
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Theoretical Computer Science 436 (2012) 2–22

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Splicing systems and the Chomsky hierarchy✩

Jean Berstel a, Luc Boasson b, Isabelle Fagnot a,c,∗
a LIGM, Université Paris-Est Marne-la-Vallée, 5, boulevard Descartes, Champs-sur-Marne, F-77454 Marne-la-Vallée Cedex 2, France
b LIAFA, Université Paris Diderot–Paris 7 and CNRS, Case 7014, 75205 Paris Cedex 13, France
c Université Paris Diderot–Paris 7, Case 7014, 75205 Paris Cedex 13, France

a r t i c l e i n f o

Article history:
Received 4 February 2011
Received in revised form 16 January 2012
Accepted 7 March 2012
Communicated by N. Jonoska

Keywords:
Formal languages
Splicing system
Chomsky hierarchy

a b s t r a c t

In this paper, we prove decidability properties and new results on the position of the family
of languages generated by (circular) splicing systems within the Chomsky hierarchy. The
two main results of the paper are the following. First, we show that it is decidable, given
a circular splicing language and a regular language, whether they are equal. Second, we
prove the language generated by an alphabetic splicing system is context-free. Alphabetic
splicing systems are a generalization of simple and semi-simple splicing systems already
considered in the literature.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Splicing systems were introduced by Head [12–14] as a model of recombination. The basic operation is to cut words into
pieces and to reassemble the pieces in order to get another word.

There are several variants of splicing systems for circular or linear words [14]. In this paper, we consider Păun’s circular
splicing, and we introduce a new variant that we call flat splicing. In both cases, the system is described by an initial set of
words and a finite set of rules. The language generated is the closure of the initial set under the application of splicing rules.

A splicing rule is a quadruplet of words, usually written as α#β$δ#γ . The words α, β , γ , δ are called the handles of the
rule. A rule indicates where to cut andwhat to paste. More precisely, in a circular splicing system, given a rule α#β$δ#γ and
two circular words, the first of the form uα ·βv and the second of the form γwδ, we cut the first word between α and β , the
second word between δ and γ and stick α with γ as well as δ with β in order to get the new circular word uα ·γwδ ·βv, see
Fig. 1. The case of flat splicing systems, which involves linear words, is similar, see Fig. 2. In order to emphasize the position
where to cut and the condition on what to paste, we prefer to write ⟨α|γ−δ|β⟩ instead of α#β$δ#γ . This indicates more
clearly that one word is cut between α and β , and that the word to be pasted is in γ A∗δ.

Our purpose, in introducing flat splicing systems, is to get a direct approach to standard results in formal language theory.
Circular systems are handled, in a second step, by full linearization.

Our definition of flat splicing system differs from various so-called linear splicing systems appearing in the literature
[14,17,18,20]. For example, in Păun linear splicing, the rule α|β$γ |δ, from two words xαβy and zγ δt , produces the two
words xαδt and zγ |βy. The other linear systems (Head’s and Pixton’s) behave roughly on the same way.

Pixton has considered the nature of the language generated by a splicing system, with some assumptions about the
splicing rules (symmetry, reflexivity and self-splicing). He proves that the language generated by a splicing system is regular

✩ Part of thisworkhas beendoneduring a sabbatical leave of the third author fromUniversity Paris 7, andduring a stay atDIA (Dipartimentodi Informatica
e Applicazioni) at Università di Salerno, Italy.
∗ Corresponding author at: LIGM, Université Paris-Est Marne-la-Vallée, 5, boulevard Descartes, Champs-sur-Marne, F-77454 Marne-la-Vallée Cedex 2,

France. Tel.: +33 1 60 95 75 50.
E-mail addresses: Isabelle.Fagnot@univ-mlv.fr, fagnot@univ-mlv.fr (I. Fagnot).

0304-3975/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2012.03.008

Author's personal copy

J. Berstel et al. / Theoretical Computer Science 436 (2012) 2–22 3

Fig. 1. Circular splicing.

Fig. 2. Flat splicing.

(resp. context-free), provided the initial set is regular (resp. context-free). More generally, if the initial set is in some full
AFL, then the language generated by the system is also in this full AFL. Without the additional assumptions on the rules, it is
known that one may generate non-regular languages even with a finite initial set (Siromoney et al. [19]). A survey of recent
developments along these lines appears in [2].

In this paper, we prove decidability properties and new results on the position of splicing systems and their languages
within the Chomsky hierarchy. We introduce a special class of splicing rules called alphabetic rules. A rule is alphabetic
if its four handles are letters or the empty word. A splicing system is alphabetic when all its rules are alphabetic. Special
cases of alphabetic splicing systems, called simple or semi-simple systems, have been considered in the literature [8,7,5]. In a
semi-simple system, all rules α#β$δ#γ satisfy the condition that the words αβ and γ δ are letters. In a simple system, one
requires in addition that these letters are equal, that is αβ = γ δ.

We show that alphabetic systems have several remarkable properties that do not hold for general systems.
We consider first the problem of deciding whether the language generated by a splicing system is regular. The problem

is still open, but has been solved in special cases [6,9] . Our contribution is the following (Theorem 3.1). It is decidable, given
a splicing language and a regular language, whether they are equal. The corresponding inclusion problems are still open.
We also show (Remark 3.5) that it is decidable whether a given regular language is an alphabetic splicing language. This is
related to another problem that we do not consider here, namely to give a characterization of those regular languages that
are splicing languages, or vice versa. For recent results see [6], and for a survey see [2,20].

The next problemwe consider concerns the comparison of the family of splicing languages with the Chomsky hierarchy.
We first prove (Theorem 4.1) that splicing languages are always context-sensitive. Next, we prove, and this is the main
result of the paper (Theorem 5.3), that alphabetic splicing languages are context-free. The proof of this result needs several
intermediate results and fills a good deal of the article.

The relation between circular and flat alphabetic splicing systems is described in Proposition 8.3. It follows easily that
the main result also holds for circular splicing (Theorem 8.4).

The paper is organized as follows. We start by introducing the new type of splicing systems called flat splicing systems:
these systems behave like circular systems, but operate on linear words.

In Section 3, we prove that it is decidable, given a splicing language and a regular language, whether they are equal
(Theorem 3.1). Section 4 contains the proof that splicing languages are always context-sensitive.

Section 5defines alphabetic splicing systems and states themain result (Theorem5.3) namely that the language generated
by a flat or circular alphabetic splicing system is context-free, even if the initial set is context-free. This section and the next
two contains the proof of the main theorem for flat splicing systems (Theorem 7.11).

Section 8 describes the relationship between flat and circular splicing systems and their languages. It contains the proof
of the main theorem for circular splicing systems (Theorem 8.4).

All proofs are effective.
The proofs of the two main theorems use an old result from formal language theory [15] that presents generalized

context-free grammars and shows that they generate context-free languages. As it seems not to be well known, for sake
of completeness, we include a proof of this result, together with an example, in an Appendix.

The results of the paper were announced by the third author in [10].

Author's personal copy

4 J. Berstel et al. / Theoretical Computer Science 436 (2012) 2–22

2. Definitions

2.1. Words, circular words

As usual, an alphabet A is a finite set of letters. A word u = u0u1 . . . un−1 is a finite sequence of letters. When it is useful
to compare words with circular words defined below, they will be called linearwords.

Two words u and v are conjugate, denoted by u ∼ v if there exist two words x and y such that u = xy and v = yx.
This is an equivalence relation. A circular word is an equivalence class of ∼, that is an element of the quotient of A∗ by
the relation ∼. The equivalence class of u will be noted ∼u. We also say that ∼u is the circularization of u. For example,
∼abb = {abb, bab, bba} is a circular word. A circular word can also be viewed as in Fig. 1 as a word written on a circle. A set
of circular words is a circular language.

Let C be a language of circular words. Its full linearization, denoted by Lin(C), is the language Lin(C) = {u ∈ A∗
|

∼u ∈ C}.
Let L be a language of linear words. Its circularization ∼L is equal to ∼L = {

∼u | u ∈ L}.
A language L of circular words is regular (resp. context-free, resp. context-sensitive) if its full linearization is regular (resp.

context-free, resp. context-sensitive).
Let G be a context-free grammar, the language generated by Gwill be denoted by LG. Let S be a non-terminal symbol, we

will denote LG(S) the language produced by the grammar Gwith S as axiom.

2.2. Splicing systems

Webegin by presenting flat splicing systemswhich are new systems. Thenwemake a short description of circular splicing
systems. These systems are well known, see e.g. [6]. We also give some common properties of the two types of systems as
well as stressing the difference between both.

Flat splicing systems are of interest for proving language-theoretic results because they allow us to separate operations
on formal languages and grammars from the operation of circular closure (circularization). It appears that proofs for linear
words are sometimes simpler because they rely directly on standard background on formal languages.

2.2.1. Flat splicing systems
A flat splicing system, or a splicing system for short, is a triplet S = (A, I, R), where A is an alphabet, I is a set of words over

A, called the initial set and R is a finite set of splicing rules, which are quadruplets ⟨α|γ−δ|β⟩ of words over A. The words
α, β, γ and δ are called the handles of the rule.

Let r = ⟨α|γ−δ|β⟩ be a splicing rule. Given two words u = xα · βy and v = γ zδ, applying r to the pair (u, v) yields
the word w = xα · γ zδ · βy. (The dots are used only to mark the places of cutting and pasting, they are not parts of the
words.) This operation is denoted by u, v ⊢r w and is called a production. Note that the first word (here u) is always the one
in which the second word (here v) is inserted.

Example 2.1. 1. Consider the splicing rule r = ⟨ab|aa−b|c⟩. We have the production bab · cc, aaccb ⊢r bab · aaccb · cc.
2. Consider the splicing rule ⟨b|a−a|b⟩. Note that we cannot produce theword b ·a ·b from theword b ·b and the singleton

a, because the rule requires that the inserted word has at least two letters. On the contrary, the rule ⟨b|ε−a|b⟩ does produce
the word bab from the words bb and a.

3. For the rule r = ⟨ε|a−a|b⟩, the production ·bbc, aba ⊢r aba · bbc , is in fact a concatenation.
4. As a final example, the rule ⟨ε|ε−ε|ε⟩ permits all insertions (including concatenations) of a word into another one.

The language generated by the flat splicing system S = (A, I, R), denoted F (S), is the smallest language L containing I
and closed by R, i.e., such that for any couple of words u and v in L and any rule r in R, then any word such that u, v ⊢r w is
also in L.

Example 2.2. Consider the splicing system over A = {a, b} with initial set I = {ab} and the unique splicing rule r =

⟨a|a−b|b⟩. It generates the context-free andnon-regular languageF (S) = {anbn | n ≥ 1}. (This example is a straightforward
adaptation of Example 2.3 below.)

A splicing system is finite (resp. regular, context-free, context-sensitive) if its initial set is finite (resp. regular, context-free,
context-sensitive).

