word of G . Since A∗G is F w−1-dense, and since
u ∈ F w−1, u has a suffix g in G . Thus g wd′ is right-special. We have {1 ⊗ g,d′a ⊗ 1} ∈ E for all a ∈ A.
For any other element g′ ∈ G such that g′wd′ ∈ F , since g′wd′ is not right-special, there is exactly one
a′ ∈ A such that g′wd′a′ ∈ F . There is a path between g and every g′ �= g , since {1 ⊗ g′,1 ⊗ d′a′} ∈ E
for some a′ and {1⊗ g,1⊗d′a′} ∈ E for all a′ (see Fig. 5.3). Thus the graph H is connected and acyclic,
and therefore is a tree. �

The following example shows that condition (i) is necessary.

Example 5.2.9. Let F be the Fibonacci set. Let G = {ab,aba}, w = a and D = {ab,b}. Then condi-
tions (ii) and (iii) are satisfied but not condition (i). We have G w D = {abaab,abab} and thus the
conclusion of Proposition 5.2.8 is false.

Example 5.2.10. Let F be the Fibonacci set and let X = {aaba,abaa,abab,baab,baba} be the set of
words of F of length 4. The internal transformation from X relative to the word w = aba gives Y =
{aabaa,aabab,aba,baab,babaa}. We have G = D = {a,b}. The codes X, Y and the graph H of the proof
of Proposition 5.2.8 are represented in Fig. 5.4.

5.3. Periodicity

Let x = a0a1 · · · , with ai ∈ A, be an infinite word. It is periodic if there is an integer n � 1 such that
ai+n = ai for all i � 0. It is ultimately periodic if the equalities hold for all i large enough. Thus, x is
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ultimately periodic if there is a word u and a periodic infinite word y such that x = uy. The following
result, due to Coven and Hedlund, is well known (see [37], Theorem 1.3.13).

Theorem 5.3.1. Let x ∈ AN be an infinite word on an alphabet with k letters. If there exists an integer d � 1
such that x has at most d + k − 2 factors of length d then x is ultimately periodic.

We will prove a generalization of this result.
Let x be an infinite word and let X be a thin maximal bifix code. Let y be a suffix of x. Since

F (y) ⊂ F (x), one has dF (y)(X) � dF (x)(X). The word x is called X-stable if dF (y)(X) = dF (x)(X) for all
suffixes y of x. Let u be a prefix of x such that dF (y)(X) is minimal. Then the infinite word y is
X-stable.

For example, if x = baω and X = a ∪ ba∗b, then an X-stable suffix of x is aω .

Theorem 5.3.2. Let X be a thin maximal bifix code and let x ∈ AN be an X-stable infinite word. If Card(X ∩
F (x)) � dF (x)(X), then x is ultimately periodic.

Corollary 5.3.3. Let x ∈ AN be an infinite word. If there exists a finite maximal bifix code X of degree d such
that Card(X ∩ F (x)) � d, then x is ultimately periodic.

Proof. Since any long enough word has d parses, dF (x)(X) = d and x is X-stable. Since Card(X ∩
F (x)) � d, the conclusion follows by Theorem 5.3.2. �

Corollary 5.3.3 implies Theorem 5.3.1 in the case k = 2 since Ad is a maximal bifix code of de-
gree d.

Example 5.3.4. Let us consider again the finite maximal bifix code X of degree 3 defined by X =
{a3,a2ba,a2b2,ab,ba2,baba,bab2,b2a,b3} (see Example 4.2.12). Assume that X ∩ F = {a2ba,ab,baba},
where F = F (x) and x ∈ AN . Since ba is a factor of x, there exist a word u and an infinite word y
such that x = ubay. Next, the first letter of y is b (otherwise, ba2 ∈ X ∩ F ) and the second letter of y
is a (otherwise, bab2 ∈ X ∩ F ). This argument shows that whenever uba is a prefix of x then ubaba is
also a prefix of x, i.e., x = u(ba)ω , with u ∈ A∗ .

Example 5.3.5. The set X = a ∪ ba∗b is a maximal bifix code of degree 2. An argument similar to the
previous one shows that any infinite word x ∈ AN such that X ∩ F (x) = {a,bab} belongs to the set
a∗(ba)ω . Thus it is ultimately periodic.

Corollary 5.3.6. Let x ∈ AN be an infinite word and let X be a thin maximal bifix code. Let y be an X-stable
suffix of x and let F = F (y). If Card(X ∩ F ) � dF (X), then x is ultimately periodic.

Proof. By Theorem 5.3.2, the word y is ultimately periodic, and so is x. �
The following example shows that Corollary 5.3.6 may become false if we replace F = F (y) by

F = F (x) in the statement.

Example 5.3.7. Let X be the maximal bifix code of degree 4 on the alphabet A = {a,b, c} with kernel
K = {a,b}2.

Let x = ccay where y is an infinite word without any occurrence of c. Then cca has no factor in X .
Indeed, a word of X of length at most 3 is in the kernel of X and thus is not a factor of cca. Thus
cca has 4 parses with respect to X , namely (1,1, cca), (c,1, ca), (cc,1,a) and (cca,1,1). Thus we
have dF (x)(X) = 4. On the other hand X ∩ F (x) ⊂ {a,b}2 and thus Card(X ∩ F (x)) � dF (x)(X) although
x need not be ultimately periodic. This shows that we cannot replace F (y) by F (x) in the statement
of Corollary 5.3.6.
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Fig. 5.5. The d + 1 words x0, x1, . . . , xd .

The proof uses the Critical Factorization Theorem (see [36,17]) that we recall below. For a pair of
words (p, s) �= (1,1), consider the set of nonempty words r such that

A∗p ∩ A∗r �= ∅, sA∗ ∩ r A∗ �= ∅.

This is the set of nonempty words r which are prefix-comparable with s and suffix-comparable
with p. This set is nonempty since it contains r = sp. The repetition rep(p, s) is the minimal length of
such a nonempty word r.

Let w = a1a2 · · ·am be a word with ai ∈ A. An integer n � 1 is a period of w if for 1 � i � j � m,
j − i = n implies ai = a j . Recall that a factorization of a word w ∈ A∗ is a pair (p, s) of words such
that w = ps.

Theorem 5.3.8 (Critical Factorization Theorem). For any word w ∈ A+ , the maximal value of rep(p, s) for all
factorizations (p, s) of w is the least period of w.

We will also use the following lemma.

Lemma 5.3.9. Let x be an infinite word and n � 1 be an integer such that the least period of an infinite number
of prefixes of x is at most n. Then x is periodic.

Proof. Since the least period of an infinite number of prefixes of x is at most n, an infinity of them
have the same least period. Let p be such that an infinite number of prefixes of x have least period p.
Set x = a0a1 · · · with ai ∈ A. For each i � 0, there is a prefix of x of length larger than i + p with least
period p. Thus ai = ai+p . This shows that x is periodic. �
Proof of Theorem 5.3.2. Let S = A∗ \ A∗ X and P = A∗ \ X A∗ . Set F = F (x) and d = dF (X). Since
Card(X ∩ F ) � dF (X) � d(X), the set X ∩ F is finite. Since x is X-stable, there are an infinite number
of factors and therefore also of prefixes of x which have d parses with respect to X . Indeed, for any
factorization x = uy, we have dF (y)(X) = d and thus y has a factor which has d parses, so it has a
prefix w with d parses, and finally uw is a prefix of x with d parses.

Let n be the maximal length of the words in X ∩ F . Let u be a prefix of x of length larger than
n which has d parses and set x = uy. Let w be a nonempty prefix of y and set y = wz. Let v be a
prefix of z of length larger than n which has d parses.

Let (p, s) be a factorization of w . We show that rep(p, s) � n.
Since up has d parses with respect to X , there are d suffixes p1, p2, . . . , pd of up which are in P .

We may assume that p1 = 1. Similarly, there are d prefixes s1, s2, . . . , sd of sv which are in S . We
may assume that s1 = 1.

Since upsv has d parses, for each pi with 2 � i � d there is exactly one s j with 2 � j � d such
that pi s j ∈ X . Indeed, there is a prefix s′ of sv such that pi s′ ∈ X . Since s′ must be one of the s j , the
conclusion follows.

We may renumber the si in such a way that pi si ∈ X for 2 � i � d. Set xi = pi si . Since up /∈ S , we
have up ∈ A∗ X . Let x0 be the word of X which is a suffix of up. Similarly, let x1 be the word of X
which is a prefix of sv (see Fig. 5.5).

Since Card(X ∩ F ) � d, two of the d + 1 words x0, x1, . . . , xd are equal.
If x0 = x1, then rep(p, s) � n.
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If x0 = xi for an index i with 2 � i � d, then si is a suffix of up (since it is a suffix of x0) and a
prefix of sv (by definition of si ). Furthermore |si | � n (since n is the maximal length of the words of
X ∩ F ). Thus rep(p, s) � |si | � n.

The case where xi = x1 for an index i with 2 � i � d is similar.
Assume finally that xi = x j for some indices i, j such that 2 � i < j � d. We may assume that

|pi | < |p j |. Thus p j = pit , ts j = si . As a consequence, t is both a suffix of up (since it is a suffix of p j )
and a prefix of sv (since it is a prefix of si ). Thus again, rep(p, s) � |t| � n.

By the Critical Factorization Theorem, this implies that the least period of w is at most equal to n.
Thus an infinite number of prefixes of y have least period at most n. By Lemma 5.3.9, it implies that y
is periodic. �
6. Bases of subgroups

In this section, we push further the study of bifix codes in Sturmian sets. The main result of
Section 6.2 is Theorem 6.2.1. It states that a F -maximal bifix code X ⊂ F of F -degree d is a basis of a
subgroup of index d of the free group on A. The proof uses two sets of preliminary results. The first
part concerns bases of subgroups composed of words over A, already considered in [49]. The second
one uses the first return words, which were introduced independently in [24,29], and which we use
in the framework of [33] and [57], up to a left-right symmetry (see also [1]).

