Combinatorics on words Introduction to some problems

Jean Berstel

http://www-igm.univ-mlv.fr/~berstel

Institut Gaspard-Monge Université de Marne-la-Vallée France

Outline

- Subword complexity of finite words.
- Construction of infinite words.
- Powers and periodic words.
- Open problems.

Subword complexity of finite words

 $p_x(n)$ = number of distinct factors of x of length n.

Example:

1)
$$x = 0011001$$

$$\frac{n \mid 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7}{p_x(n) \mid 1 \mid 2 \mid 4 \mid 4 \mid 4 \mid 3 \mid 2 \mid 1} \qquad M_x = 2, H_x = 4$$

$$M_x = \min\{i \mid p_x(i) \text{ is maximal}\}$$

$$H_x = \max\{i \mid p_x(i) \text{ is maximal}\}$$

Subword complexity of finite words (cont'd)

The suffix tree of the word w = abccbabcab

$$\frac{n \mid 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \mid 10}{p_w(n) \mid 1 \mid 3 \mid 6 \mid 7 \mid 7 \mid 6 \mid 5 \mid 4 \mid 3 \mid 2 \mid 1} \qquad M_w = 3, H_w = 4$$

Subword complexity of finite words (3)

A factor is *unrepeated* if it appears only once in w.

Theorem (Carpi & de Luca) H_w is the smallest n such that any factor of length $\geq n$ is unrepeated.

Theorem (Carpi & de Luca, Levé & Séébold) For any word w, there is an integer M_w such that:

1.
$$p_w(i) < p_w(i+1)$$
 for $0 \le i < M_w$,

2.
$$p_w(i) = p_w(i+1)$$
 for $M_w \le i < H_w$,

3.
$$p_w(i) = p_w(i+1) + 1$$
 for $H_w \le i < |w|$.

Theorem (Carpi & de Luca) A word w is determined by its factors of length at most $H_w + 1$ (and even by the poset of these factors).

Subword complexity of infinite words

Theorem (Morse & Hedlund, Coven & Hedlund).

Let x be an infinite word over k letters. The following are equivalent:

- 1. *x* is ultimately periodic,
- 2. $p_x(n) = p_x(n+1)$ for some n,
- 3. $p_x(n) < n + k 1$ for some $n \ge 1$,
- 4. $p_x(n)$ is bounded.

Thus, either $p_x(n)$ is ultimately constant or $p_x(n) \ge n+1$ for all n. A word is *Sturmian* if $p_x(n) = n+1$ for all $n \ge 0$. A Sturmian word is binary because $p_x(1) = 2$.

Construction of infinite words

Let (w_n) be a sequence of finite words. The *limit*

$$x = \lim_{n \to \infty} w_n$$

exists if, for each i, there exists N_i such that for all $n \geq N_i$,

$$|w_n| \ge i$$
 and $x(i) = w_n(i)$.

Example. For $w_n=a^nb^{n^2}$, one gets $\lim w_n=a^{\omega}$.

Explicit description

Characteristic word of a set of integers.

a) Squares 0, 1, 4, 9, ...

1100100001000001000...

b) The spectrum of $\frac{1+\sqrt{5}}{2}$ is the set $S_{\tau}=\{\lfloor n\tau\rfloor:n\geq 1\}$. The infinite binary word f is defined by

$$f_n = \begin{cases} a & \text{if } n+1 \in S_\tau \\ b & \text{otherwise} \end{cases}$$

Explicit description

c) Thue-Morse word

$$t = 01101001100101101001011001101001 \cdots$$

defined by

 t_n = the number of 1's in the binary expansion bin(n) of n modulo 2.

d) More generally, by a finite automaton working on binary expansion :

 $t_n = 1$ iff bin(n) is accepted by the automaton.

These are *automatic sequences*.

Infinite products

Any infinite product $x_0x_1\cdots x_n\cdots$ of nonempty words has a limit.

$$c = 011011100101111011111000 \cdots$$

The *Champernowne* word is the product of the words bin(n) (binary representation of n).

- Every word is factor of c: $p_c(n) = 2^n$.
- c is recurrent: every factor that appears in c appears infinitely many times.
- It is not uniformly recurrent: the gap between consecutive occurrences of a given factor is not bounded.