A rule r = ⟨α|γ−δ|β⟩ is alphabetic if its four handles α, β, γ and δ are letters or the empty word. A splicing system is
alphabetic if all its rules are alphabetic.

2.2.2. Splicing and insertion systems are incomparable
Insertion systems, as described in [16], look quite similar to flat splicing systems. This justifies to compare both generating

devices.

Author's personal copy

J. Berstel et al. / Theoretical Computer Science 436 (2012) 2–22 5

An insertion system is given by a finite set R of rules of the form (g|α|d), where g, α, d are words, and a finite set I of
words called the initial set. The system generates a language as follows : given a word w that contains a factor gd, that is of
the form w = xgdy, then the application of the rule (g|α|d) generates the word w′

= xgαdy. The set of words generated by
the system is the set of words obtained by repeated application of the insertion rules, starting with the words in the initial
set I .

The two main differences between splicing systems and insertion systems are following :

– in an insertion system, only a finite number of words can be inserted (the words α in the rules).
– The words α which are inserted do not necessarily belong to the language the system generates.

In [16], it is proved (Theorem 6.4) that alphabetic insertion systems, that is insertion systems where the contexts g, d of
the rules have length atmost 1, always generate context-free languages. This is very close to our result (Theorem 5.3) stating
that alphabetic splicing systems generate context-free languages.

However, despite the fact that the families of languages generated by the two types of systems have a non-empty
intersection, we show below that the two types of systems generate incomparable families of languages, and so the two
results quoted are really different.

2.2.2.1. A splicing system generating a language which is not generated by an insertion system.
Let A be the alphabet {a, b, c, d, x, y} and define the following splicing system:

(r1) ⟨c|x−y|ε⟩
(r2) ⟨ε|c−y|d⟩
(r3) ⟨a|c−d|ε⟩
(r4) ⟨ε|a−d|b⟩
(r5) ⟨c|a−b|ε⟩
(r6) ⟨ε|c−b|d⟩.

Let P be the language generated by this system, with initial set I = {a, b, c, d, xy}. We prove that P is not generated by
any insertion system.

For this, we start with some easy preliminary remarks.
First, only words of length at least two can be inserted in another word; this is because the rules contain no ε in

their central part. It follows immediately that all words obtained by applying at least one rule contain the factor xy, and
consequently all words of P of length at least 2 contain the factor xy. Along the same lines, if a word u is inserted in a word
v and if v has length at least 2, the result will contain at least two letters x (and two letters y). Hence, words generated in P
containing at most one letter x, are obtained by insertions of words u (of length at least 2) in a word of length at most 1. So,
looking for these words, and starting with u = xy, one can only produce cxy by using rule (r1). Then, by rule (r2), one gets
the word cxyd. Then one has to use successively the rules (r3), (r4), (r5), (r6) and repeat them in this exact sequence. This
leads to the following conclusion:

The set of words generated by the splicing system and containing exactly one occurrence of the letter x is

L = M ∪ cM ∪ cMd ∪ acMd where M = {(ac)nxy(db)n | n ≥ 0}.

Now assume, arguing by contradiction, that the language P is generated by some insertion system. Then, the words
wn = (ac)nxy(db)n must be generated by this system. For a large enough n, such a word wn cannot be in the initial set of
the insertion system. Hence this word factorizes into wn = urαsv in such a way that ursv is in P and the insertion system
contains a rule (r|α|s). This ensures that wn is obtained by inserting the word α in the shorter word ursv of the language.
The only possibility is to cut the word (ac)nxy(db)n into ursv = (ac)nxy(db)n−1d and α = b. This implies that the considered
insertion system contains a rule of the form(r|b|s) with s = ε and r a suffix of (ac)nxy(db)n−1d; however, with a rule of this
kind, one generates also words like (ac)m+nxy(db)n−1dbb(db)m by inserting a letter b at the right of the (m)th block db. As
this word is not in P , we get a contradiction.

2.2.2.2. An insertion system generating a language which is not generated by a splicing system.
Over A = {a, x, y}, consider the (rational) language K = xa∗y. It is generated by the insertion systemwith initial set F = {xy}
and the insertion rules

(r1) (x|a|y)
(r2) (x|a|a).

On the other hand, all words of K contain exactly one letter x. Since the insertion of a word of K in another one would
lead to a word containing at least two letters x, this set is not obtained by a finite splicing system.

2.2.3. Circular splicing systems
A circular splicing system is a triplet S = (A, I, R), where A is an alphabet, I is a set of circular words on A, called initial

set and R is a finite set of splicing rules, which are quadruplets ⟨α|γ−δ|β⟩ of linear words on A. The words α, β, γ and δ are
called the handles of the rule. In the literature (see e.g. [6]), a rule is written as α#β$δ#γ . Again, a rule is alphabetic if its four
handles α, β, γ and δ are letters or the empty word. A circular splicing system is alphabetic if all its rules are alphabetic.

If r = ⟨α|γ−δ|β⟩ is a splicing rule then the circular words ∼u =
∼(βxα) and ∼v =

∼(γ yδ) produce the circular
word ∼w =

∼(βxα ·γ yδ). We will denote this production by ∼u, ∼v ⊢r
∼w. The language generated by the circular splicing

Author's personal copy

6 J. Berstel et al. / Theoretical Computer Science 436 (2012) 2–22

system is the smallest language C of circular words containing I and closed by R, i.e., such that for any couple of words ∼u
and ∼v in C and any rule r in R, any circular word ∼w such that ∼u, ∼v ⊢r

∼w is also in C . This set of circular words is
denoted by C(S).

The notion of finite, regular, context-free, context-sensitive circular splicing systemare alike to those in flat splicing systems.

Example 2.3 ([19]). Let S = (A, I, R) be the (finite alphabetic) circular splicing system defined by I = {
∼(ab)} and

R = {⟨a|a−b|b⟩}. It produces the context-free language C(S) = {
∼(anbn) | n ≥ 1}.

2.2.4. Relationship between flat and circular splicing systems
The following two already known remarks hold for flat and circular splicing systems, and will be used to simplify our

proofs [20].

Remark 2.4. A production u, v ⊢r w, where u = ε or v = ε, evenwhen it is permitted, is useless. Indeed, one has ε, v ⊢r v
and u, ε ⊢r u. As a consequence, given a splicing system S = (A, I, R) one has ε ∈ F (S) (resp. ε ∈ C(S)) if and only if ε ∈ I .
So we can assume that ε /∈ I without loss of generality.

Remark 2.5. A production u, v ⊢r w, where |w| = 1, even when it is permitted, is useless. Indeed, since |u| + |v| = |w|,
one has in this case w = u or w = v. As a consequence, given a splicing system S = (A, I, R), and a letter a ∈ A, one has
a ∈ F (S) (resp. a ∈ C(S)) if and only a ∈ I . However, we cannot assume that a /∈ I without possibly changing the language
it generates.

Remark 2.6. Let S = (A, I, R) be a circular splicing system. The full linearization ofC(S) is the closure of the linear language
Lin(I) under the composition of the two operations of splicing and circularization.

Remark 2.7. Despite the previous remark, it does not suffice, in general, to just consider a single circularization. If we
consider the flat splicing system S′

= (A, Lin(I), R)with the same splicing rules, we have notC(S) =
∼F (S′). Nevertheless,

the inclusion ∼F (S′) ⊆ C(S) is always true.
For example, consider the circular splicing system S = (A, I, R) with A = {a, b}, I = ab and R = {⟨a|a−ε|b⟩} and the

flat splicing system S′
= (A, I ′ = Lin(I), R). As I ′ = {ab, ba}, the flat splicing system S′ will produce only the language

L = {ba} ∪ {anbn | n ≥ 1} while the circular splicing system S will, for example, produce also the word aabbab by the
two productions ab, ab ⊢r aabb = abba, and ab, abba ⊢r aabbab. This word aabbab is not in the circularization of the
language L.

3. A decision problem

In this section, we prove the following result.

Theorem 3.1. Given a regular circular (resp. flat) splicing system S and a regular language K , it is decidable whether C(S) = K
(resp. F (S) = K).

Proof. We assume that neither I nor K contains ε, since otherwise it suffices, according to Remark 2.4, to check that ε is
contained in both sets.

Let S = (A, I, R). Let A = (A,Q , qo,QF) be a deterministic automaton recognizing K , with Q the set of states, qo the
initial state and QF the set of final states. The transition function is denoted by ‘‘·’’ in the following way: for a state q and a
word v, q · v denotes the state that is reached by v from q.

For any state q ∈ Q , we define Gq = {v | qo · v = q} and Dq = {v | q · v ∈ QF }. The set Gq is the set of all words which
label paths from q0 to q, and Dq is the set of all words which label paths from q to a terminal state. Both sets are regular.

Next, let P = {w ∈ A∗
| u, v ⊢r w, with r ∈ R, u, v ∈ K}. The set P is the set of the words that can be obtained by

splicing two words of K .
For each rule r = ⟨α|γ−δ|β⟩, let

Kr ={w ∈ A∗
| u, v ⊢r w, with u, v ∈ K}

={xα · γ zδ · βy | xα · βy ∈ K , γ zδ ∈ K , x, y, z ∈ A∗
}.

It is easily checked that

Kr =

q∈Q

(Gq ∩ A∗α)(K ∩ γ A∗δ)(Dq ∩ βA∗).

This expression shows that each language Kr is regular, and so is P =

r∈R Kr because R is finite.
We first consider flat splicing system. The algorithm consists in checking three inclusions. We claim that F (S) = K if

and only if the following three inclusions hold.

(1) I ⊆ K ,
(2) P ⊆ K ,
(3) K \ P ⊆ I .

Author's personal copy

J. Berstel et al. / Theoretical Computer Science 436 (2012) 2–22 7

Take the claim for granted. Then the equality F (S) = K is decidable since the three inclusions, that involve only regular
languages, are decidable.

Now we prove the claim, namely that F (S) = K if and only if the above-mentioned three inclusions hold.
If F (S) = K , then (1), (2) and (3) are obviously true.
Conversely, assume now that these three inclusions hold. Since I ⊆ K by (1) and since K is closed under the rules of

splicing of R by (2), obviously F (S) ⊆ K .
Next, we prove the reverse inclusion K ⊆ F (S) by induction on the length of the words in K . Let w ∈ K . Since P ⊂ K

by (2), one has K = P ∪ (K \ P). If w ∈ K \ P , then by (3), w ∈ I and therefore w ∈ F (S). Otherwise, there are words
u, v ∈ K of shorter length such that u, v ⊢r w for some r ∈ R. By induction, u, v ∈ F (S) and consequently w ∈ F (S).

This proves the result for flat splicing.
For circular splicing systems, we assume that the language ∼I and ∼K are given by a linearization of the circular language,

that, by commodity, we call I and K . Recall that the full linearization of C(S) is the closure of the linear language Lin(∼I)
under the composition of the two operations of splicing and circularization (Remark 2.6.)