We denote by A◦ the free group generated by A. The rank of A◦ is Card(A). Note that all sets
generating a free group of rank k have at least k elements. A basis is a minimal generating set. All
bases have exactly k elements (see e.g. [38]).

Let H be a subgroup of rank n and of index d of a free group of rank k. Then

n = d(k − 1) + 1. (6.1)

Formula (6.1) is called Schreier’s Formula.
The free monoid A∗ is viewed as embedded in A◦ . An element of the free group is represented by

its unique reduced word on the alphabet A ∪ A−1. The elements of the free monoid A∗ are themselves
reduced words since they do not contain any letter in A−1. Thus A∗ is a submonoid of A◦ . The
subgroup of A◦ generated by a subset X of A◦ is denoted 〈X〉.

In any group G , the right cosets of a subgroup H are the sets of the form H g for g ∈ G . Two
right cosets of the same subgroup are disjoint or equal. The index of a subgroup is the number of its
distinct right cosets. If K is a subgroup of the subgroup H , then the index of K in G is the product of
the index of K in H and of the index of H in G . If H, K are two subgroups of index d of a group G ,
then H ⊂ K implies H = K .

Assume now that G is a group of permutations over a set Q . For any q in Q , the set of elements
of G that fixes q is a subgroup of G .

The group G is transitive if, for all p,q ∈ Q , there is an element g ∈ G such that pg = q. In this
case, the subgroup H of permutations fixing a given element p of Q has index Card(Q ). Indeed, for
each q ∈ Q let gq be an element of G such that pgq = q. If g ∈ G is such that pg = q, then pgg−1

q = p

and consequently gg−1
q ∈ H , whence g ∈ H gq . Thus each g ∈ G is in one of the right cosets H gq , for

q ∈ Q . Since these right cosets are pairwise disjoint, the index of H is Card(Q ).

6.1. Group automata

A simple automaton A = (Q ,1,1) is said to be reversible if for any a ∈ A, the partial map
ϕA(a) : p �→ p · a is injective. This condition allows to construct the reversal of the automaton as
follows: whenever q · a = p in A, then p · a = q in the reversal automaton. The state 1 is the initial
and the unique terminal state of this automaton. Any reversible automaton is minimal [49]. The set
recognized by a reversible automaton is a left and right unitary submonoid. Thus it is generated by a
bifix code.
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Fig. 6.1. Paths in the automaton A. The generalized path is dashed.

An automaton A = (Q ,1,1) is a group automaton if for any a ∈ A the map ϕA(a) : p �→ p · a is a
permutation of Q . When Q is finite, a group automaton is a reversible automaton which is complete.

The following result is from [49] (see also Exercise 6.1.2 in [7]).

Proposition 6.1.1. Let X ⊂ A+ be a bifix code. The following conditions are equivalent.

(i) X∗ = 〈X〉 ∩ A∗;
(ii) the minimal automaton of X∗ is reversible.

Let A= (Q , i, T ) be a deterministic automaton. A generalized path is a sequence (p0,a1, p1,a2, . . . ,

pn−1,an, pn) with ai ∈ A ∪ A−1 and pi ∈ Q , such that for 1 � i � n, one has pi−1 · ai = pi if ai ∈ A
and pi · a−1

i = pi−1 if ai ∈ A−1. The label of the generalized path is the element a1a2 · · ·an of the free
group A◦ . Note that if A = (Q ,1,1), the set of labels of generalized paths from 1 to 1 in A is a
subgroup of A◦ . It is called the subgroup described by A.

A path in an automaton is a particular case of a generalized path. In the case where A has a
unique terminal state which is equal to the initial state, the submonoid of A∗ recognized by A is
contained in the subgroup of A◦ described by A.

Example 6.1.2. Let A= (Q ,1,1) be the automaton defined by Q = {1,2}, 1 · a = 1 · b = 2 and 2 · a =
2 · b = ∅. The submonoid recognized by A is {1}. The subgroup described by A is the cyclic group
generated by ab−1.

Proposition 6.1.3. Let A be a simple automaton and let X be the prefix code generating the submonoid recog-
nized by A. The subgroup described by A is generated by X. If moreover A is reversible, then X∗ = 〈X〉 ∩ A∗ .

Proof. Set A = (Q ,1,1). Let H be the subgroup described by A. Let us show that H = 〈X〉. First,
X ⊂ H implies 〈X〉 ⊂ H . To prove the converse inclusion, let (p0,a1, p1,a2, . . . , pn−1,an, pn) be a
generalized path with ai ∈ A ∪ A−1, pi ∈ Q and p0 = pn = 1. Let h ∈ A◦ be the label of the path.
Let r be the number of indices i such that ai ∈ A−1. We show by induction on r that h ∈ 〈X〉. This
holds clearly if r = 0. Assume that it is true for r − 1. Let i be the least index such that ai ∈ A−1. Set
u = a1 · · ·ai−1, a = a−1

i , v = ai+1 · · ·an in such a way that h = ua−1 v . Set also p = pi−1 and q = pi .
Thus 1 · u = p, q · a = p and v is the label of a generalized path from q to 1. Since A is trim there
exist words w, t ∈ A∗ such that p · t = 1 and 1 · w = q. Since 1 · ut = 1 · wat = 1 (see Fig. 6.1), we have
ut, wat ∈ X∗ . By induction hypothesis, since w v is the label of a generalized path from 1 to 1, we
have w v ∈ 〈X〉. Then ua−1 v = utt−1a−1 w−1 w v = ut(wat)−1 w v is in 〈X〉 and thus h ∈ 〈X〉.

Assume now that A is reversible. Then is minimal and, by Proposition 6.1.1, one has X∗ =
H ∩ A∗ . �

For any subgroup H of A◦ , the submonoid H ∩ A∗ is right and left unitary. Thus H ∩ A∗ is generated
by a bifix code. A subgroup H of A◦ is positively generated if there is a set X ⊂ A∗ which generates H .
In this case, the set H ∩ A∗ generates the subgroup H . Let X be the bifix code which generates the
submonoid H ∩ A∗ . Then X generates the subgroup H . This shows that, for a positively generated
subgroup H , there is a bifix code which generates H .



Author's personal copy

184 J. Berstel et al. / Journal of Algebra 369 (2012) 146–202

Proposition 6.1.4. For any positively generated subgroup H of A◦ , there is a unique reversible automaton A
such that H is the subgroup described by A.

Proof. Let X be the bifix code generating the submonoid H ∩ A∗ , so that X∗ = H ∩ A∗ . Since H is
positively generated, the subgroup generated by X is equal to H , that is 〈X〉 = H . Thus X∗ = 〈X〉∩ A∗ .
In view of Proposition 6.1.1, the minimal automaton A of X∗ is reversible. Thus the submonoid rec-
ognized by A is H ∩ A∗ and by Proposition 6.1.3, H is the subgroup described by A.

If B is another reversible automaton such that H is the subgroup described by B, then by Propo-
sition 6.1.3, B recognizes the set H ∩ A∗ . Since B is minimal and since minimal automata are unique,
the uniqueness follows. �

The reversible automaton A such that H is the subgroup described by A is called the Stallings
automaton of the subgroup H . It can also be defined for a subgroup which is not positively generated
(see [3] or [34]).

Proposition 6.1.5. The following conditions are equivalent for a submonoid M of A∗ .

(i) M is recognized by a group automaton with d states.
(ii) M = ϕ−1(K ), where K is a subgroup of index d of a group G and ϕ is a surjective morphism from A∗

onto G.
(iii) M = H ∩ A∗ , where H is a subgroup of index d of A◦ .

If one of these conditions holds, the minimal generating set of M is a maximal bifix code of degree d.

Proof. (i) implies (ii). Let A = (Q ,1,1) be a group automaton with d states and let M be the set
recognized by A. Since a composition of permutations is a permutation, the monoid G = ϕA(A∗)
is a permutation group. Since A is trim, there is a path from every state q to any state q′ in A.
Consequently, G is transitive. Let K be the subgroup of G formed of the permutations fixing 1. As we
have seen earlier, K has index d. Then M = ϕ−1

A (K ).
(ii) implies (iii). Let ψ be the morphism from A◦ onto G extending ϕ . Then H = ψ−1(K ) is a

subgroup of index d of A◦ and M = H ∩ A∗ .
(iii) implies (i). Let Q be the set of right cosets of H with 1 denoting the right coset H . The

representation of A◦ by permutations on Q defines a group automaton A with d states and M is
recognized by A.

Finally, let X be the minimal generating set of a submonoid M satisfying one of these conditions.
It is clearly a bifix code. Let P be the set of proper prefixes of X . The number of suffixes of a word
which are in P is at most equal to d. Indeed, let A= (Q ,1,1) be a group automaton recognizing X∗ .
If s, t are distinct suffixes of a word w which are in P , then 1 · s �= 1 · t . Indeed, otherwise, since s and
t are suffix-comparable, we may assume that s = ut . Let p = 1 · u. Then p · t = 1 · ut = 1 · s = 1 · t and
thus p = 1 since A is reversible. Thus s = t . Let w be a word with the maximal number of suffixes
in P . Then w cannot be an internal factor of X . Moreover the number of suffixes of w in P is equal
to d. Indeed, since A is a group automaton, for any q ∈ Q , there is a state q′ such that q′ · w = q.
Since w is not an internal factor of X , there is a factorization w = sxp such that q′ · s = 1, 1 · x = 1
and 1 · p = q, and such that (s, x, p) is a parse of w . Thus X has degree d. �

A bifix code Z such that Z∗ satisfies one of the equivalent conditions of Proposition 6.1.5 is called
a group code.