Words generated by iterating a morphism

A morphism $h:A^*\to A^*$ is *prolongable* in the letter a if

$$h(a) = ax$$

for some word x with $h^n(x) \neq \varepsilon$ for all $n \geq 0$. Then

$$h^{2}(a) = axh(x)$$
$$h^{3}(a) = axh(x)h^{2}(a)$$

and the sequence $(h^n(x))$ converges to

$$h^{\omega}(a) = axh(x)h^{2}(x)\cdots h^{n}(x)\cdots$$

Words generated by a morphism (cont'd)

$$h: \begin{array}{c} a \mapsto aba \\ b \mapsto abb \end{array}$$

Then

$$h^3(a) = a \ ba \ abbaba \ abaabbabbabaabbaba$$

Of course, $h^n(a)$ is always a prefix of $h^{n+1}(a)$. If $x = h^{\omega}(a)$, then

$$x = h(x)$$

that is x is a fixed point of h.

Words generated by a morphism (cont'd)

$$h: \begin{array}{c} a \mapsto aba \\ b \mapsto abb \end{array}$$

Then

$$u_1 = h(a) = aba$$
 $v_1 = h(b) = abb$
 $u_2 = h^2(a) = abaabbaba$ $v_2 = h^2(b) = abaabbabb$
 $v_3 = u_1v_1u_1$ $v_3 = u_1u_1v_1$

and

$$u_3 = h^3(a) = abaabbaba abaabbaba abaabbaba abaabbaba = h^2(a)h^2(b)h^2(a) = u_2v_2u_2$$

This gives a system of recurrence relations for the words u_n and v_n .

Substitution

 $f: B^* \to B^*$ a morphism prolongable in the letter b.

 $g: B^* \to A^*$ be a letter-to-letter morphism.

The pair (f,g) is a *substitution*. It generates the word $g(f^{\omega}(b))$.

The word of squares

$$s = 110010000100000100 \cdots$$

is generated by

$$a \mapsto a1 \qquad a \mapsto 1$$

$$f: 1 \mapsto 001 \qquad g: 1 \mapsto 1$$

$$0 \mapsto 0 \qquad 0 \mapsto 0$$

Indeed

$$f^{\omega}(a) = a100100001 \cdots$$

A *Tag machine* is a machine with one read-only head and one write-only head. Both move on the same tape, from left to right only. The output depends on the state of the machine and on the input.

$$\begin{array}{c} 2 \\ \downarrow \\ 2 & 1 & 1 \end{array}$$

A *Tag machine* is a machine with one read-only head and one write-only head. Both move on the same tape, from left to right only. The output depends on the state of the machine and on the input.

A *Tag machine* is a machine with one read-only head and one write-only head. Both move on the same tape, from left to right only. The output depends on the state of the machine and on the input.

A *Tag machine* is a machine with one read-only head and one write-only head. Both move on the same tape, from left to right only. The output depends on the state of the machine and on the input.

Iterating sequential functions

A sequential function is a morphism with states. For the Kolakoski sequence:

The sequential machine can be viewed as a special case of a Tag machine, when reading and writing on the same tape.

• • •

Toeplitz words

 $x=x_0?x_1?x_2?\cdots$ with x_n words and ? a placeholder. $y=a_0a_1a_2\cdots$ with a_n letters.

The *Toeplitz* product is

$$x\tau y = x_0 a_0 x_1 a_1 x_2 a_2 \cdots$$

Example Consider $x=ab?ab?ab?\cdots=(ab?)^{\omega}$. Then $x\tau x=ab\mathbf{a}ab\mathbf{b}ab?ab\mathbf{a}ab\mathbf{b}ab?\cdots=(abaabbab?)^{\omega}$

The limit exists, and is of course a fixed point:

$$y = x\tau y$$

Toeplitz words and iterated morphisms

We consider words $x=w^\omega$ of type (p,q), that is |w|=p and w contains q placeholders. (E.g. w=aa?b? has type (5,2).)

Theorem (Cassaigne & Karhumäki) Let y be generated by a word of type (p,q).

- if q = 1, then y can be obtained by iterating a morphism;
- if q divides p, then y can be obtained by a substitution;
- ullet otherwise y can be obtained by iterating periodically q morphisms.