It then suffices to check, in addition, that K and I are closed under conjugacy (or to compute their closure) and to replace
Kr by Lin(∼Kr), in order to obtain a set P that is also closed under conjugacy. The circular closure is regular since with the
previous notationwe have Lin(∼K) =

q∈Q Dq ·Gq. By this, we ensure that P = Lin({w ∈ A∗

| u, v ⊢r w, with r ∈ R, u, v ∈
∼K}). The rest of the proof being unchanged. �

Remark 3.2. There are two related problems which are still open. The first is to decide whether the language generated by
a splicing system is regular, and the second is to decide whether a regular language can be generated by a splicing system.
We shall see below that the second problem is decidable in the case of what we call alphabetic splicing systems.

Remark 3.3. The two inclusion problems, for flat and circular system, i.e., the problem of deciding whether F (S) ⊆ K or
whether K ⊆ F (S) (resp. C(S) ⊆ K or K ⊆ C(S)) are still open.

Remark 3.4. The characterization of the family of regular languages which can be obtained by a circular splicing system, is
still open. However, partial results have been obtained by Bonizzoni et al. [3,4,6]. In particular, a complete characterization of
languages over one letter generated by a splicing system is given in [4]. For another class of splicing systems, called marked
system, the regularity of the languages generated has been proved decidable [9]. Recently, a description of the languages
generated by a family of alphabetic splicing systems called semi-simple systems has been given in [6], see also [20].

Remark 3.5. Given a regular language K over an alphabet A, it is decidablewhether it can be generated by a finite alphabetic
splicing system. (The problem is meaningless for regular systems.) First, remark that given a set of rules R, if there exists
a finite initial set I such that C(A, I, R) = K , we have also C(A, K \ P, R) = K with K \ P finite, P being defined as in the
above-mentioned proof. It suffices to remark that K \ P ⊆ I (inclusion (3) of the proof) ensures that K \ P is finite and to
check that the three inclusions still hold when I is replaced by K \ P .

Now, observe that there are only finitely many alphabetic splicing rules over A. So there are only finitely many sets of
such rules over A. We then only need to enumerate these sets and for each set R of alphabetic splicing rules over A, define P
as in the proof of Theorem 3.1; if P ⊆ K and K \ P is finite, then the test is positive and the splicing system S = (A, K \ P, R)
generates K . If there is no such set R, then K cannot be generated by a finite alphabetic splicing system.

4. Splicing languages are context-sensitive

We will see that the highest level in Chomsky hierarchy which can be obtained by splicing systems with a finite initial
set and a finite set of rules is the context-sensitive level. This result remains true when the initial set is context-sensitive.

Before proving this property, we give an example of a splicing language which is not context-free.

4.1. A splicing language which is not context-free

In this paragraph, an example of a flat linear splicing system having a finite initial set which produces a non-context-free
example is presented. This example is then easily adapted to give a circular counter-part.

We first consider flat splicing, then we will consider the circular one.
Let A be the alphabet {0, 1, 2, 3, I, J} and set u = 0123. Let S = (A, I, R) be the flat splicing system with

I = {IuJ, 0, 1, 2, 3}

and with R composed of the rules

a1 = ⟨I|0−ε|u⟩, a2 = ⟨0u|0−ε|u⟩,
b1 = ⟨0|1−ε|uJ⟩, b2 = ⟨0|1−ε|u01u⟩,
c1 = ⟨I01|2−ε|u⟩, c2 = ⟨012u01|2−ε|u⟩,
d1 = ⟨012|3−ε|uJ⟩, d2 = ⟨012|3−ε|uuu⟩.

Author's personal copy

8 J. Berstel et al. / Theoretical Computer Science 436 (2012) 2–22

This splicing system produces the language

F (S) = I ∪ {I(u)2
n
J | n ≥ 0}

∪ {I(0u)p(u)qJ | p + q = 2n, n ≥ 0}
∪ {I(0u)p(01u)qJ | p + q = 2n, n ≥ 0}
∪ {I(012u)p(01u)qJ | p + q = 2n, n ≥ 0}
∪ {I(012u)p(uu)qJ | p + q = 2n, n ≥ 0}. (4.1)

This splicing system will produce the word Iu2(n+1)
J from the word Iu2nJ by roughly adding a word u before each of

its occurrences. This is done by inserting first the letters ‘0’ from left to right, then the letter ‘1’ from right to left, then the
letter ‘2’ from left to right, and finally the letters ‘3’ from right to left.

More precisely, the system generates the word IuuJ from the word IuJ by the following computation: (We write here

x
a1,0
−→ y instead of x, 0 ⊢a1 y, and so on.)

IuJ
a1,0
−→ I0uJ

b1,1
−→ I01uJ

c1,2
−→ I012uJ

d1,3
−→ I0123uJ.

Then, given a word IupJ, with p = 2n, n ≥ 1, the rules a1 and a2 generate a left-to-right sweep inserting the symbol 0
in head of each u:

IupJ
a1,0
−→ I(0u)up−1J

a2,0
−→ · · ·

a2,0
−→ I(0u)p−1uJ

a2,0
−→ I(0u)pJ.

The rules b1 and b2 generate a right-to-left sweep which inserts a symbol 1 in head of each u. This gives

I(0u)pJ
b1,1
−→ I(01u)(0u)p−1J

b2,1
−→ · · ·

b2,1
−→ I(01u)p−10uJ

b2,1
−→ I(01u)pJ.

Similarly, the rules c1 and c2 are used to insert a symbol 2 in head of each u, again in a left-to-right sweep. This gives the
word I(012u)nJ. Finally, the last two rules, d1 and d2, insert a 3 in head of each u. The final result is Iu2pJ = Iu2n+1

J.
We can check that no other word other that those produced in this computation can be yielded by noting that at each

step no other rule can be applied.
The intersection of the language F (S) with the regular language I(u)∗J is equal to {I(u)2

n
J | n ≥ 0}. The latter

language is not context-free.
Concerning circular splicing systems, recall that a circular language is context-sensitive if and only if its full linearization

is context-sensitive. If we take the circular splicing system with the same rules and the same initial language, we can check
that the language C(S) is such that C(S) ∩ I(u)∗J = F (S) ∩ I(u)∗J. (This can be done by only computing the words
with at most one ‘J’ and one ‘I’, the set of these words is the circularization of F (S).) Thus, we also can produce a language
which is not context-free with a circular splicing system with finite initial set.

4.2. Splicing languages are always context-sensitive

Theorem 4.1. The language generated by a context-sensitive circular (resp. flat) splicing system is context-sensitive.

The proof uses bounded automata. Recall that a k-linear bounded automaton (k-LBA) is a non-deterministic Turing
machine with a tape of only kn cells, where n is the size of the input.Wewill use in the sequel the following characterization
of context-sensitive languages. A language is context-sensitive if and only if it is recognized by a k-LBA (see, for example,
[11]). It is known that it is always possible to recognize a context-sensitive language with a 1-LBA.

Proof. We start with the case of a flat system. Let S = (A, I, R) be a flat splicing system. Let T a 1-LBA recognizing I . We
construct a 3-LBA machine U which recognizes the language F (S).

Let u be the word written on the tape at the beginning of the computation. Let # be a new symbol. The machine works
as follows.

During the computation the word written on the tape will have the form

u1#u2# · · ·#un−1#un,

where the ui are words on the alphabet A.
At the beginning the tape contains the word u.
Repeat the following operation as long as possible.

(1) If the tape is void, stop and return ‘‘yes’’.
(2) If un is in the set I (this test is performed by machine T), remove un along with the symbol # which may precede un.
(3) Choose randomly a rule r = ⟨α|γ−δ|β⟩ in R, and choose randomly, if it exists, a decomposition of un of the form

un = xαγ yδβz such that neither xαβz nor γ yδ are empty word. Remove the subword γ yδ from un and place it at the
right after a # symbol. Then shift the string βz#γ yδ so that we have on the tape u1#u2# · · ·#un−1#xαβz#γ yδ. If no
choice exists, stop the computation.

Author's personal copy

J. Berstel et al. / Theoretical Computer Science 436 (2012) 2–22 9

If no computation succeeds, then the word is rejected. The length of the tape is always less that 3|u|, because except when
we decompose the word un at step (3), we have at most |u| subwords in the iterated decomposition of u, with total length
|u|, along with at most |u| − 1 separating#-symbols. When we compute the decomposition in step (3), we have in addition
a copy of a part of the last word un whose length is at most |u|.

In the case of a circular splicing system, the method is almost the same. It requires an additional step between the steps
(2) and (3), which consists in choosing randomly one of the conjugates of un, possibly retaining un itself. The computation of
the conjugates is obtained by choosing a letter in the word, removing the part strictly before that letter and placing it at the
right of the last letter of un, and then shift the conjugates obtained right after the last symbol #. The bound on the length of
the tape is again 3|u| for similar reasons. �

5. Alphabetic splicing systems

We recall that a rule in a splicing system is said alphabetic if its handles have length at most one. A splicing system is said
alphabetic if all its rules are alphabetic.

The splicing systems of Examples 2.3 and 2.2 are alphabetic. They generate a non-regular language, although they have
a finite initial set. Let us give another example.

Example 5.1. Let S = (A, I, R) be the flat splicing system defined by A = {a, ā}, I = {aā} and R = {⟨ε|ε−ε|ε⟩}. It generates
the Dyck language. Recall that the Dyck language over {a, ā} is the language of parenthesized expressions, a, ā being viewed
as a pair of matching parentheses (see, for example, [1]).

The circular splicing system S = (A, I, R) defined by A = {a, ā}, I = {
∼(aā)} and R = {⟨ε|ε−ε|ε⟩} generates the language

D̂ of words having as many a as ā. Indeed, the system allows to insert aā and āa anywhere, hence we get the set of words
having as many a as ā. This language D̂ is the circularization of the Dyck language [1].

Remark 5.2. All examples given so far show that alphabetic splicing systems generate always a context-free languages,
and this is indeed the main result of the paper. Observe however that we cannot get all context-free languages and
even all regular languages as splicing languages with a finite initial set. For example, we easily can see that the language
L = {a∗c | n ≥ 0} cannot be obtained by such a splicing system: consider indeed the fact that all words of L have exactly
only one c , so inserting a word of L into another word of Lwill produce a word out of L.

5.1. Main theorem

Wenow state themain theorem, namely that alphabetic rules and a context-free initial set can produce only context-free
languages.

Theorem 5.3. (i) The language generated by a circular alphabetic context-free splicing system is context-free.
(ii) The language generated by a flat alphabetic context-free splicing system is context-free.

This theorem is effective, that is, we can actually construct a context-free grammar which generates the language
produced by the splicing system. The rest of the paper is devoted to the (long) proof of this theorem. Before embarking
on it, we give here the idea behind the proof.