The following proposition shows in particular that a subgroup of finite index is positively gener-
ated.

Proposition 6.1.6. Let H be a subgroup of finite index of A◦ . The minimal automaton A of H ∩ A∗ is a group
automaton which describes the subgroup H. Let X be the group code such that A recognizes X∗ . The subgroup
generated by X is H.
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Proof. By Proposition 6.1.5, the monoid H ∩ A∗ is recognized by a group automaton A = (Q ,1,1),
which is the minimal automaton of H ∩ A∗ . The morphism ϕA from A∗ onto the group G = ϕA(A∗)
of Proposition 6.1.5 extends to a morphism ψ from A◦ onto G . The subgroup K of Proposition 6.1.5 is
composed of the permutations that fix 1, and the subgroup H is formed of the elements w ∈ A◦ such
that the permutation ψ(w) fixes 1. There is a generalized path in A from p to q labeled w if and
only if pψ(w) = q. Thus ψ(w) fixes 1 if and only there is a generalized path from 1 to 1 labeled w ,
that is if w ∈ H . Thus the subgroup described by A is H . By Proposition 6.1.3, the subgroup H is
generated by X . �
Example 6.1.7. The set Ad is a group code by Proposition 6.1.5(ii). Thus it is a maximal bifix code
of degree d. The intersection of the subgroup generated by Ad with A∗ is the submonoid generated
by Ad (Proposition 6.1.6). It is composed of the words with length a multiple of d.

6.2. Main result

We will prove the following result.

Theorem 6.2.1. Let F be a Sturmian set and let d � 1 be an integer. A bifix code X ⊂ F is a basis of a subgroup
of index d of A◦ if and only if it is a finite F -maximal bifix code of F -degree d. Moreover, in this case, X∗ ∩ F =
〈X〉 ∩ F .

Note that Theorem 5.2.1 is contained in Theorem 6.2.1 (we will use Theorem 5.2.1 in the proof of
Theorem 6.2.1). Indeed, let X be an F -maximal bifix code of F -degree d. By Theorem 4.4.3, X is finite.
By Theorem 6.2.1, the subgroup 〈X〉 has rank Card(X) and index d in the free group A◦ . By Schreier’s
Formula (6.1), one get Card(X) = (Card(A) − 1)d + 1.

Before proving Theorem 6.2.1, we list some corollaries.

Corollary 6.2.2. Let F be a Sturmian set. For any d � 1, the set of words in F of length d is a basis of the
subgroup of A◦ generated by Ad.

Proof. The set Ad is a group code (see Example 6.1.7), and therefore is a maximal bifix code. The set
Ad ∩ F is a finite bifix code. By Theorem 4.2.11, it is an F -maximal bifix code and has F -degree d.
The corollary follows from Theorem 6.2.1. Indeed 〈Ad ∩ F 〉 = 〈Ad〉 since both are subgroups of A◦ of
index d. �

The following is also a complement to Theorem 4.2.11. It shows in particular that for any Sturmian
set F , any subgroup of A◦ of finite index has a basis contained in F . Note that this contains the fact
that every subgroup of finite index has a positive basis, see also Proposition 6.1.6.

Corollary 6.2.3. Let F be a Sturmian set. The map which associates to X ⊂ F the subgroup 〈X〉 of A◦ generated
by X is a bijection between F -maximal bifix codes of F -degree d and subgroups of A◦ of index d. Such a bifix
code X is a basis of 〈X〉. The reciprocal bijection associates, to a subgroup H of A◦ , the set Z ∩ F where Z is
the group code which is the minimal generating set of the submonoid H ∩ A∗ of A∗ .

Proof. Let first X be a finite F -maximal bifix code of F -degree d. Then 〈X〉 is a subgroup of index d
by Theorem 6.2.1.

Conversely, let H be a subgroup of index d of A◦ and let Z be the group code such that Z∗ =
H ∩ A∗ . By Theorem 4.2.11, the set X = Z ∩ F is an F -maximal bifix code of F -degree e � d. By
Theorem 4.4.3, X is finite. By Theorem 6.2.1, the subgroup 〈X〉 has index e. Since 〈X〉 is a subgroup
of H , e is a multiple of d. Thus d = e and 〈X〉 = H .

Finally, let X be an F -maximal bifix code of F -degree d. Then H = 〈X〉 is a subgroup of index d
of A◦ . Let Z be the group code such that Z∗ = H ∩ A∗ and let Y = Z ∩ F . Since X ⊂ H ∩ F , we have
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X ⊂ Y ∗ . Since H ∩ F = X∗ ∩ F by Theorem 6.2.1, we have Y ⊂ X∗ . Thus X = Y . This shows that the
two maps are mutually inverse. �

A set W of words of {a,b}∗ is balanced if for all w, w ′ ∈ W , |w| = |w ′| implies ||w|a − |w ′|a| � 1.
It is a classical property that the set of factors of a Sturmian word is balanced (Theorem 2.1.5 in [37]).
Thus any Sturmian set on two letters is balanced.

Following Richomme and Séébold [51], we say that a subset X of {a,b}∗ is factorially balanced if
the set of factors of words of X is balanced. They show that a finite set X ⊂ {a,b}∗ is contained in
some Sturmian set if and only if it is factorially balanced. Thus, we have the following consequence
of Theorem 6.2.1.

Corollary 6.2.4. Let X ⊂ {a,b}∗ be a bifix code. The following conditions are equivalent.

(i) There exists a Sturmian set F ⊂ {a,b}∗ such that X ⊂ F and X is a finite F -maximal bifix code.
(ii) X is a factorially balanced basis of a subgroup of finite index of {a,b}◦ .

As a further consequence of Theorem 6.2.1, we have the following result.

Corollary 6.2.5. Let F be a Sturmian set on an alphabet with k letters. The number Nd,k of finite F -maximal
bifix codes X ⊂ F of F -degree d satisfies N1,k = 1 and

Nd,k = d(d!)k−1 −
d−1∑
i=1

[
(d − i)!]k−1

Ni,k.

The formula results directly from the formula, due to Hall [28], for the number of subgroups of
index d in a free group of rank k.

The values for k = 2 are given by the recurrence

Nd,2 = dd! −
d−1∑
i=1

(d − i)!Ni,2.

The first values are

d 1 2 3 4 5 6 7 8 9 10

Nd,2 1 3 13 71 461 3447 29 093 273 343 2 829 325 31 998 903

The values for d = 2,3 are consistent with Examples 4.3.13 and 5.2.6.
The formula is known to enumerate also the indecomposable permutations on d + 1 elements

(see [22,44,15]).

6.3. Incidence graph

Let X be a set, let P be the set of its proper prefixes and S be the set of its proper suffixes. Set
P ′ = P \ 1 and S ′ = S \ 1. The incidence graph of X is the undirected graph G defined as follows. The
set of vertices is V = 1 ⊗ P ′ ∪ S ′ ⊗ 1. Similarly to the proof of Proposition 5.2.8, the tensor product
notation is used to emphasize that V is made of two disjoint copies of P ′ and S ′ . The edges of G are
the pairs {1 ⊗ p, s ⊗ 1}, for p ∈ P ′ and s ∈ S ′ , such that ps ∈ X .

Let C be a connected component of G , that is a maximal set of vertices connected by paths. The
trace of C on P ′ is the set of p ∈ P ′ such that 1 ⊗ p ∈ C . Similarly, the trace of C on S ′ is the set of
s ∈ S ′ such that s ⊗ 1 ∈ C .
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Fig. 6.2. The F -maximal bifix code of F -degree 3 with kernel {a,baab}. (For interpretation of the references to color in this
figure, the reader is referred to the web version of this article.)

Fig. 6.3. The incidence graph of X . (For interpretation of the references to color in this figure, the reader is referred to the web
version of this article.)

Example 6.3.1. Consider the F -maximal bifix code of F -degree 3 in the Fibonacci set F given in
Fig. 6.2. It is a colored copy of Fig. 5.1. The incidence graph of X is given in Fig. 6.3. It has two
connected components colored red and blue. The vertices on the left side are the 1 ⊗ p (written
simply p for convenience). The vertices on the right side are the s ⊗ 1 with the same convention.

The color on the node in Fig. 6.2 corresponds to the color of the corresponding prefix in Fig. 6.3.

The following lemma uses an argument similar to Lemma 5.2.4.

Lemma 6.3.2. Let v1, v2, . . . , vn+1 be words such that vi, vi+1 are not prefix-comparable for 1 � i � n. Let pi
be the longest common prefix of vi, vi+1 , for 1 � i � n. If two of the vi are prefix-comparable, then two of the
pi are equal.

Proof. Let V = {v1, . . . , vn+1}, let P be the set of proper prefixes of V and let W = V \ P . The set W
is the set of words of V which have no proper prefix in V . The set W is a prefix code. If two distinct
words in V are prefix-comparable, then Card(W ) < Card(V ) � n + 1.

Let m be the number of distinct pi . Since vi , vi+1 are not prefix-comparable for 1 � i � n, for each
pi there are at least two distinct letters a, b such that pia, pib ∈ P ∪ W . This implies m < Card(W ).
Indeed, the set W can be seen as the set of leaves in a tree, and each pi is a fork node (i.e. a node
with at least two children) in this tree. It is well known that the number of fork nodes is strictly less
than the number of leaves. If two of the vi are prefix-comparable, the inequality Card(W ) < n + 1
implies m < Card(W ) � n, and consequently two of the pi are equal. �
Lemma 6.3.3. Let F be a Sturmian set and let X ⊂ F be a bifix code. Let P ′ (resp. S ′) be the set of nonempty
proper prefixes (resp. suffixes) of X and let G be the incidence graph of X.