We begin by the flat case. We have seen (Example 2.1) that some productions are in fact concatenations in contrast with
‘‘proper insertions’’ where we really put a word between two non-empty parts of another one. As these concatenations
cannot be treated like ‘‘proper insertions’’, we are going to separate both types of productions.

In order to do this, Section 6 introduces pure splicing systems, which are splicing systems where there are only ‘‘proper
insertions’’. Here, it is proved that the language generated by a context-free pure splicing system is context-free. The proof
uses some results on context-free languages which are recalled in Section 6.1.

In the next section (Section 7), we first define concatenation systems and prove that (alphabetic) concatenation
systems produce only context-free languages. Then we define heterogeneous systems, these systems combine both ‘‘proper
insertions’’ and concatenations. The weak commutation lemma (Lemma 7.8) is then proved; this lemma explained that
roughly we can do all concatenations before any insertions. This section ends with the proof of the main theorem for flat
splicing systems.

Section 8 describes the relationship between flat and circular splicing systems and their languages. It contains the proof
of the main theorem for circular splicing systems.

The proofs that concatenation systems and alphabetic pure systems generate context-free languages are done by giving
explicitly the grammars. These grammars deviate from the standard form of grammars by the fact that the sets of derivation
rules may be infinite, provided they are themselves context-free sets. It is an old result from formal language theory [15]
that generalized context-free grammars of this kind still generate context-free languages. For the sake of completeness, we
include a proof of this result, together with an example, in an Appendix.

We start with a technical normalization of splicing systems which will enable us to manage the ε handles more easily.

Author's personal copy

10 J. Berstel et al. / Theoretical Computer Science 436 (2012) 2–22

5.2. Complete set of rules

Completion of rules is a tool to manage the usage of the empty word ε among the handles α, β, γ , δ of an alphabetic rule

r = ⟨α|γ−δ|β⟩

in a production
u, v ⊢r w. (5.1)

Assume first that δ = ε. (The case where γ = ε is symmetric.) In this case, the production (5.1) is valid provided v starts
with γ (and of course if u has an appropriate factorization u = xαβy). Let d be the final letter of v. Then the same result is
obtained with the rule

rd = ⟨α|γ−d|β⟩,

with only one, but noticeable exception: this is the case where v is a single letter, that is v = γ . Observe that this may
happen only if v is in the initial set of the system.

In other words, a production

r = ⟨α|γ−ε|β⟩

is mandatory if and only if γ ∈ I . For all words v ≠ γ , the production (5.1) is realized by the use of the rule rd where d is the
final letter of v. Thus a rule with δ = ε can be replaced by the set of rules rd, for d ∈ Awith one exception.

Assume next that β = ε. (The case where α = ε is symmetric.) In this case, the production

u, v ⊢r w

is valid provided α occurs in u (and v begins with γ and ends with δ). This holds in particular when α is the final letter of u.
In this case, one gets

w = uv.

In other words, the application of the rule reduces to a simple concatenation. If however u has another occurrence of α, that
is if u = xαy for some y ≠ ε, then the rule r can be replaced by the appropriate rule rd = ⟨α|γ−δ|d⟩, where d is the initial
letter of y.

In conclusion, the use of a rule

r = ⟨α|γ−ε|β⟩ (resp. r = ⟨α|ε−δ|β⟩)

can always be replaced by the use of a rule

r = ⟨α|γ−d|β⟩ (resp. r = ⟨α|c−δ|β⟩)

for letters c, d ∈ A, except – and this is the only case – when the word to be inserted is a single letter which is in the initial
set.

On the contrary, the use of a rule

r = ⟨α|γ−δ|ε⟩ (resp. r = ⟨ε|γ−δ|β⟩)

can be replaced by the use of a rule

r = ⟨α|γ−δ|b⟩ (resp. r = ⟨a|γ−δ|β⟩)

for letters a, b ∈ A, except when the result is a concatenation w = uv (resp. w = vu).
The rules shown above have only one ε, the rules with multiple ε handles have similar properties.

Example 5.4. Let S = (A, I, R) with A = {a, b, c}, I = {abc, abb} and R composed of the single rule r = ⟨b|a−b|ε⟩. The rule
r permits the production ab · c, abb ⊢r ab · abb · c. This production could also be realized with the rule r ′

= ⟨b|a−b|c⟩
obtained from r by replacing ε by c. Similarly, the production ab · b, abb ⊢r ab · abb · b could also be realized with the rule
r ′′

= ⟨b|a−b|b⟩. Conversely, all productions that can be realized with r ′ and r ′′ can be made with r .
We can thus check that the system S′

= (A, I, R′)with the set of rules R′
= {⟨b|a−b|ε⟩, ⟨b|a−b|a⟩, ⟨b|a−b|b⟩, ⟨b|a−b|c⟩}

produces the same language as the system S does.
However, the production abb·, abb ⊢r abb · abb, cannot be obtained by use of a production without ε-handle. So, the

system S′′
= (A, I, R′′) with R′′

= {⟨b|a−b|a⟩, ⟨b|a−b|b⟩, ⟨b|a−b|c⟩} does not produce the same language as the system S
does.

We say that a splicing system S = (A, I, R) is complete if for any rule r = ⟨α1|α3−α4|α2⟩ in R, whenever one or several of
the αi are equal to the empty word, then the set R contains all rules obtained by replacing some or all of the empty handles
by all letters of the alphabet.

For example, the system S = (A, I, R′) is complete. The completion of a splicing system consists in adding to the system
the rules that makes it complete. Completion is possible for alphabetic splicing systems without changing the language it
produces.

Author's personal copy

J. Berstel et al. / Theoretical Computer Science 436 (2012) 2–22 11

Lemma 5.5. For any alphabetic splicing system S = (A, I, R), the complete alphabetic splicing system Ŝ = (A, I, R̂) obtained by
completing the set of productions generates the same language.

The proof is left to the reader.
Observe that completion may increase considerably the number of rules of a splicing system. Thus, over a k-letter

alphabet, completing a rule with one ε-handle adds k rules, and if the rule has two ε-handles, completion adds k2 + 2k
rules. . . .

In the proof of Theorem 5.3, i.e., in Sections 7, 8 we will assume that splicing systems are complete.

Remark 5.6. Complete systems may simplify some verifications. Thus, in order to verify that one may insert a letter a
between some letters d and b, it suffices to check that one of ⟨d|a−ε|b⟩ or ⟨d|ε−a|b⟩ is in the set of splicing rules. Otherwise
we would also have to check whether one of ⟨ε|a−ε|b⟩ or ⟨ε|a−ε|ε⟩ or ⟨d|ε−ε|b⟩, . . . is in the set of splicing rules.

6. Pure splicing systems

In this section, we consider a subclass of splicing systems called pure systems, and we prove (Theorem 6.2) that these
systems generate context-free languages. We start with a description of a theorem for context-free languages that will be
useful.

6.1. A theorem on context-free languages

We recall here, for the convenience of the reader, the notion of generalized context-free grammars along with one
theorem on such grammars. A proof of this theorem and an example are given in the Appendix.

A generalized grammar G is a quadruplet (A, V , S, R), where A is a terminal alphabet, V is a non-terminal alphabet,
and S ∈ V is the axiom. The set of rules R is a possibly infinite subset of V × (A ∪ V)∗. For each, v ∈ V , define
Mv = {m | v → m ∈ R}. In an usual context free grammar, the sets Mv are finite. The grammar G is said to be a generalized
context-free grammar if the languages Mv are all context-free.

Derivations are defined as usual. More precisely, given v, w ∈ (A ∪ V)∗, we denote by v → w the fact that v directly
derivesw and by v

∗
→ w the fact that v derivesw. The language generated by G, denoted LG, is the set of words over A derived

from S, i.e., LG = {u ∈ A∗
| S

∗
→ u}.

It will be convenient, in the sequel, to use the notation v →

m∈Mv
m or v → Mv as shortcuts for the set of rules

{v → m | m ∈ Mv}.
Thus, the only difference betweenusual and generalized context-free grammars is that for the latter the set of productions

may be infinite, and in this case it is itself context-free.
A theorem, due to Kràl [15], states that the language recognized by such a grammar remains context-free.

Theorem 6.1 ([15]). The language generated by a generalized context-free grammar is context-free.

A proof of this theorem is given in the Appendix.

6.2. Pure alphabetic splicing systems

A splicing rule r = ⟨α|γ−δ|β⟩ is pure if both α and β are nonempty. If the rule is alphabetic, this means that α and β are
letters. A splicing system is pure if all its rules are pure.

Note that a pure splicing system produce only ‘‘proper insertions’’ in the sense that a word is inserted between two
non-empty parts of another one.

Theorem 6.2. The language generated by an alphabetic context-free pure splicing system is context-free.

Proof. Let S = (A, I, R) an alphabetic context-free pure system. We suppose that the set R is complete.
We construct a generalized context-free grammar G with axiom S, terminal alphabet A and with non-terminals S and

aBb, aWb for a, b ∈ A, and Va for a ∈ A.
The variable aWb is used to derive words with at least two letters that begin with a letter a and end with a letter b. The

variable Va is used to derive the word a if it is in the set I .
A symbol aBb is always preceded by a letter a or by a letter Va or by a letter cWa, with c ∈ A, and is always followed by a

letter b by or a letter Vb or by a letter bWd, with d ∈ A. Roughly speaking, the symbol aBb denotes words for which eventually
there is a letter a preceding it and a letter b following it.

We define an operation

Ins : A+
→

A ∪

a,b∈A

aBb

+

Author's personal copy

12 J. Berstel et al. / Theoretical Computer Science 436 (2012) 2–22

by Ins(x) = x for x ∈ A, and on words a1a2a3 · · · an−1an where a1, . . . , an ∈ A and n ≥ 2, by setting

Ins(a1a2a3 · · · an−1an) = a1 a1Ba2 a2 a2Ba3 a3 . . . an−1
an−1Ban an.

The derivation rules of G are divided into the three following groups. (Here a and b are any letters in A.)
The first group contains derivation rules that separate words of I according to their initial and final letters, and single out

one-letter words.

S → aWb,

S → Va,

aWb → Ins(I ∩ aA∗b),
Va → I ∩ a.

We use here the convention that a derivation rule of the last type is not added if I ∩ a is empty. Similarly, the third sets in
these derivation rules may be empty. Observe that these sets may also be context-free.
The second group reflects the application of the rules in R. It is composed of

aBb
→

aBc
cWd

dBb, for ⟨a|c−d|b⟩ ∈ R,
aBb

→
aBc Vc cBb, for ⟨a|c−ε|b⟩ ∈ R or ⟨a|ε−c|b⟩ ∈ R.

The third group of derivation rules is used to replace the variables aBb by the empty word.
aBb

→ ε.

By Theorem 6.1, the language generated by G is context-free.
We claim that LG = F (S). In order to do this we consider the grammar Gwithout the derivations of the third group, and

prove that this grammar produces Ins(F (S)).
More formally,wedenote by L′

G the language obtainedwithout applying the productions of the third type, and by L′
G(aWb)

and by L′
G(Va) the languages obtainedwhen startingwith the variable aWb (resp.withVa), andweprove that L′

G = Ins(F (S)).
First, we prove the inclusion L′

G ⊆ Ins(F (S)). For this, we prove by induction on the length of the leftmost derivations
in G′ that for all letters a, b ∈ A, we have L′

G(aWb) ⊆ Ins(F (S) ∩ aA∗b) and that L′
G(Va) ⊆ Ins(F (S) ∩ a).

A derivation X
∗

→ v is called terminal if v does not contains any occurrence of variables other than aBb, for a, b ∈ A. It is
easy to check that the length of terminal derivations are always odd.

The only terminal derivations of length one are

aWb → Ins(I ∩ aA∗b),
Va → I ∩ a,

and the inclusion is clear.
Assume that the hypotheses of induction hold for derivations of length less than k and let u be a word obtained by

a derivation of length k. Since the length of the derivation is greater than 1, the derivation starts with a derivation step
S → aWb for some a, b ∈ A.

The last derivation step have one of the following form

eWf → x, with x ∈ Ins(I ∩ eA∗f),
Ve → e, with e ∈ I,

And the derivation step which produces the symbol eWf or the symbol Ve is respectively of the form
cBd

→
cBe

eWf
fBd

cBd
→

cBe Ve eBc

for suitable letters c, d, e, f .
As the derivation is leftmost, this latter step is the step before the last one.
In the first case, there are words v, w such that

aWb
∗

→ vcBdw → vcBe
eWf

fBdw → vcBexfBdw = u.

By induction, v cBd w ∈ Ins(F (S)∩aA∗b). Since the derivation rule cBd
→

cBe
eWf

fBd is in G, there is a splicing rule ⟨c|e−f |d⟩
in R. Consequently, the word u is in Ins(F (S)∩ aA∗b). The second case is similar. This proves the inclusion L′

G ⊆ Ins(F (S)).
Now, we prove the inclusion Ins(F (S)) ⊆ L′

G. For this, we prove that for all letters a, b ∈ A, we have Ins(F (S)∩aA∗b) ⊆

L′
G(aWb) and Ins(F (S) ∩ a) ⊆ L′

G(Va).

Author's personal copy

J. Berstel et al. / Theoretical Computer Science 436 (2012) 2–22 13

We observe that for a letter a, one has F (S) ∩ a = I ∩ a = Ins(F (S) ∩ a). The letter a is thus obtained by the derivation
Va → I ∩ a. Thus we have Ins(F (S) ∩ a) ⊆ L′

G(Va) for all letters a ∈ A.
Let us prove the inclusions Ins(F (S) ∩ aA∗b) ⊆ LG′(aWb) by induction on the number of splicing rules used for the

production of a word in F (S) ∩ aA∗b.
Let u ∈ F (S) ∩ aA∗b. If no splicing rule is used, then u ∈ I ∩ aA∗b. The word Ins(u) is obtained by the application of the

corresponding derivation rule aWb → Ins(u) which is in the set aWb → Ins(I ∩ aA∗b). Thus u ∈ L′
G(aWb).

Assume that the inductive hypothesis holds for the words obtained by less than k splicing operations, and that u is
obtained by application of k ≥ 1 splicing operations. We consider the last insertion that leads to u: there exist three
nonempty words v, w and x and a pure rule r ∈ R, such that v · w, x ⊢r u = v · x · w, and moreover vw and x are
words of F (S) obtained by less than k splicing operations.

Two cases may occur, for suitable letters e and f :

x ∈ F (S) ∩ eA∗f ,
x ∈ F (S) ∩ e.

Consider the first case. Let c be the last letter of v, and let d be the first letter of w. Then r = ⟨c|e−f |d⟩. By induction
hypothesis, we have aWb

∗
→ Ins(v) cBd Ins(w)(= Ins(vw)) and eWf

∗
→ Ins(x). Moreover, the rule r shows that the derivation

rule cBd
→

cBe
eWf

fBd is in the grammar G. Thus combining these three derivations, we obtain

aWb
∗

→ Ins(v) cBd Ins(w) → Ins(v) cBe
eWf

fBd Ins(w)

∗
→ Ins(v) cBe Ins(x) fBd Ins(w).

Thus Ins(u) ∈ L′
G(aWb). The second case is similar.

This shows the inclusion Ins(F (S)) ⊆ L′
G. Consequently Ins(F (S)) = L′

G, and quite obviously, we can deduce
F (S) = LG. �

The following example is designed to illustrate all the features of the formal proof. So it is not so easy to follow.

Example 6.3. Consider the pure splicing system

S = (A, I, R)

with A = {a, b, c}, I = c∗ab ∪ c , and with R composed of the rules

r = ⟨c|ε−b|a⟩, r ′
= ⟨c|ε−b|b⟩, r ′′

= ⟨c|ε−b|c⟩, r ′′′
= ⟨a|a−b|b⟩.

This splicing system generates the language F (S) = c(c ∪ L)+L ∪ {c}, with L = {anbn | n ≥ 1}.
For the construction of the grammar for F (S), we add the completions of the rules r, r ′ and r ′′. We also discard tacitly

useless variables. Now, we observe that I ∩ aA∗b = ab, I ∩ cA∗b = c+ab, I ∩ c = c , and that the other intersections are
empty. Thus, the first group of derivation rules of the grammar is the following.

S → aWb | cWb | Vc

aWb → a aBb b, (= Ins(I ∩ aA∗b) = Ins(ab)),

cWb → (c cBc)∗c cBa a aBb b, (= Ins(I ∩ cA∗b) = Ins(c+ab)),
Vc → c.

We observe by inspection, that there is no derivation rule starting with bWx, xWa or xWc , for x ∈ A, and similarly for Va, Vb.
This leaves only the following second group of rules.

aBb
→

aBa
aWb

bBb (because of rule r ′′′)
cBa

→
cBa

aWb
bBa (due to rule ⟨c|b−b|a⟩, completion of r)

cBa
→

cBc
cWb

bBa (due to rule ⟨c|c−b|a⟩, completion of r)
cBb

→
cBa

aWb
bBb (due to rule ⟨c|a−b|b⟩, completion of r ′)

cBb
→

cBc
cWb

bBb (due to rule ⟨c|c−b|b⟩, completion of r ′)
cBc

→
cBa

aWb
bBc (due to rule ⟨c|a−b|c⟩, completion of r ′′)

cBc
→

cBc
cWb

bBc (due to rule ⟨c|c−b|c⟩, completion of r ′′).

When looking for the final grammar (including the third group), wemay observe that the cBb is no right part of a rule, we
can then discard the rules having cBb as a left part.

We also remark that the variables bBx for x ∈ A, and aBa only produce the empty word. Also they can be replaced by ε
everywhere in the grammar. The variable Vc produces only c , and can be replaced by it. Also, it is easily seen that cBa and cBc

Author's personal copy

14 J. Berstel et al. / Theoretical Computer Science 436 (2012) 2–22

generate the same language. This leads to the following grammar, where we write, for easier reading, X for aWb and Y for
cWb, and T for cBa and cBc , U for aBb.

S → X | Y | c
X → aUb

Y → (cT)+aUb
U → X | ε

T → TX | TY | ε.

Now,we replace aUb by X in the third line, and then replaceU by its production everywhere.We also replace the production
of T by (X + Y)∗, and replace the T

S → X | Y | c
X → aXb | ab

Y → (c(X + Y)∗)+X = c(c + X + Y)∗X .

We then observe that the language over C, X generated by Y is exactly c(c + X)∗X, we thus obtain

S → X | Y | c
X → aXb | ab
Y → c(c + X)∗X .

Nowwe replace X by the language it generates: L = {anbn | n ≥ 1}, andwe conclude. This generalized context-free grammar
generates the language F (S) = c(c ∪ L)∗L ∪ L ∪ {c}, with L = {anbn | n ≥ 1}.

7. Concatenation systems

We introduce a classification of the productions generated in a splicing system by defining two kinds of productions
called proper insertions and concatenations.

Let r = ⟨α|γ−δ|β⟩ be a splicing rule. The production xα · βy, γ zδ ⊢r xα · γ zδ · βy is a proper insertion if xα ≠ ε and
βy ≠ ε, it is a concatenation otherwise. If r is a pure rule, then its productions are always proper insertions.

Of course, the rule r can produce a concatenation only if β = ε or α = ε. However, such rules can be used for both kinds
of productions. Consider for example the rule r = ⟨a|c−d|ε⟩. Then the production aa·, cad ⊢r aa · cad is a concatenation,
while the production a · a, cad ⊢r a · cad · a is a proper insertion. We consider now rules which are not pure, and we restrict
their usage to concatenations. This leads to the notion of concatenation systems.We then show that alphabetic context-free
concatenation systems only generate context-free languages.

7.1. Concatenation systems

A concatenation system is a triplet T = (A, I, R), where A is an alphabet, I is a set of words over A, called the initial set and
R is a finite set of concatenation rules. A concatenation rule r is a quadruplet of words over A. It is denoted r = [α−β|γ−δ],
to emphasize the special usage which is made of such a rule.

A concatenation rule r = [α−β|γ−δ] can be applied to words u and v provided u ∈ αA∗β and v ∈ γ A∗δ. Applying r to
the pair (u, v) gives the word w = uv. This is denoted by u, v |=rw and is called a concatenation production.

The language generated by the system T , denoted by K(T), is the smallest language containing I and closed under the
application of the rules of R.

Again, the system T is alphabetic if every rule in R have handles of length at most one. It is context-free if the initial set
I is context-free. The notion of complete set is similar to the one for splicing rules.

7.2. Alphabetic concatenation

This section is devoted to the proof of the following theorem.

Theorem 7.1. The language generated by an alphabetic context-free concatenation system is context-free.

Proof. Let T = (A, I, R) be an alphabetic context-free concatenation system. We suppose that the set R is complete. Set
K = K(T).

We construct a grammarG = (A, V , S, R)whichproduceK . The grammar is quite similar to that built for Theorem6.2. The
grammar G has A as set of terminal symbols, the set of non-terminal symbols being V = {S}∪{aWb | a, b ∈ A}∪{Va | a ∈ A}.
The axiom is S.

Author's personal copy

J. Berstel et al. / Theoretical Computer Science 436 (2012) 2–22 15

As in the proof of Theorem 6.2, the purpose of the variables is the following. The symbol aWb is used to derive words of
length at least 2 that start with the letter a and end with the letter b, that is the set K ∩ aA∗b. Similarly, the symbol Va will
be used to derive the word a if it is in K .

The derivation rules of the grammar G are divided in two groups. In the following, a and b are any letters in A.
The first group contains derivation rules that separate words according to their initial and final letters, and single out

one-letter words:

S → aWb,

S → Va,

aWb → I ∩ aA∗b,
Va → I ∩ a.