(i) The graph G is acyclic, that is a union of trees.
(ii) The trace on P ′ (resp. on S ′) of a connected component C of G is a suffix (resp. prefix) code.

(iii) In particular, this trace on P ′ (resp. on S ′) contains at most one right-special (resp. left-special) word.
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Fig. 6.4. A path (s ⊗ 1,1 ⊗ q, t ⊗ 1) on the left, and a path of length 2n on the right.

Proof. The last assertion follows from the second by Proposition 5.1.5. We call a path reduced if it
does not use equal consecutive edges.

We prove by induction on n � 1 that if s ⊗ 1 and t ⊗ 1 (resp. 1 ⊗ p and 1 ⊗ q) are connected
by a reduced path of length 2n in G , then s, t are not prefix-comparable (resp. p, q are not suffix-
comparable). This shows that G is acyclic. Indeed, if there were a cycle from s to t = s in G , then s
and t would be prefix-comparable. This shows also that two words in the same trace on P ′ (resp. on
S ′) are not suffix-comparable (resp. are not prefix-comparable).

The property holds for n = 1. Indeed, a reduced path of length 2 from s ⊗ 1 to t ⊗ 1 is of the form
(s ⊗ 1,1 ⊗ q, t ⊗ 1) with qs,qt ∈ X . Since the path is reduced, s �= t , and since X is prefix, s and t are
not prefix-comparable, see Fig. 6.4. The proof for prefixes is similar.

Let n � 2. A path of length 2n from s ⊗ 1 to t ⊗ 1 is a sequence (v1 ⊗ 1,1 ⊗ u1, v2 ⊗ 1, . . . ,1 ⊗
un, vn+1 ⊗ 1) with s = v1 and t = vn+1 such that the 2n words defined for 1 � i � n by

x2i−1 = ui vi, x2i = ui vi+1

are in X . Moreover, since the path is reduced, one has x j �= x j+1 for 1 � j < 2n.
For 1 � i � n, let pi be the longest common prefix of vi, vi+1. Since x2i−1 �= x2i and since the code

X is prefix, the words vi and vi+1 are not prefix-comparable.
Arguing by contradiction, assume that v1 and vn+1 are prefix-comparable. By Lemma 6.3.2, we

have pi = p j for some indices i, j with 1 � i < j � n.
Set vi = pi v ′

i and vi+1 = pi v ′′
i . Since vi, vi+1 are not prefix-comparable, the words v ′

i , v ′′
i are

nonempty. Since their longest common prefix is empty, their initial letters are distinct. Thus ui pi is
right-special. Similarly u j p j is right-special. Thus ui pi and u j p j are suffix-comparable. Since pi = p j ,
ui and u j are suffix-comparable.

But 1 ⊗ ui and 1 ⊗ u j are connected by the path (1 ⊗ ui, vi+1 ⊗ 1, . . . , v j ⊗ 1,1 ⊗ u j) of length
2( j − i) � 2(n − 1). By the induction hypothesis, ui and u j are not suffix-comparable, a contradiction.

The proof that if 1 ⊗ p and 1 ⊗ q are connected by a path of length 2n in G , then p, q are not
suffix-comparable is similar. �

Let X be a bifix code and let P be the set of proper prefixes of X . Consider the equivalence θX on
P which is the transitive closure of the relation formed by the pairs p,q ∈ P such that ps,qs ∈ X for
some s ∈ A+ . Such a pair corresponds, when p,q �= 1, to a path (1 ⊗ p, s ⊗ 1,1 ⊗ q) in the incidence
graph of X . Thus a class of θX is either reduced to the empty word or it is the trace on P \ 1 of a
connected component of the incidence graph of X .

Example 6.3.4. Consider the code X of Example 6.3.1 above. The three classes of θX are the class
{1} of the empty word, and the two suffix codes which are the traces of connected components
of the incidence graph on the set of nonempty proper prefixes of X . These codes are {babaabaaba,

babaaba,baba,baa,b} and {babaabaab,babaabaa,babaab,babaa,bab,ba}. They are shown in Fig. 6.5.

The following property relates the equivalence θX with the right cosets of H = 〈X〉.

Proposition 6.3.5. Let X be a bifix code, let P be the set of proper prefixes of X and let H be the subgroup
generated by X. For any p,q ∈ P , p ≡ q mod θX implies Hp = Hq.
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Fig. 6.5. The two suffix codes which are classes of the equivalence θX .

Proof. Since p ≡ q mod θX , there is a path from 1 ⊗ p to 1 ⊗ q in the incidence graph of X of
length 2n, for some n � 0. If n = 1, there is a word s ∈ A+ such that ps,qs ∈ X . Then p,q ∈ Hs−1

and thus Hp = Hq. The general case follows by induction. �
Let A= (P ,1,1) be the literal automaton of X∗ (see Section 3.2). We show that the equivalence θX

is compatible with the transitions of the automaton A in the following sense.

Lemma 6.3.6. Let F be a Sturmian set. Let X ⊂ F be a bifix code and let P be the set of proper prefixes
of X . Let p,q ∈ P and a ∈ A. If p ≡ q mod θX and if p · a,q · a �= ∅ in the literal automaton of X∗ , then
p · a ≡ q · a mod θX .

Proof. Let G be the incidence graph of X .
Let p,q ∈ P and a ∈ A be such that p ≡ q mod θX and p · a,q · a �= ∅. If p = 1, then q = 1 and

the conclusion holds. Thus we may assume that p �= 1, q �= 1, and that p �= q. Let (1 ⊗ u0, v1 ⊗ 1,

1 ⊗ u1, . . . , vn ⊗ 1,1 ⊗ un) be a path in G with p = u0, un = q. The corresponding words in X are
u0 v1, u1 v1, u1 v2, . . . , un vn . We may assume that the words ui are pairwise distinct, and that the vi
are pairwise distinct. Moreover, since p · a,q · a �= ∅ there exist words v , w such that pav,qaw ∈ X .

The proof is in two steps. In the first step, we assume that v1 and vn both start with a. In the
second step, we show that this condition is always fulfilled.

Assume that v1 and vn begin with a. There are two cases.
Case 1. Assume first that pa,qa ∈ P . Then p ·a = pa and q ·a = qa. If all words vi begin with a, then

clearly the equivalence pa ≡ qa mod θX holds. Thus assume the contrary, and let i > 1 be minimal
such that vi begins with a letter distinct of a and let i � j < n be maximal such that v j begins with
a letter distinct of a. Then both words ui−1 and u j are right-special (since ui−1 vi−1 starts with ui−1a
and ui−1 vi starts with ui−1b for some letter b �= a and similarly for u j ). But since ui−1 and u j are
in the same trace on P ′ of a connected component of G , Lemma 6.3.3 implies that ui−1 = u j , that is
i − 1 = j. But this contradicts the inequality i � j.

Case 2. Suppose now that pa ∈ X . This implies that v1 = a, since pv1 = u0 v1 is in X and begins
with pa. Then (v1 ⊗ 1,1 ⊗ u1, . . . , vn ⊗ 1,1 ⊗ un,aw ⊗ 1) is a path from v1 ⊗ 1 to aw ⊗ 1 (recall
that unaw = qaw ∈ X ). Lemma 6.3.3 implies that v1 = a and aw , if they are distinct, are not prefix-
comparable. Thus, one has w = 1 and qa ∈ X and therefore p · a = 1 = q · a.

We now show that the assumption that v1 begins with a letter distinct of a leads to a contra-
diction (the case where vn starts with a letter distinct from a is handled symmetrically). In this case
since u0 v1 is in X and u0av = pav ∈ X , the word u0 is right-special. Let i be the largest integer
such that vi begins with a letter distinct of a for 1 � i � n. If i < n, then ui is right-special. This
contradicts Lemma 6.3.3(iii), since u0 and ui are distinct (because i � 1) elements of the trace on
P ′ of a connected component of G . If i = n, then u0 and un are right-special since un vn ∈ X and
unaw = qaw ∈ X . We obtain again a contradiction since u0 and un are distinct. �
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Fig. 6.6. The automaton BX . (For interpretation of the references to color in this figure, the reader is referred to the web version
of this article.)

6.4. Coset automaton

Let F be a Sturmian set and let X ⊂ F be a bifix code. We introduce a new automaton denoted BX
or B for short, and called the coset automaton of X . Let R be the set of classes of θX with the class
of 1 still denoted 1. The coset automaton of X is the automaton BX = (R,1,1) with set of states R
and transitions induced by the transitions of the literal automaton A= (P ,1,1) of X∗ . Formally, for
r, s ∈ R and a ∈ A, one has r · a = s in the automaton B if there exist p in the class r and q in the
class s such that p · a = q in the automaton A.

Observe first that the definition is consistent since, by Lemma 6.3.6, if p ·a and p′ ·a are nonempty
and p, p′ are in the same class r, then p · a and p′ · a are in the same class. Since the class p · a is
uniquely defined, the automaton is indeed deterministic.

Observe next that if there is a path from p to p′ in the automaton A labeled w , then there is a
path from the class r of p to the class r′ of p′ labeled w in BX .

Example 6.4.1. For the code X of Example 6.3.1, the automaton BX has three states. State 2 is the red
class, that is the class containing b, and state 3 is the blue class containing ba (see Fig. 6.6). The bifix
code generating the submonoid recognized by this automaton is Z = a ∪ b(ab∗a)∗b. Observe that the
word bb is in Z∗ but it is not in X∗ .

The following result shows that the coset automaton of X is the Stallings automaton of the sub-
group generated by X .

Lemma 6.4.2. Let F be a Sturmian set, and let X ⊂ F be a bifix code. The coset automaton BX is reversible and
describes the subgroup generated by X. Moreover X ⊂ Z , where Z is the bifix code generating the submonoid
recognized by BX .

Proof. Let A = (P ,1,1) be the literal automaton of X and set BX = (R,1,1). Let r, s ∈ R and a ∈ A
be such that r · a = s · a is nonempty. Let p,q ∈ P be elements of the classes r and s respectively, such
that p · a,q · a are nonempty. Then pa,qa ∈ P ∪ X . To show that BX is reversible, it is enough to show
that p ≡ q mod θX .

Suppose first that pa ∈ X . Then r · a = s · a = 1 and thus qa ∈ X since 1 is isolated mod θX . Thus
p ≡ q mod θX .

Suppose next that pa,qa ∈ P . Then there is a path (1 ⊗ u0, v1 ⊗ 1, . . . , vn ⊗ 1,1 ⊗ un) in the
incidence graph G of X , with pa = u0 and qa = un . We may assume that the nodes of the path are
pairwise distinct, except for a possible equality u0 = un .

If all the words ui end with a, then p ≡ q mod θX .
Otherwise, let i be minimal such that ui ends with a letter distinct of a and j, with 1 � i � j < n

be maximal such that u j ends with a letter distinct of a. Then vi and v j+1 are left-special and they
are distinct since j + 1 > i. This contradicts Lemma 6.3.3(iii) since vi and v j+1 are distinct elements
of the same trace on the set S ′ of proper nonempty suffixes of X .

Thus the coset automaton is reversible.
Let Z be the bifix code generating the submonoid recognized by BX . To show the inclusion X ⊂ Z ,

consider a word x ∈ X . There is a path from 1 to 1 labeled x in A, hence also in BX . Since the class
of 1 modulo θX is reduced to 1, this path in BX does not pass by 1 except at its ends. Thus x is in Z .

Let us finally show that the coset automaton describes the group H = 〈X〉. By Proposition 6.1.3,
the subgroup described by BX is equal to 〈Z〉. Set K = 〈Z〉. Since X ⊂ Z , we have H ⊂ K . To show
the converse inclusion, let us show by induction on the length of w ∈ A∗ that if, for p,q ∈ P , there is



Author's personal copy

J. Berstel et al. / Journal of Algebra 369 (2012) 146–202 191

a path from the class of p to the class of q in BX with label w then Hpw = Hq. By Proposition 6.3.5,
this holds for w = 1. Next, assume that it is true for w and consider wa with a ∈ A. Assume that
there are states p,q, r ∈ P such that there is a path from the class of p to the class of q in BX

with label w , and an edge from the class of q to the class of r in BX with the label a. By induction
hypothesis, we have Hpw = Hq. Next, by definition of BX , there is an s ≡ q mod θX such that s · a ≡
r mod θX . If sa ∈ P , then s · a = sa, and by Proposition 6.3.5, we have Hs = Hq and Hsa = Hr. Thus
Hpwa = Hqa = Hsa = Hr. Otherwise, sa ∈ X and s · a = r = 1 because the class of 1 is a singleton. In
this case, Hsa = H = Hr. This property shows that if z ∈ Z , then H z = H , that is z ∈ H . Thus Z ⊂ H
and finally H = K . �
6.5. Return words

Let F be a factorial set. For u ∈ F , define

ΓF (u) = {
z ∈ F

∣∣ uz ∈ A+u ∩ F
}
, Γ ′

F (u) = {
z ∈ F

∣∣ zu ∈ u A+ ∩ F
}

and

R F (u) = ΓF (u) \ ΓF (u)A+, R ′
F (u) = Γ ′

F (u) \ A+Γ ′
F (u).

When F = F (x) for an infinite word x, the sets ΓF (u) and R F (u) are respectively the set of right
return words to u and first right return words to u in x, and Γ ′

F (u) and R ′
F (u) are respectively the set

of left return words to u and first left return words to u in x. The relation between R F (u) and R ′
F (u) is

simply

uR F (u) = R ′
F (u)u. (6.2)

Words in the set uR F (u) = R ′
F (u)u are called complete return words in [33]. When there is no ambi-

guity, we will call the (first) right return words simply the (first) return words, omitting the ‘right’
specification.

Example 6.5.1. Let F be the Fibonacci set. The sets R F (u) and R ′
F (u) are given below for the first

small words of F .

u 1 a b aa ab ba aab aba baa bab

R F (u)
a a ab baa ab ba aab ba baa aabab
b ba aab babaa aab aba abaab aba babaa aabaabab

R ′
F (u)

a a ba aab ab ba aab ab baa babaa
b ab baa aabab aba baa aabab aba baaba babaabaa

Vuillon has shown in [57] that x is a Sturmian word if and only if R ′
F (u) has exactly two elements

for every factor u of x. Another proof of this result is given by Justin and Vuillon in [33].
In fact, they show in [33] the following theorem. Since this result is not exactly formulated in [33]

as stated here, we show how it follows easily from their article.

Theorem 6.5.2. Let F be a Sturmian set. For any word u ∈ F , the set R F (u) (and the set R ′
F (u)) is a basis of

the free group A◦ .

By Eq. (6.2), the sets R F (u) and R ′
F (u) are conjugate in the free group. Conjugacy by an element u

is an automorphism of the free group. It follows that R F (u) is a basis if and only if R ′
F (u) is a basis.

Thus, it suffices to prove the claim for R ′
F (u). We quote the following result of [33, Theorem 4.4,

Corollaries 4.1 and 4.5], with the notations of Section 2.3.
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Proposition 6.5.3. Let s be a standard strict episturmian word over A, let Δ = a0a1 · · · be its directive word,
and let (un) be its sequence of palindrome prefixes.

(i) The first left return words to un are the words ψa0···an−1 (a) for a ∈ A.
(ii) For each factor u of s, there exist a word z and an integer n such that the first left return words to u are

the words z−1 yz, where y ranges over the first left return words to un.

Proof of Theorem 6.5.2. We may assume that F = F (s) for some standard and strict episturmian
word s. By Proposition 6.5.3(i), the set of first left return words to un is the image of the alphabet by
the endomorphism ψa0···an−1 . It is easily seen that these endomorphisms define automorphisms of the
free group. We deduce that the set of first left return words to un is a basis of the free group on A.
By Proposition 6.5.3(ii), the set of first left return words to u is a basis, too. This ends the proof. �
6.6. Proof of the main result

We first prove the following statement which is the last assertion of Theorem 6.2.1.

Proposition 6.6.1. Let F be a Sturmian set and let X ⊂ F be a finite F -maximal bifix code. Then 〈X〉 ∩ F =
X∗ ∩ F .

Proof. We have X∗ ∩ F ⊂ 〈X〉∩ F . To show the converse inclusion, consider the bifix code Z generating
the submonoid recognized by the coset automaton BX associated to X .

Let us show that Z ∩ F = X . By Lemma 6.4.2, we have X ⊂ Z and thus X ⊂ Z ∩ F . Since X is an
F -maximal bifix code, this implies that X = Z ∩ F .

Since any reversible automaton is minimal and since the automaton BX is reversible by
Lemma 6.4.2, it is equal to the minimal automaton of Z∗ . Let K be the subgroup generated by Z .
By Proposition 6.1.1, we have K ∩ A∗ = Z∗ .

This shows that

〈X〉 ∩ F ⊂ K ∩ F = K ∩ A∗ ∩ F = Z∗ ∩ F = X∗ ∩ F .

The first inclusion holds because X ⊂ Z implies 〈X〉 ⊂ K . The last equality follows from the fact that
if z1 · · · zn ∈ F with z1, . . . , zn ∈ Z , then each zi is in F hence in Z ∩ F = X . Thus 〈X〉 ∩ F ⊂ X∗ ∩ F ,
which was to be proved. �

We will use the following consequence of Proposition 6.6.1.

Corollary 6.6.2. Let F be a Sturmian set and let X ⊂ F be a finite F -maximal bifix code. Each right coset of the
subgroup 〈X〉 generated by X contains at most one right-special proper prefix of X .

Proof. Set H = 〈X〉. Let Q be the set of those proper prefixes of the words of X which are right-
special.

Let us show that if p,q ∈ Q belong to the same right coset, then p = q. We may assume that
p = uq. Since Hp = Hq, one has Huq = Hq. Consequently, Hu = H and thus u ∈ H . By Proposi-
tion 6.6.1, since u ∈ F , this implies that u ∈ X∗ and thus u = 1 since p is a proper prefix of X . �
Proof of Theorem 6.2.1. Assume first that X is an F -maximal bifix code of F -degree d. Let P be the
set of proper prefixes of X . Let Q be the set of words in P which are right-special. Let H be the
subgroup generated by X .

By Lemma 5.2.3 there is a right-special word u such that δX (u) = d. The d suffixes of u which are
in P are the elements of Q . By Theorem 4.2.8, the word u is not an internal factor of X .
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Fig. 6.7. A word y ∈ R F (u).

Fig. 6.8. An F -maximal bifix code of F -degree 4. Fig. 6.9. The associated coset automaton.

Let

V = {
v ∈ A◦ ∣∣ Q v ⊂ H Q

}
.

Any v ∈ V defines a permutation of Q . Indeed, suppose that for p,q ∈ Q , one has pv,qv ∈ Hr for
some r ∈ Q . Then rv−1 is in Hp ∩ Hq. This forces Hp = Hq and thus p = q by Corollary 6.6.2.