The second group of rules deals with concatenations:

aWb → aWc dWb, for [a−c|d−b] ∈ R,

aWb → Va cWb, for [ε−a|c−b] ∈ R or [a−ε|c−b] ∈ R,

aWb → aWc Vb, for [a−c|ε−b] ∈ R or [a−c|b−ε] ∈ R,

aWb → Va Vb, for [ε−a|ε−b] ∈ R or [a−ε|ε−b] ∈ R or [a−ε|b−ε] ∈ R or [ε−a|b−ε] ∈ R.

By construction, the language LG generated by G is context-free by Theorem 6.1.
We claim that LG = K . We first prove the inclusion LG ⊆ K . For this, we show, by induction on the length of the derivation

in G, that for all letters a, b ∈ A, we have LG(aWb) ⊆ K ∩ aA∗b and that LG(Va) ⊆ K ∩ a.
The only terminal derivations of length 1 are

aWb → w with w ∈ I ∩ aA∗b ⊆ K ∩ aA∗b,
Va → a with a ∈ I ∩ a ⊆ K ∩ a.

Thus the inclusion holds in this case.
Assume that the hypotheses of induction are true for derivations of length less that k and let u a word obtained by a

derivation of length k. Since k ≥ 2, the first derivation rule is one of the second group, and the derivation has one of the
forms

aWb → aWc dWb
∗

→ u

aWb → Va cWb
∗

→ u

aWb → aWc Vb
∗

→ u

aWb → Va Vb
∗

→ u

for some a, b, c, d ∈ A. In the first case, we have u = u1u2, with aWc
∗

→ u1 and dWb
∗

→ u2, both derivations having length
strictly less than k. By the inductive hypotheses, u1 ∈ K ∩ aA∗c and u2 ∈ K ∩ dA∗b. Moreover, since aWb → aWc dWb is a
derivation rule in G, one has [a−c|d−b] ∈ R. This ensures that (K ∩ aA∗c)(K ∩ dA∗b) ⊆ K and then (K ∩ aA∗c)(K ∩ dA∗b) ⊆

K ∩ aA∗b. Consequently, u = u1u2 is in K ∩ aA∗b. The other cases are similar. This proves the inclusion LG ⊆ K .
We now prove the converse inclusion K ⊆ LG. For this, we prove that for all letters a, b ∈ A, we have K ∩ aA∗b ⊆ LG(aWb)

and that K ∩ a ⊆ LG(Va).
It is easy to see, that if a ∈ K then Va → I ∩ a = {a}. Thus K ∩ a ⊆ LG(Va), for all letter a in A.
The inclusions K ∩ aA∗b ⊆ LG(aWb) are proved by induction on the number of the concatenation operations used. Let

u ∈ K ∩ aA∗b.
If u is obtained without any concatenation, then u ∈ I ∩ aA∗b, and since aWb → I ∩ aA∗b is a derivation rule in G, we have

u ∈ LG(aWb).
Assume that the inductive hypothesis holds for words obtained by less than k concatenations, and that u is obtained by k

concatenations. Then there exist two words u1 and u2 such that u = u1u2 and such that u1 and u2 are obtained by less than
k concatenations. There are four cases to consider, according to the concatenation rule used to produce u from u1 and u2.
The cases are the following.

u1 ∈ K ∩ aA∗c, u2 ∈ K ∩ dA∗b,
u1 ∈ K ∩ aA∗c, u2 ∈ K ∩ b,
u1 ∈ K ∩ a, u2 ∈ K ∩ dA∗b,
u1 ∈ K ∩ a, u2 ∈ K ∩ b.

Consider the first case (the others are similar). Since u ∈ K , there is a concatenation rule [a−c|d−b] in R. Consequently,
there exists in G a derivation rule aWb → aWc dWb. By induction hypothesis, there is a derivation aWc

∗
→ u1, and a derivation

Author's personal copy

16 J. Berstel et al. / Theoretical Computer Science 436 (2012) 2–22

dWb
∗

→ u2. It follows that

aWb → aWc dWb
∗

→ u1u2,

and subsequently that u ∈ LG(aWb). This proves the inclusion K ⊆ LG, and thus the claim. Since LG is context-free, the
language K is also context-free. This completes the proof. �
Remark 7.2. The example of Section 4.1 shows that Theorem 6.2 does not hold for systems which are pure but not are not
alphabetic. However, Theorem 7.1 holds for concatenation systems without the requirement that they are alphabetic. The
proof is quite analogous to the alphabetic case. Indeed, if k is themaximum length of an handle, instead of indexing variables
W by letters, it suffices to index them by words of length k, and to index variables V by words of length strictly inferior to
2k. There are finitely many such variables; then the prof goes along the same lines.
Example 7.3. Consider the concatenation system T = (A, I, R) over the alphabet A = {a, b, c}, with I = {ab, c}, and with
R composed of the concatenation rules

[ε−c|ε−b],
[ε−c|x−b] for x ∈ A.

The completion of the system gives the concatenation rules

[ε−c|ε−b],
[ε−c|x−b] for x ∈ A
[y−c|ε−b] for y ∈ A
[y−c|x−b] for x, y ∈ A.

According to the construction of the previous proof, these concatenation rules give the derivation rules

cWb → Vc Vb (7.1)

cWb → Vc xWb for x ∈ A (7.2)

yWb → yWc Vb for y ∈ A (7.3)

yWb → yWc xWb for x, y ∈ A. (7.4)

The first group of derivation rules is composed only of

S → xWy for x, y ∈ A
S → Vc

aWb → ab
Vc → c

because of the set I of initial words. Since there is no derivation rule starting with Vb, the derivation rules (7.1) and (7.3)
are useless and can be removed. Similarly, there is no derivation rule starting with yWc , so the derivation rules (7.4) can be
removed. For the same reason, the variable bWb can be removed. Finally, we get the grammar

S → aWb | cWb | Vc

aWb → ab
Vc → c

cWb → Vc aWb | Vc cWb.

The language obtained is c∗ab + c.
Remark 7.4. The language K(T) generated by a concatenation system T = (A, I, R) may not be regular, even if I is finite.
Consider indeed the system given by I = {ab, a, b, c, d} and

R = {r1 = [ε−c|a−b], r2 = [c−b|d−ε], r3 = [ε−a|c−d], r4 = [a−d|b−ε]}.

The language obtained is K(T) = L ∪ cL ∪ cLd ∪ acLd where L denotes the L = {(ac)nab(db)n | n ≥ 0}. Indeed,
we can check that at each step we can apply only one rule, using in this order r1, r2, r3, r4r1, r2, . . .; yielding the words
cab, cabd, acabd, acabdb, cacabdb, This language is clearly not regular.

7.3. Heterogeneous systems

A system is a heterogeneous system if all its rules are either pure rules or concatenation rules.
The aimof heterogeneous systems is to separate the splicing rules according to their usage. A pure rule is used for a proper

insertion, that is for producing a word w = xvy from words u = xy and v, with x, y ≠ ε. On the contrary, a concatenation
rule produces the word w = uv or w = vu, this handles precisely the case where x = ε or y = ε.

Author's personal copy

J. Berstel et al. / Theoretical Computer Science 436 (2012) 2–22 17

The following proposition shows that for any flat alphabetic splicing system, there is an alphabetic heterogeneous system
with same initial set I which generates the same language.

Proposition 7.5. Let S = (A, I, R) be a complete alphabetic flat splicing system, and let S′
= (A, I, R′

∪R′′) be the heterogeneous
system with same initial set I, where R′ is the set of pure rules of R, and

R′′
= {[ε−α|γ−δ] | ⟨α|γ−δ|ε⟩ ∈ R} ∪ {[γ−δ|β−ε] | ⟨ε|γ−δ|β⟩ ∈ R}.

Then S and S ′ generate the same language.

Proof. When using a rule of the completed set R, either it is a proper insertion and it is simulated by a rule of R′, or it is a
concatenation and it is simulated by the corresponding rule of R′′. Hence F (S) ⊆ F (S′).

Conversely, using a rule of R′ or R′′ is simulated by using the corresponding rule of R. �

Example 7.6. Let S be the flat splicing system (A, I, R) with A = {a, b, c}, I = {ab, c}, and R = {⟨a|a−b|b⟩, ⟨c|ε−b|ε⟩}.
We complete R. The complete set of rules for R is

⟨a|a−b|b⟩
⟨c|ε−b|ε⟩
⟨c|x−b|y⟩ for x, y ∈ {a, b, c}
⟨c|x−b|ε⟩ for x ∈ {a, b, c}
⟨c|ε−b|x⟩ for x ∈ {a, b, c}.

The heterogeneous system S′ corresponding to S is the system S′
= (A, I, R′) with R′ is composed of the pure rules

⟨a|a−b|b⟩
⟨c|x−b|y⟩ for x, y ∈ {a, b, c}
⟨c|ε−b|x⟩ for x ∈ {a, b, c}

and with the concatenation rules

[ε−c|x−b] for x ∈ {a, b, c}
[ε−c|ε−b]

which give the concatenation rules of Example 7.3.

7.4. Weak commutation of concatenations and proper insertions

Given a heterogeneous system S = (A, I, R), a production sequence is a sequence [π1; π2; . . . ; πn] of productions such
that, setting

πk = (uk, vk ⊢rk wk) for 1 ≤ k ≤ n,

each uk and vk is either an element of I , or is equal to one of the words u1, v1, w1, . . . , uk−1, vk−1, wk−1. Each word wi is a
result of the production sequence. The length of the sequence is n. By convention, there is a production sequence of length 0
for each w ∈ I , denoted by [w]. Its result is w.

Example 7.7. Consider the pure system over A = {a, b}with initial set I = {ab} and the unique splicing rule r = ⟨a|a−b|b⟩.
In this system, the only splicing sequence of length 0 is [ab]. Both production sequences (we omit the reference to r)

[ab, ab ⊢ a2b2; a2b2, a2b2 ⊢ a4b4]

and

[ab, ab ⊢ a2b2; ab, a2b2 ⊢ a3b3; a3b3, ab ⊢ a4b4]

have both a4b4 as a result. While a3b3 is a result of only the second one.

Clearly, the languageF (S) generated by a heterogeneous system S is the set of the results of all its production sequences.
We show that, in an alphabetic splicing system, one always can choose a particular type of production sequence for the

computation of a word, namely a sequence where the concatenations are performed before proper insertions. This is stated
in the following lemma.

Lemma 7.8. Let S = (A, I, R) be an alphabetic heterogeneous splicing system. Given a sequence of proper insertions and
concatenation productions with a result u, there exists another sequence with the same result u, using the same rules of proper
insertions and concatenations, and such that all concatenation productions occur before any proper insertion production.

Author's personal copy

18 J. Berstel et al. / Theoretical Computer Science 436 (2012) 2–22

Proof. We need only to prove that if a sequence contains a subsequence consisting of a proper insertion followed
immediately by a concatenation, then it is possible to replace these two productions by one concatenation followed by
some proper insertions using the same rules and whose set of results contains the results of the subsequence.