The set V is a subgroup of A◦ . Indeed, 1 ∈ V . Next, let v ∈ V . Then for any q ∈ Q , since v defines
a permutation of Q , there is a p ∈ Q such that pv ∈ Hq. Then qv−1 ∈ Hp. This shows that v−1 ∈ V .
Next, if v, w ∈ V , then Q v w ⊂ H Q w ⊂ H Q and thus v w ∈ V .

We show that the set R F (u) is contained in V . Indeed, let q ∈ Q and y ∈ R F (u). Since q is a suffix
of u, qy is a suffix of uy, and since uy is in F (by definition of R F (u)), also qy is in F . The fact that
X is an F -maximal bifix code implies that there is a word r ∈ P such that qy ∈ X∗r. We verify that
the word r is a suffix of u. Since y ∈ R F (u), there is a word y′ such that uy = y′u. Consequently, r is
a suffix of y′u, and in fact the word r is a suffix of u. Indeed, one has |r| � |u| since otherwise u is
in I(X) and this is not the case. Thus we have r ∈ Q (see Fig. 6.7). Since X∗ ⊂ H and r ∈ Q , we have
qy ∈ H Q . Thus y ∈ V .

By Theorem 6.5.2, the group generated by R F (u) is A◦ . Since R F (u) ⊂ V , and since V is a subgroup
of A◦ , we have V = A◦ . Thus Q w ⊂ H Q for any w ∈ A◦ . Since 1 ∈ Q , we have in particular w ∈ H Q .
Thus A◦ = H Q . Since Card(Q ) = d, and since the right cosets Hq for q ∈ Q are pairwise disjoint, this
shows that H is a subgroup of index d. By Theorem 5.2.1 and in view of Schreier’s Formula, X is a
basis of H .

Assume conversely that the bifix code X ⊂ F is a basis of the group H = 〈X〉 and that 〈X〉 has
index d. Since X is a basis, by Schreier’s Formula, we have Card(X) = (k − 1)d + 1, where k = Card(A).
The case k = 1 is straightforward; thus we assume k � 2. By Theorem 4.4.3, there is a finite F -maximal
bifix code Y containing X . Let e be the F -degree of Y . By the first part of the proof, Y is a basis of
a subgroup K of index e of A◦ . In particular, it has (k − 1)e + 1 elements. Since X ⊂ Y , we have
(k − 1)d + 1 � (k − 1)e + 1 and thus d � e. On the other hand, since H is included in K , d is a multiple
of e and thus e � d. We conclude that d = e and thus that X = Y . �
Example 6.6.3. Let F be the Fibonacci set. Let X ⊂ F be the bifix code shown in Fig. 6.8. The right-
special proper prefixes of the words of X are the four suffixes of aba and are indicated in black on
the figure. The states of the coset automaton are the sets {1}, {a,bab,abaab}, {aba,b,baa} and {ba,ab,

abaa}. The code X has F -degree 4. Each state is represented by its right-special factor in Fig. 6.9.

We end this section with a combinatorial consequence of Theorem 6.2.1.
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Proposition 6.6.4. Let F be a Sturmian set on an alphabet with k letters and let X ⊂ F be a finite F -maximal
bifix code of F -degree d. Let P (resp. S) be the set of proper prefixes (resp. suffixes) of X . Then∑

x∈X

|x| = Card(P ) + Card(S) + (k − 2)d.

We will use the following proposition, of independent interest.

Proposition 6.6.5. Let F be a Sturmian set and let X ⊂ F be a finite F -maximal bifix code of F -degree d. The
coset automaton BX is a group automaton with d states. Each state of BX other than 1 is an F -maximal suffix
code.

Proof. Let A = (P ,1,1) be the literal automaton recognizing X∗ and let B = (R,1,1) be the coset
automaton of X . By Lemma 6.4.2, the automaton B is reversible and describes the subgroup H gen-
erated by X .

By Theorem 6.2.1, the subgroup H has index d in A◦ . Since B is reversible, it is minimal. Propo-
sitions 6.1.6 and 6.1.4 show that B is a group automaton. Its number of states is d since a group
automaton which describes a subgroup of index d has d states by Proposition 6.1.5.

Finally, consider r ∈ R \ 1 and let Xr = {p ∈ P | 1 · p = r}. The elements of the set Xr are the
representatives of the class r. Let us show that any w ∈ F is suffix-comparable with an element of Xr .
We may assume that w is longer than any word of X . Since BX is a group automaton, there is an
u ∈ R such that u · w = r. Since w is longer than any word of X , the path from u to r labeled w
passes through state 1. Thus w has a parse (s, x, p) such that 1 · p = r and thus w has a suffix in Xr .
This shows that Xr is an F -maximal suffix code. �

Note that the fact that the set P of nonempty proper prefixes of X is a disjoint union of d − 1
F -maximal suffix codes is also a consequence of the dual statement of Theorem 4.3.7.

Proof of Proposition 6.6.4. Let H be the subgroup generated by X . By Theorem 6.2.1, the set X is a
basis of H and the index of H is equal to d = dF (X). Let G be the incidence graph of X . Let E be the
set of edges of G . One has

Card(E) =
∑
x∈X

(|x| − 1
) =

∑
x∈X

|x| − Card(X) =
∑
x∈X

|x| − (k − 1)d − 1.

By Proposition 6.6.5, the classes of θX are the set {1} and d − 1 F -maximal suffix codes denoted Pi ,
for i = 1, . . . ,d − 1. Each of the latter is the trace on P \ 1 of a connected component Ci of G . Let Gi
be the subgraph of G induced by its connected component Ci . By Lemma 6.3.3, Gi is a tree.

Similarly, let Si be the trace on S \ 1 of the connected component Ci . Let Ei be the set of edges
of Gi . Since Gi is a tree, we have Card(Ei) = Card(Pi) + Card(Si) − 1 for i = 1, . . . ,d − 1. Finally

Card(E) =
d−1∑
i=1

Card(Ei) =
d−1∑
i=1

(
Card(Pi) + Card(Si) − 1

)
= Card(P \ 1) + Card(S \ 1) − (d − 1),

whence the result. �
7. Syntactic groups

Let F be a recurrent subset of A∗ . In this section, we introduce the notion of F -group of a bifix
code X ⊂ F of finite F -degree. It is a permutation group of degree dF (X). We investigate the relation
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Fig. 7.1. Equivalent permutation groups.

between this group and the notion of group of a maximal bifix code (Theorem 7.2.5). We use The-
orem 6.2.1 to prove a new result on the syntactic groups of bifix codes: any transitive permutation
group G of degree d and with k generators is a syntactic group of a bifix code with (k − 1)d + 1
elements (Theorem 7.2.3).

7.1. Preliminaries

We first recall the basic terminology on groups in monoids (see [7] or [6] for a more detailed ex-
position). We are mainly concerned with monoids of maps from a set into itself. The maps considered
in this section are partial maps.

Let M be a monoid. A group in M is a subsemigroup of M which is isomorphic to a group. Note
that the neutral element of a group contained in M needs not be equal to the neutral element of M .

A group in M is maximal if it not included in another group in M .

Proposition 7.1.1. Let G be a group in a monoid M of partial maps from a set Q into itself. All elements of G
have the same image I . The restriction of the elements of G to I is a faithful representation of G as a permutation
group on I .

Proof. Two elements g,h ∈ G have the same image. Indeed, let k be the inverse of g in G . Then
h = hkg and thus the image of h is contained in the image of g . The converse inclusion is shown
analogously. Then G is a permutation group on the common image I of its elements. Indeed, let e be
the neutral element of G . Then for any p ∈ I , let q ∈ Q be such that qe = p. Then pe = qe2 = qe = p.
This shows that e is the identity on I . Next, for any g ∈ G the inverse k of g is such that gk = kg = e.
Thus g is a permutation on I .

Let g, g′ ∈ G be such that they have the same restriction to I . Then for each p ∈ Q , p(eg) =
(pe)g = (pe)g′ = p(eg′) since pe ∈ I . Since eg = g and eg′ = g′ , we obtain g = g′ . This shows that the
representation of G by permutations on I is faithful. �

Let G be a group in a monoid of maps from Q into itself as above. The canonical representation of
G by permutations is the restriction of the maps in G to their common image.

A syntactic group of a prefix code X is the canonical representation by permutations of a maximal
group in the monoid of transitions of the minimal automaton A(X∗) of X∗ .

Let X be a prefix code and let A=A(X∗). A syntactic group G of X is called special if ϕ−1
A (G) is

a cyclic submonoid of A∗ . In particular a special syntactic group is cyclic.
The degree of a permutation group G on a set R is the cardinality of R . Recall that the group G is

transitive if for any r, s ∈ R there is some g ∈ G such that rg = s.
A permutation group G on a set R and a permutation group H on a set S are equivalent if there

exists a bijection β : R → S and an isomorphism σ : G → H such that, for all g ∈ G and r ∈ R , one has

β(rg) = β(r)σ (g),

in other terms, if the diagram of Fig. 7.1 is commutative for all g ∈ G .
Let us recall the notation concerning Green relations in a monoid M (see [7]). We denote by R the

equivalence in M defined by mRn if m, n generate the same right ideal, i.e. if mM = nM . We denote
by R(m) the R-class of m.
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Symmetrically, we denote by L the equivalence defined by mLn if m,n generate the same left
ideal, i.e. if Mm = Mn. We denote by L(m) the L-class of m.

It is well known that the equivalences L and R commute. We denote by D the equivalence
LR=RL. Finally, we denote by H the equivalence L∩R.

A D-class D is regular if it contains an idempotent. In this case, there is at least an idempotent in
each L-class of D and in each R-class of D . The following statement is known as Clifford and Miller’s
Lemma. For m,n ∈ M , one has mn ∈ R(m) ∩ L(n) if and only if R(n) ∩ L(m) contains an idempotent.

Assume that M is a monoid of maps from a finite set Q into itself.
If m,n ∈ M are L-equivalent, then they have the same image. If they are R-equivalent, then they

have the same nuclear equivalence (the nuclear equivalence of a partial map m from Q into itself is
the partial equivalence, for which p,q ∈ Q are equivalent if m is defined on p and q and pm = qm).

If m,n ∈ M are H-equivalent, they have the same image and the same nuclear equivalence. The
converse is not true but it holds in the following important particular case.

Proposition 7.1.2. Let M be a monoid of maps from a finite set Q into itself. Let e ∈ M be an idempotent. An
element m of M is in the H-class of e if and only if it has the same nuclear equivalence and the same image
as e.

Proof. If m and e are H-equivalent, they have the same nuclear equivalence ρ and the same image I .
Conversely, we have me = m since e is the identity on its image I . For any p ∈ Q , pe2 = pe implies
that p and pe are in the same class of ρ . This implies that pem = pm. Thus em = m.

Finally, the restriction of m to I is a permutation. Indeed, pm = qm for p,q ∈ I implies pe = qe
which forces p = q. Let k > 0 be such that the restriction of mk to I is the identity. Then mk and e
are two idempotents with the same nuclear equivalence and the same image. This implies that they
are equal. Thus m and e are in the same H-class. �

Let F be a recurrent set and let X ⊂ F be a bifix code of finite F -degree d. Let A= (Q ,1,1) be a
simple automaton recognizing X∗ . We set ϕ = ϕA and we denote by M the transition monoid ϕ(A∗)
of A.

For a word w , we denote by Im(w) the image of w with respect to A, that is the set Im(w) =
{p · w | p ∈ Q }. The rank of w (with respect to the automaton A) is the number rank(w) =
Card(Im(w)). Then Im(w) is also the image of the map ϕ(w) (recall that the action of M is on the
right of the elements of Q ), and the rank of w is also the rank of ϕ(w). Clearly rank(uw v) � rank(w)

for all u, w, v .

Proposition 7.1.3. The set of elements of ϕ(F ) of rank d is included in a regular D-class of M.

We use the following lemmas.

Lemma 7.1.4. A word w ∈ F which has d parses with respect to X has rank d with respect to A. Moreover,
Im(w) is the set of states 1 · p for all p such that there is a parse (s, x, p) of w. For all q ∈ Im(w), there is a
unique proper prefix p of X which is a suffix of w, and such that q = 1 · p.

Proof. Consider first two states q, r ∈ Q and suppose that q · w = r. Since A is simple, it is trim.
Consequently there exist two words u, v such that 1 · u = q and r · v = 1. It follows that uw v ∈ X∗ .
Since w has d parses, by Theorem 4.2.8 it is not an internal factor of a word in X . Thus there is
a parse (s, x, p) of w such that us, pv ∈ X∗ . Then r = 1 · p. The relation r → (s, x, p) is a function.
Indeed, let us show that if (s, x, p) and (s′, x′, p′) are two distinct parses of w , then 1 · p �= 1 · p′ .
Assume the contrary. Then we have pv, p′v ∈ X∗ for the same word v . Since p, p′ are suffixes of
w , they are suffix-comparable and thus p = p′ since X is bifix. This is impossible if the parses are
distinct. Of course, the function r �→ (s, x, p) is injective since A is deterministic.

Conversely, let (s, x, p) be a parse of w . Since X is an F -maximal bifix code, there exist by The-
orem 4.2.2 words u, v such that us, pv ∈ X∗ . Thus we have 1 · us = 1 · x = 1 · pv = 1. Consequently
(1 · u) · w = 1 · usxp = 1 · xp = 1 · p. This shows that 1 · p ∈ Im(w). �
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Lemma 7.1.5. Let u ∈ F be a word. If rank(u) = d, then rank(uv) = d for all v such that uv ∈ F .

Proof. Since X is F -thin, there exists w ∈ F which is not a factor of a word in X . This word w has
d parses. Assume uv ∈ F . Since F is recurrent, there exists a word t such that uvt w ∈ F . Then uvt w
also has d parses. By Lemma 7.1.4, this implies that the rank of uvt w is d. Since d = rank(uvt w) �
rank(uv) � rank(u) = d, one has rank(uv) = d. �
Proof of Proposition 7.1.3. Let u, v ∈ F be two words of rank d. Set m = ϕ(u) and n = ϕ(v). Let w be
such that uw v ∈ F . We show first that mRϕ(uw v) and nLϕ(uw v).

For this, let t be such that uw vtu ∈ F . Set z = w vtu. By Lemma 7.1.5, the rank of uz is d. Since
Im(uz) ⊂ Im(z) ⊂ Im(u), this implies that the images are equal. Consequently, the restriction of ϕ(z)
to Im(u) is a permutation. Since Im(u) is finite, there is an integer � � 1 such that ϕ(z)� is the identity
on Im(u). Set e = ϕ(z)� and s = tuz�−1. Then, since e is the identity on Im(u), one has m = me. Thus
m = ϕ(uw v)ϕ(s), and since ϕ(uw v) = mϕ(w v), it follows that m and ϕ(uw v) are R-equivalent.

Similarly n and ϕ(uw v) are L-equivalent. Indeed, set z′ = tuw v . Then Im(vz′) ⊂ Im(z′) ⊂ Im(v).
Since vz′ is a factor of z2 and z has rank d, it follows that d = rank(z2) � rank(vz′) � rank(v) = d.
Therefore, vz′ has rank d and consequently the images Im(vz′), Im(z′) and Im(v) are equal.
There is an integer �′ � 1 such that ϕ(z′)�′

is the identity on Im(v). Set e′ = ϕ(z′)�′
. Then n =

ne′ = nϕ(z′)�′−1ϕ(tuw v) = nqϕ(uw v), with q = ϕ(z′)�′−1ϕ(t). Since ϕ(uw v) = ϕ(uw)n, one has
nLϕ(uw v). Thus m,n are D-equivalent, and ϕ(uw v) ∈ R(m) ∩ L(n).

Set p = ϕ(w v). Then p = ϕ(w)n and, with the previous notation, n = ne′ = nqϕ(u)p, so L(n) =
L(p). Thus mp = ϕ(uw v) ∈ R(m) ∩ L(p), and by Clifford and Miller’s Lemma, R(p) ∩ L(m) contains an
idempotent. Thus the D-class of m, p and n is regular. �
7.2. Group of a bifix code

Let M be a monoid. The H-class of an idempotent e is denoted H(e). It is the maximal group
contained in M and containing e.

All groups H(e) for e idempotent in a regular D-class D are isomorphic. The structure group (or
Schützenberger group) of D is any one of them. When M is a monoid of maps from a set Q into
itself, the canonical representations of the groups H(e) are equivalent permutation groups. See [7,
Proposition 9.1.9]. We then also consider the structure group as a permutation group.

Let F be a recurrent set and let X ⊂ F be a bifix code of finite F -degree d. Let A= (Q ,1,1) be a
simple automaton recognizing X∗ . Set ϕ = ϕA . The structure group of the D-class of elements of rank
d of ϕ(F ) is a permutation group of degree d. By Proposition 9.5.1 in [7], this group does not depend
on the choice of the simple automaton A recognizing X∗ . It is called the F -group of the code X and
denoted G F (X).

When F = A∗ , the group G F (X) is the group G(X) of the code X defined in [7]. Indeed, in this
case, the D-class of elements of rank d coincides with the minimal ideal of the monoid ϕ(A∗).

The following example shows that the F -group of an F -maximal bifix code is not always transitive.

Example 7.2.1. Let X = {ab,ba} and let F = F ((ab)∗). Then X is an F -maximal bifix code of F -degree 2.
It can be verified easily that the syntactic monoid of X∗ contains only trivial subgroups (see also
Exercises 7.1.1, 7.2.1 in [7]). Thus G F (X) is reduced to the identity.

Example 7.2.2. We consider again the code of Example 6.6.3. The minimal automaton of X∗ is repre-
sented in Fig. 7.2.

We have represented in Fig. 7.3 the D-class of elements of rank 4 meeting ϕ(F ). It is composed
of three L-classes and three R-classes. Each L-class is represented by a column and each R-class
by a row. On top of each column, we have indicated the common image of its elements. On the
left of each row, we have indicated the common nuclear equivalence of its elements (recall that two
elements are equivalent for the nuclear equivalence if and only if they have the same image). The
H-classes containing an idempotent are indicated by a star. Each H-class has four elements, and
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Fig. 7.2. An F -maximal bifix code of F -degree 4.

Fig. 7.3. The D-class of rank 4.

five of them are groups (this happens when the image is a system of representatives of the nuclear
equivalence). For instance, the four classes in the nuclear equivalence of ϕ(ba) are {1}, {2}, {4,9}, and
{5,8}, and the H-class of (the image of) ba is composed of the following elements:

Word Permutation

ba (18)(24)

baaba (12)(48)

baba (1)

babaaba (14)(28)

The structure group of this D-class is the Abelian group Z/2Z × Z/2Z. It is the F -group of the code.

The aim of this section is to prove the following theorem.

Theorem 7.2.3. Any transitive permutation group of degree d which can be generated by k elements is a
syntactic group of a bifix code with (k − 1)d + 1 elements.

Theorem 7.2.3 was known before in particular cases. In [45] it is shown that any transitive per-
mutation group is a syntactic group of a finite bifix code. The bound d + 1 on the cardinality of the
bifix code is proved for the case of a group generated by a d-cycle and another permutation. In [52],
it is proved that for an Abelian group of rank 2 and order d there exists a bifix code X such that
Card(X) − 1 = d. The proof is based on the fact that the Cayley graph of an Abelian group contains a
Hamiltonian cycle.