Let r1 = ⟨α|γ−δ|β⟩ be a pure rule and let r2 = [ζ−η|µ−ν] be a concatenation rule, and assume that there is a production
sequence σ = [π1; π2], with

π1 = (u, v ⊢r1 w), π2 = (p, s |=r2 t),

where u, v, w, p, s, t are words and t = ps. We assume that u, v, p, s are all non-empty. If neither p nor s is equal to w we
replace the sequence [π1; π2] by [π2; π1], and we get the result.

Assume now that p = w or s = w. Since π1 is a proper insertion, there exists a factorization u = u1 · u2, with u1 and u2
non-empty words, such that w = u1 · v · u2, and the production π1 can be rewritten as π1 = (u1 · u2, v ⊢r1 u1 · v · u2).

There are two cases to be considered.

1. p = w, s ≠ w (or the symmetric case p ≠ w, s = w);
2. p = s = w.

Case 1: In this case, we have

π1 = (u1 · u2, v |=r1u1 · v · u2), π2 = (u1vu2, sr2u1vu2 · s),

and, in view of the production π2, one has u1 ∈ ζA∗ and u2 ∈ A∗η (here we use the fact that u1 and u2 are non-empty, and
that ζ and η have at most one letter).

We replace the sequence [π1; π2] by [π3; π4; π1], where

π3 = (u1u2, s |=r2u1u2 · s), π4 = (u1 · u2s, v ⊢r1 t = u1 · v · u2s).

The last production π1 being necessary only to keep the result w = u1 · v · u2.
The concatenation π3 is valid because u1u2 ∈ ζA∗η and s ∈ µA∗ν.

Case 2: In this case,

π1 = (u1 · u2, v ⊢r1 u1 · v · u2),

π2 = (u1vu2, u1vu2 |=r2u1vu2 · u1vu2),

and the sequence [π1; π2] is replaced by [π3; π4; π5; π1], where

π3 = (u1u2, u1u2 |=r2u1u2 · u1u2),

π4 = (u1 · u2u1u2, v ⊢r1 u1 · v · u2u1u2),

π5 = (u1vu2u1 · u2, v ⊢r1 u1vu2u1 · v · u2).

This proves the lemma. �

Remark 7.9. The proposition does not hold anymore if the rules are not alphabetic. Consider, for example, the rules
r1 = ⟨a|x−y|b⟩ and r2 = [z−t|ax−ε]. Then the splicing sequence

[a · b, xy ⊢r1 a · xy · b; zt, axyb |=r2zt · axyb]

cannot be replaced by a sequence where proper insertions occur after concatenations.

The following theorem is an immediate corollary of the previous lemma.

Proposition 7.10. For any language L generated by an alphabetic heterogeneous system S = (A, I, R), there exist a set of
alphabetic concatenation rules R′ and a set of pure alphabetic rules R′′, such that

L = F (A, K(A, I, R′), R′′).

Wehave eventually all the ingredients to prove themain theorem in the case of a flat system. Indeed, given an alphabetic
splicing system, we can transform it into an heterogeneous system by separating the proper insertion and concatenation
productions (Theorem 7.10). As we can make the concatenations first and the insertions after, we prove that the language
produced by the concatenations only is context-free (Theorem 7.1) , this latter language used as initial language along with
the proper insertions produces the final language which is also context-free (Theorem 6.2).

Theorem 7.11. Let S = (A, I, R) be a flat alphabetic context-free splicing system. Then F (S) is context-free.

Proof. By Theorem7.10,F (S) = F (A, K(A, I, R′), R′′). The language L = K(A, I, R′) is context-free in viewof Theorem7.1.
The language F (A, L, R′′) is context-free by Theorem 6.2. Thus F (S) is context-free. �

Author's personal copy

J. Berstel et al. / Theoretical Computer Science 436 (2012) 2–22 19

Example 7.12. Consider again the splicing system S = (A, I, R) with A = {a, b, c}, I = {ab, c}, and R = {⟨a|a−b|b⟩,
⟨c|ε−b|ε⟩}. The homogeneous system corresponding to S is given in Example 7.6. The associated concatenation system
T = (A, I, R′) has the concatenation rules R′ composed of

[ε−c|x−b] for x ∈ {a, b, c}
[ε−c|ε−b]

and we have seen in Example 7.3 that it generates the language K(T) = c∗ab ∪ c. The pure system has the set R′′ of rules
consisting in

⟨a|a−b|b⟩
⟨c|x−b|y⟩ for x, y ∈ {a, b, c}
⟨c|ε−b|x⟩ for x ∈ {a, b, c}.

This system is the completion of the system of Example 6.3, it generates the context-free language F (S) = c(c ∪ L)+L∪{c},
with L = {anbn | n ≥ 1}.

8. Circular splicing

Recall that a circular splicing system S = (A, I, R) is composed of an alphabet A, an initial set I of circular words, and a
finite set R of rules. A rule r = ⟨α|γ−δ|β⟩ is applied to two circular words ∼u and ∼v, provided there exist words x, y such
that u ∼ βxα and v ∼ γ yδ and produces the circular word ∼βxαγ yδ.

Example 8.1. Consider the circular splicing system over A = {a, b}, with initial set I = {
∼ab} and with the single rule

⟨a|a−b|b⟩. The rule expresses the fact that a word starting with the letter a and ending with a letter b can be inserted,
in a circular word, between a letter a followed by a letter b. As a consequence, the set generated by the system is the
∼
{anbn | n ≥ 1}.

We now show, on this example, that an alphabetic circular splicing system, operating on circular words and generating
a circular language, can always be simulated by a flat heterogeneous splicing system. This system has the same initial set
(up to full linearization), but has an augmented set of rules, obtained by a kind of conjugacy of the splicing rules. To be more
precise, we introduce the following notation. Given an alphabetic rule ⟨α|γ−δ|β⟩, we denote by ∼r the set

∼r = {⟨α|γ−δ|β⟩, ⟨δ|β−α|γ ⟩, [β−α|γ−δ], [γ−δ|β−α]}.

The rules of the flat splicing system simulating the circular system are the sets ∼r , for all rules r of the circular system. We
illustrate the construction on the previous example.

Example 8.2. Consider the circular splicing system over A = {a, b}, initial set ∼I = {
∼ba} andwith the single rule ⟨a|a−b|b⟩.

As seen before, (see Example 2.3), this system generates L = {
∼anbn | n > 0}.

If we ‘‘linearize’’ the system without any care, we obtain the flat splicing system over A = {a, b}, initial set I ′ = {ba} and
with the single rule ⟨a|a−b|b⟩ in which, clearly, the rule cannot be applied, and consequently the language generated by the
system reduces to I . Note that if we use the complete linearization of I , Lin(I) as initial set without changing the set of rules,
we obtained {anbn | n > 0}, which is a linearization of L, but not its full-linearization. Moreover, there are cases, when this
fact will not be true (see Example 2.7).

To obtain really the full linearization of L, we transform the system into a heterogeneous system as follows.

(1) The initial set is now the circular class of I , namely the set ∼I = {ab, ba}.
(2) The rule r = ⟨a|a−b|b⟩ is replaced by ∼r; this gives, by conjugacy, one new pure rule ⟨b|b−a|a⟩ and two concatenation

rules [a−b|b−a] and [b−a|a−b].

The use of only the concatenation rules produces the set {ab, ba, abba, baab}. Note that this set is not closed under conjugacy.
Then, the repeated application the two pure rules produces the set

{anbn+mam | n + m > 0} ∪ {bnan+mbm | n + m > 0}.

This set is now closed under conjugacy; it is the language generated with the four flat rules. Moreover, it is exactly the
linearization of the set of circular words =

∼
{anbn | n ≥ 1} generated by the circular splicing system.

We prove the following result which shows that the example holds in the general case.

Proposition 8.3. Let S = (A, I, R) be a circular alphabetic splicing system, and let S′
= (A, Lin(I), R′) be the flat heterogeneous

splicing system defined by R′
=

r∈R
∼r. Then Lin(C(S)) = F (S′).

Proof. We prove first the inclusion Lin(C(S)) ⊆ F (S′). The proof is by induction on the minimal number of steps used for
generating ∼w ∈ C(S). If the number of step is null, we have ∼w ∈ I , thus Lin(∼w) ⊆ Lin(I) ⊆ F (S′).

Suppose now that for any word ∼w of C(S) generated in at most k steps, we have Lin(∼w) ⊆ F (S′). Let w a word
generated in k + 1 steps (and not generated in less steps). There exist two circular words ∼u and ∼v generated in at most

Author's personal copy

20 J. Berstel et al. / Theoretical Computer Science 436 (2012) 2–22

k steps such that there exist a rule r = ⟨α|γ−δ|β⟩ in the circular system S, words x, y such that u ∼ βxα and v ∼ γ yδ
and such that w ∼ βxαγ yδ. By induction all words in ∼u, ∼v are in F (S′) and we have to show that any word in ∼w is in
F (S′), by the use of the rules in ∼r . First, w is obtained, in S′, from βxα and γ yδ by the concatenation rule [β−α|γ−δ], so
w ∈ F (S′). Next, if z ∼ w and z ≠ w, then z = st and w = ts for some nonempty words s, t .

If t is a prefix of βx, then there is a factorization x = x′x′′ such that t = βx′, s = x′′αγ yδ. Consequently, z = x′′αγ yδβx′,
showing that z is obtained, in the system S′, from x′′αβx′ and γ yδ by the rule r . Since x′′αβx′

∼ u, it follows that z ∈ F (S′).
If t = βxα, then s = γ yδ and z = γ yδβxα. In this case, z is obtained by the concatenation rule [γ−δ|β−α].
Finally, if βxαγ is a prefix of t , then there is a factorization y = y′y′′ such that t = βxαγ y′ and s = y′′δ. Consequently,

z = y′′δβxαγ y′, showing that z is obtained from y′′δγ y′ and βxα by the rule ⟨δ|β−α|γ ⟩. Since y′′δγ y′
∼ v, it follows again

that z ∈ F (S′).
Now, we prove the reverse inclusion, that is, F (S′) ⊆ Lin(C(S)).
Again, the proof is by induction. The induction is on the minimal number of steps used for generating w ∈ F (S′). If the

number of step is zero, we have w ∈ Lin(I), thus w ⊆ Lin(C(S)).
Suppose now that for anywordw ofF (S′) generated in at most k steps, we havew ⊆ Lin(C(S)). Letw a word generated

in k + 1 steps (and not generated in less steps). There exist two words u and v of F (S′) and generated by at most k steps,
a rule r in R′ such that u, v ⊢r w in the system S′. By induction u and v are in Lin(C(S)), and than ∼u and ∼v are in C(S)
Moreover, by construction of the set R′, there exist a rule r ′

= ⟨α|γ−δ|β⟩ in R such that r ∈
∼r ′. We have now four cases.

If r is the rule of concatenation [β−α|γ−δ], then there existwords x and y such that u = βxα, v = γ yδ andw = βxαγ yδ.
we have then ∼u, ∼v ⊢r ′

∼w in S.
If r is the rule of concatenation [γ−δ|β−α], then there existwords x and y such that u = γ xδ, v = βyα andw = γ xδβyα.

we have then ∼v, ∼u ⊢r ′ βxαγ yδ ∼
∼w in S.

If r is the pure rule ⟨α|γ−δ|β⟩, then there exist words x, y and z such that u = xαβy, v = γ zδ and w = xαγ zδβy.
Remark, then that ∼u ∼ βyxα, v ∼ γ zδ and w ∼ βyxαγ zδ, and we again have ∼v, ∼u ⊢r ′

∼w in S.
The case where r is the pure rule ⟨δ|β−α|γ ⟩, is very similar to the previous one.
In each case, ∼w is produced from ∼u and ∼v by the rule r ′ in the system S. Subsequently, ∼w is in C(S), and then w is

in Lin(C(S)).
We have thus proved the inclusion F (S′) ⊆ Lin(C(S)). We now can state Lin(C(S)) = F (S′). �

The proof of the proposition relies heavily on the fact that the system is alphabetic.
As a consequence of the proposition, we obtain the following theorem, which is our main theorem in the circular case.

Theorem 8.4. Let S = (A, I, R) be a circular alphabetic context-free splicing system. Then Lin(C(S)) is a context-free language.

Proof. By Proposition 8.3, Lin(C(S)) = F (S′), where S′
= (A, Lin(I), R′) is the flat heterogeneous splicing system defined

by R′
=

r∈R
∼r . Since I is context-free, the language Lin(I) is context-free. By Theorem 7.11, the language generated by S′

is context-free. �

Acknowledgments

Weare thankful toOlivier Carton formany stimulating discussions during thiswork. The third author alsowishes to thank
Clelia de Felice and Rosalba Zizza for inviting her in Salerno, for interesting discussions, and pointing out useful references.
We are also thankful to the anonymous referee for his careful reading and his numerous detailed comments which greatly
improve the correctness and the presentation of the text.

Appendix. A theorem on generalized context-free grammars

For sake of completeness, we give here a proof of Theorem 6.1, together with an example.
The proofmakes use of the substitution theorem thatwe recall below, alongwith the notion of context-free substitutions.
Let A and B be two alphabets. A substitution from A∗ to B∗ is amapping σ fromm A∗ into subsets of B∗ such that σ(ε) = {ε}

and

σ(xy) = σ(x)σ (y)

for all x, y ∈ A∗. The product of the right-hand side is the product of subsets of B∗. The substitution is called finite (resp.
regular, context-free, context-sensitive) if all the languages σ(a), for a letter of A, are finite (resp. regular, context-free, context-
sensitive).

It is a well known result (called the substitution theorem, see, for example, [11]) that the language σ(L) is context-free
if L is a context-free language and σ is a context-free substitution.

The proof of Theorem 6.1 is by induction on the number of non-terminals, this induction is presented through two
lemmas. The first deals with the case of generalized context-free grammar with a single non-terminal symbol, and the
second shows how to reduce the number of non-terminal symbols in the general case.

Lemma A.1. Let G = (A, {S}, S, R) be a generalized context-free grammar with a single non-terminal symbol S. The language
generated by G is context-free.

Author's personal copy

J. Berstel et al. / Theoretical Computer Science 436 (2012) 2–22 21

Proof. Let L be the language generated by G and set MS = {m | S → m ∈ R}. Let H = (A ∪ {S}, V , X, P), S /∈ V ,
be a usual context-free grammar that generates MS . The language L is generated by the usual context-free grammar
G′

= (A, V ∪ {S}, S, P ∪ {S → X}). �

Example A.2. Let the grammar G with a single non-terminal symbol G = (A, {S}, S, R) with

R =

S → a | Sbn(ckd)n, n ≥ 1, k ≥ 0

.

According to the sketch of the proof given above, we define a grammar H = (A ∪ {S}, {X, Y , Z}, X, P), with

P =

X → a | SY
Y → bYZ | bZ
Z → cZ | d

we can check that H generate the languageMS = {a} ∪ {Sbn(c∗d)n | n ≥ 1}. we define now G′
= (A, V ∪ {S}, S, P ′) with

P ′
=

S → X
X → a | SY
Y → bYZ | bZ
Z → cZ | d.

The grammar G′ generates the same language as G, that is the language

{abn1(c∗d)n1bn2(c∗d)n2 · · · bnkq(c∗d)nk | k ≥ 1, ni ≥ 1, 1 ≤ i < k}.

The second lemma below tells us that we can reduce the problem to grammars with a single non-terminal symbol.

Lemma A.3. Let G be a generalized context-free grammar with at least two non-terminal symbols. There is a generalized context-
free grammar with a single non-terminal symbol which generates the same language as G does.

Proof. Let G = (A, V , S, R)with V of cardinal at least 2. Let X ∈ V , with X ≠ S. Define a grammar GX with one non-terminal
symbol by GX = (A ∪ V \ {X}, {X}, X, RX) with RX = {X → m | X → m ∈ R}. Let MX the language generated by GX . The
languageMX is context-free by Lemma A.1.

Define the substitution σX on A ∪ V by

σX (α) =

MX , if α = X
{α}, otherwise.

Define now the grammar H = (A, V \ {X}, S, P) with P = {v → σX (m) | v → m ∈ R, v ∈ V \ {X}}.
The grammar H generates the same language as G. It has one variable less than G and the set of its right-members is still

context-free by the substitution theorem.
Now it suffices to iterate the process in order to obtain a grammar with one non-terminal symbol. �

Example A.4. Let G = (A, V , S, R) be the generalized grammar defined by A = {a, b, c, d}, V = {S, T ,U}, and

R =

S → ST | a
T → bnUn, n ≥ 1
U → cU | d.

In the first step,we choose to remove the non-terminal T . Following the sketch of the proof given above,wedefine a grammar
GT with a single non-terminal symbol T by GT = (A∪{S,U}, {T }, T , {T → bnUn, n ≥ 1}). LetMT be the language generated
by GT . Clearly,MT = {bnUn

| n ≥ 1} and MT is context-free.
Next, we define a substitution σT on A ∪ V by

σT (α) =

MT if α = T ,
{α} otherwise,

,

and the grammarH = (A, {S,U}, S, P)with two non-terminal symbols S,U by P = {v → σT (m) | v → m ∈ R, v ∈ V \{T }},
i.e.

P =

S → a | SbnUn, n ≥ 1
U → cU | d.

The grammars H and G generate the same language.
To obtain a grammar with only one variable, we iterate the process by eliminating the variable U from H , and we obtain

the grammar H ′
= (A, {S}, S, P ′) with the unique variable S and with

P ′
=

S → a | Sbn(c∗d)n, n ≥ 1.

This is the grammar G of Example A.2 above.

Author's personal copy

22 J. Berstel et al. / Theoretical Computer Science 436 (2012) 2–22

References

[1] Jean Berstel, Transductions and context-free languages, B. G. Teubner, Stuttgart, 1979. Available at
http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/LivreTransductions.html.

[2] Paola Bonizzoni, Clelia de Felice, Gabriele Fici, Rosalba Zizza, On the regularity of circular splicing languages: a survey and new developments, Natural
Computing 9 (2) (2010) 397–420.

[3] Paola Bonizzoni, Clelia de Felice, Giancarlo Mauri, Rosalba Zizza, DNA and circular splicing, DNA Computing (2000) 117–129.
[4] Paola Bonizzoni, Clelia de Felice, GiancarloMauri, Rosalba Zizza, Decision problems for linear and circular splicing systems, Developments in Language

Theory (2002) 78–92.
[5] Paola Bonizzoni, Clelia de Felice, Rosalba Zizza, Circular languages generated by complete splicing systems and pure unitary languages, in: S. Barry

Cooper, Vincent Danos (Eds.), Fifth Workshop on Developments in Computational Models–Computational Models From Nature, in: Electronic
Proceedings in Theoretical Computer Science, vol. 9, 2009, pp. 22–31.

[6] Paola Bonizzoni, Clelia de Felice, Rosalba Zizza, A characterization of (regular) circular languages generated by monotone complete splicing systems,
Theoretical Computer Science 411 (48) (2010) 4149–4161.

[7] Rodica Ceterchi, An algebraic characterization of semi-simple splicing, Fundam. Inform. 73 (1–2) (2006) 19–25.
[8] Rodica Ceterchi, CarlosMartín-Vide, K.G. Subramanian, On some classes of splicing languages, in: Natasa Jonoska, Gheorghe Paun, Grzegorz Rozenberg

(Eds.), Aspects of Molecular Computing, in: Lecture Notes in Computer Science, vol. 2950, Springer-Verlag, 2004, pp. 84–105. Essays Dedicated to Tom
Head on the Occasion of His 70th Birthday.

[9] Clelia de Felice, Gabriele Fici, Rosalba Zizza, A characterization of regular circular languages generated by marked splicing systems, Theoretical
Computer Science 410 (47–49) (2009) 4937–4960.

[10] Isabelle Fagnot, Splicing and Chomsky hierarchy, in: Preproceedings Journées Montoises, 8–11 September, Liège, 2004.
[11] Michael A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, 1978.
[12] Tom Head, Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors, Bulletin of Mathematical

Biology 49 (1987) 737–759.
[13] Tom Head, Splicing schemes and DNA, in: Lindenmayer Systems; Impact on Theoretical Computer Science and Developmental Biology, Springer

Verlag, Berlin, 1992, pp. 371–383.
[14] Tom Head, Gheorghe Păun, Dennis Pixton, Language theory and molecular genetics: Generative mechanisms suggested by DNA recombination,

in: Handbook of Formal Languages, Vol 2, Springer, Verlag, 1996, pp. 295–360.
[15] Jaroslav Král, Amodification of a substitution theoremand someneccessary and sufficient conditions for sets to be context-free,Mathematical Systems

Theory 4 (2) (1970) 129–139.
[16] Gheorghe Paun, Grzegorz Rozenberg, Arto Salomaa, DNA computing—newcomputing paradigms, in: Texts in Theoretical Computer Science, Springer-

Verlag, 1998.
[17] Dennis Pixton, Linear and circular splicing systems, in: First International Symposium on Intelligence in Neural and Biological Systems, IEEE,

Washington, 1985, pp. 181–188.
[18] Dennis Pixton, Regularity of splicing languages, Discrete Applied Mathematics 69 (1–2) (1996) 101–124.
[19] Rani Siromoney, K.G. Subramanian, V. Rajkumar Dare, Circular DNA and splicing systems, in: ICPIA, 1992, pp. 260–273.
[20] Rosalba Zizza, Splicing systems, Scholarpedia 5 (7) (2010) 9397.