Let us call minimal rank of a group G the minimal cardinality of a generating set for G . Theo-
rem 7.2.3 is related to the following conjecture [45].

Let X be a finite bifix code and let G be a transitive permutation group of degree d and minimal rank k. If G is
a syntactic group of X , then Card(X) � (k − 1)d + 1.

Theorem 7.2.3 shows that the lower bound is sharp.
The following result, which is from [46], shows that the conjecture holds for k = 2.

Theorem 7.2.4. Let G be a permutation group of degree d. If G is a nonspecial syntactic group of a finite prefix
code X, then Card(X) � d + 1.
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Theorem 7.2.4 is clearly not true for special syntactic groups since Z/nZ is a syntactic group of
X = an for any n � 1.

Theorem 7.2.3 is a consequence of the following theorem which can be viewed as a complement
to Theorem 4.2.11. The proof itself makes use of Theorem 6.2.1.

Theorem 7.2.5. Let Z ⊂ A∗ be a group code of degree d. Let F be a Sturmian set. The set X = Z ∩ F is an
F -maximal bifix code of F -degree d and G F (X) = G(Z).

Proof. The fact that X is an F -maximal bifix code of F -degree d results from Corollary 6.2.3.
Let us show that G F (X) = G(Z). Let B = (R,1,1) be the minimal automaton of Z∗ . Set ψ = ϕB

and G = ψ(A∗). Thus G is a permutation group equivalent to G(Z).
Let A = (Q ,1,1) be the minimal automaton of X∗ . Set ϕ = ϕA . Denote by Im(w) the image of

ϕ(w) with respect to A. Thus Im(w) = {t ∈ Q | s · w = t for some s ∈ Q }.
Let u ∈ F be a word with d parses with respect to X . Let I = Im(u). By Lemma 7.1.4, the word u

has rank d and thus Card(I) = d.
Let Y = R F (u) be the set of first return words to u. By Theorem 6.5.2, the set Y is a basis of the

free group A◦ . For any y ∈ Y , the restriction of ϕ(y) to I is a permutation of I . Indeed, uy ∈ A+u
implies Im(uy) ⊂ I . Since uy ∈ F , the set Im(uy) has d elements by Lemma 7.1.5. Thus Im(uy) = I .
Since Im(u) = I , this proves the claim.

Let e be an idempotent in ϕ(Y +). The restriction of e to I is the identity. Any long enough element
of ϕ−1(e) ∩ Y ∗ has u as a suffix. Thus the image of e is I . Moreover, since ϕ(u)e = ϕ(u) and e ∈
ϕ(A∗u), e and ϕ(u) belong to the same L-class and thus to the same D-class. Thus e belongs to the
D-class of ϕ(A∗) which contains the elements of rank d in ϕ(F ).

Let G ′ be the maximal group contained in ϕ(A∗) which contains e. It is a permutation group on I
which is equivalent to G F (X).

For y ∈ Y ∗ , let χ(y) be the restriction of ϕ(y) to the set I .
For any y ∈ Y ∗ , eϕ(y)e has the same nuclear equivalence and the same image as e. By Proposi-

tion 7.1.2 it implies that they are in the same H-class. Thus eϕ(y)e is in G ′ .
Since eϕ(y)e and ϕ(y) have the same restriction to I and since eϕ(y)e belongs to the H-class

of e, χ is a morphism from Y ∗ into the permutation group G ′ . Since Y generates A◦ , this morphism
is surjective. Indeed, if ϕ(w) ∈ G ′ , let y1, . . . , yn ∈ Y be such that w = yε1

1 · · · yεn
n with εi = ±1. Then

χ(w) = χ(y1)
ε1 · · ·χ(yn)εn . Since G ′ is a finite group χ(y)−1 ∈ χ(Y ∗). Thus χ(w) ∈ χ(Y ∗).

Let us show that G and G ′ are equivalent as permutation groups.
For this, let us define a bijection β : I → R as follows. Let P be the set of proper prefixes of the

words of X and let S be the set of elements of P which are suffixes of u. For i ∈ I , there is a unique
q ∈ S such that i = 1 · q by Lemma 7.1.4. Set β(i) = 1ψ(q). We show that β is injective. Let q, t ∈ S be
such that 1ψ(q) = 1ψ(t). Assume that |q| � |t|. Since q, t are suffix-comparable, we have t = vq. Since
1ψ(t) = 1ψ(v)ψ(q) = 1ψ(q) and since ψ(q) is a permutation, we have 1ψ(v) = 1 and thus v ∈ Z∗ .
Since v is in F and since Z∗ ∩ F ⊂ X∗ , this implies v ∈ X∗ and thus v = 1. This shows that q = t and
thus that β is injective. Since Card(R) = Card(I) = d, we have shown that β is a bijection.

Let us verify that for any i, j ∈ I and y ∈ Y ∗ , we have

iϕ(y) = j ⇐⇒ β(i)ψ(y) = β( j). (7.1)

Let us first prove (7.1) for y ∈ Y . For this, let q, t ∈ S be such that i = 1 · q, j = 1 · t . The words q, t
exist by Lemma 7.1.4. Then

iϕ(y) = j ⇐⇒ 1ϕ(qy) = 1ϕ(t) ⇐⇒ qy ∈ X∗t.

The last equivalence holds because 1 · qy = 1 · v for the word v ∈ P such that qy ∈ X∗v . But since
uy ∈ A∗u, v is a suffix of u and thus v ∈ S . This forces t = v .

Since qy ∈ F , we have

qy ∈ X∗t ⇐⇒ qy ∈ Z∗t
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Fig. 7.4. The equivalence of G and G ′ .

Fig. 7.5. A group automaton.

and thus, we obtain

iϕ(y) = j ⇐⇒ qy ∈ Z∗t ⇐⇒ β(i)ψ(y) = β( j).

This proves (7.1) for y ∈ Y . Next, let us show that if y, z ∈ Y ∗ satisfy (7.1) for all i, j ∈ I , the same
is true for yz. Assume first that for i, j ∈ I , one has iϕ(yz) = j. Since the restrictions of ϕ(y),ϕ(z)
to I are permutations, there is a unique k ∈ I such that iϕ(y) = k and kϕ(z) = j. Then, since y,
z satisfy (7.1), we have β(i)ψ(y) = β(k) and β(k)ψ(z) = β( j). Thus β(i)ψ(yz) = β( j). Conversely,
assume that β(i)ψ(yz) = β( j). Since β is a bijection from I onto R , there is a unique k ∈ I such that
β(k) = β(i)ψ(y). Then β(k)ψ(z) = β( j). By (7.1), we have iϕ(y) = k and kϕ(z) = j whence iϕ(yz) = j.
This proves that yz satisfies (7.1).

Eq. (7.1) shows that we may define a morphism α from G ′ to G by α(g) = ψ(y) for y ∈ Y ∗ such
that χ(y) = g . This map is injective. Indeed, if α(g) = α(g′), let y, y′ ∈ Y ∗ be such that χ(y) = g
and χ(y′) = g′ . Then, α(g) = ψ(y) and α(g′) = ψ(y′) imply that ψ(y) = ψ(y′). By (7.1), ψ(y) =
ψ(y′) implies that χ(y) = χ(y′) and thus g = g′ . Since Y generates the free group A◦ , the map
is surjective. Indeed, for any a ∈ A we have a = yε1

1 · · · yεn
n with yi ∈ Y and εi = ±1. Thus ψ(a) =

ψ(y1)
ε1 · · ·ψ(yn)εn = α(gε1

1 · · · gεn
n ) with χ(yi) = gi .

Finally, the commutative diagrams of Fig. 7.4 show that the pair (α,β) is an equivalence of per-
mutation groups. �
Example 7.2.6. We illustrate the proof of Theorem 7.2.5. Let Z be the group code of degree 4 recog-
nized by the automaton of Fig. 7.5. It is the automaton of Fig. 6.9 with more convenient labels for the
states. It is clear the G(Z) is Z/2Z×Z/2Z. Let F be the Fibonacci set. The code X = Z ∩ F is the code
of Example 6.6.3. The minimal automaton of X∗ is represented in Fig. 7.2. Let us chose u = aba. It has
rank 4, and Im(u) = {1,2,4,8}. One gets Y = {ba,aba}. Next χ(ba) = (18)(24) and χ(aba) = (14)(28).
The function β maps 1,2,4,8 to 1,2,3,4 respectively.

The following example shows that Theorem 7.2.5 does not hold for the set of factors of an epistur-
mian word which is not strict.

Example 7.2.7. Let F and X be as in Example 5.2.7. The bifix code X has F -degree 8. Let A be
the minimal automaton of X∗ represented in Fig. 5.2. The image of ϕ(bc) is the set I = {1,4,6,
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13,14,21,25,32}. The submonoid U = {u ∈ A∗ | I · u = I} is generated by acbc and acacbc. The re-
strictions to I of ϕ(acbc) and ϕ(acacbc) are

(1 14)(25 6)(4 21)(32 13), (1 6)(14 25)(4 13)(21 32).

These permutations generate a group which has two orbits: {1,6,14,25} and {4,13,21,32}. The
restriction to each orbit is isomorphic to (Z/2Z)2. Thus the F -group of X is (Z/2Z)2. However
X = Z ∩ F where Z is a group code such that G(Z) = (Z/2Z)3.

Proof of Theorem 7.2.3. Let G be a transitive permutation group of degree d and let Z be a group
code on an alphabet A with k letters such that G(Z) = G . Let F be a Sturmian set on the alphabet
A and let X = Z ∩ F . Then, by Theorem 7.2.5, G F (X) = G and, by Theorem 5.2.1, X has (k − 1)d + 1
elements. �
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