The word obtained by $x = ab?ab?ab? \cdots = (ab?)^{\omega}$ is generated by

$$a \mapsto aba$$

$$b \mapsto abb$$

Palindromic closure

The (right) palindromic closure w^{π} of a word w is the shortest palindrome word that starts with w.

$$(01001)^{\pi} = 010010$$
 $(01001010)^{\pi} = 01001010010$

Given a word $d=a_0a_1\cdots a_n\cdots$, the word d^π directed by d is the limit of the sequence $u_0=\varepsilon$ and

$$u_{n+1} = (u_n a_n)^{\pi}$$

For $d = 010101 \cdots$ one gets

 $\begin{array}{ccc} 0 & \underline{0} \\ 1 & 0\underline{1}0 \\ 0 & 010\underline{0}10 \\ 1 & 01001010010 \end{array}$

The limits of binary words are the Sturmian words. A word d^{π} is a fixed point of a morphims if and only if d is periodic (de Luca, Justin & Pirillo).

Repetitions

- A repetition is a non trivial power of a word.
- For example, ababa is a power of exponent 5/2. The fractional power $u^{p/q}$ is defined when q divides the length of u.

$$\begin{aligned} |u| &= kq \\ p/q &= n + r/q & 0 \leq r < q \\ u^{p/q} &= u^n u' & |u'| = rk, \ u' \text{ prefix of } u \end{aligned}$$

- A repetition-free word is a word that contains no repetition.
- For example, if u = ottr, then

$$u^{7/4} = ottrott$$

Power-free words

Several types of power-free words

- A square-free word is a word that contains no factor that is a square.
- Let r > 1 be a real number. A word is r-free if it contains no factor of the form u^k for $k \geq r$, k rational.
- A word is k^+ -free if it is r-free for all r > k (not necessarily for k).
- A word is k^- -free if it is k-free but not r-free for r < k.

Examples. Consider the morphisms

$$a \mapsto aba$$
 $a \mapsto ab$ $b \mapsto ba$

The word generated by the first morphism is 3^- -free, the word generated by the second (Thue-Morse) is 2^+ -free (= overlap-free).

Proof

The word generated by iterating the morphism $f: \stackrel{a\mapsto aba}{b\mapsto abb}$ is

z = abaabbabaabaabbabaabbabaabbabaabbabbabaabb

The words aab, $f(aab) = aba \ aba \ abb$, and in fact all words $f^n(aab)$ are cubes except for their last letter.

Assume that f(w) contains a cube uuu.

a) |u| is a multiple of 3.

The initial letter of u appears at positions i, i + |u|, i + 2|u|. If $|u| \not\equiv 0 \mod 3$, the initial letter of u appears in f(a) or f(b) at the first, the second and the third position. This is not the case.

- b) f is injective, and the preimages are the last letters of the images.
- c) One may assume $i \equiv 0 \mod 3$. Thus w also contains a cube.

Powers and periodic words

Let $\rho \geq 1$ be a real number. A word w is ρ -legal if it has a suffix which is a repetition of exponent at least ρ . For instance, abaababa is 5/2-legal.

An infinite word x is ρ -legal if all its long enough prefixes are ρ -legal.

Example. The Fibonacci word $f = \varphi(f)$ is 2-legal, that is every long enough suffix of f ends with a square (f does not contain bb, aaa, babab).

 $f = abaab \, aba \, abaab \, abaab abaabaabaabaabaab \cdots$

Indeed, consider the following graph.

$$\begin{array}{c}
a-b \\
a-b-a-a-b
\end{array}$$

$$\begin{array}{c}
a-b \\
a-b-a
\end{array}$$

Powers and periodic words (cont'd)

Theorem (Mignosi, Restivo & Salemi)

- Every τ^2 -legal infinite word is ultimately periodic;
- The Fibonacci word is $(\tau^2 \varepsilon)$ -legal for every $\varepsilon > 0$.

$$(\tau = \frac{1 + \sqrt{5}}{2})$$

Every long enough prefix of the Fibonacci word ends with a repetition of exponent $\tau^2 - \varepsilon$.

Theorem (Mignosi, Pirillo) The Fibonacci word is $(1+\tau^2)^-$ -free, that is, it has repetitions of exponent $(1+\tau^2)-\varepsilon$ for every $\varepsilon>0$, but no repetition of exponent $1+\tau^2$.

Open problems

Problem Prove or disprove that it is decidable whether a morphism is cube-free

Special cases are known (Leconte, Keränen). Since no algorithm is known, perhaps it is undecidable?

Open problems: repetition threshold

Every binary word of length 4 contains a square, and there exist infinite binary 2^+ -free words.

Every ternary word of length 39 contains a repetition of exponent 7/4, and there exists (Dejean) an infinite ternary $(7/4)^+$ -free word.

The repetition-*threshold* is the smallest number s(k) such that there exists and infinite word over k letters that has only repetitions of exponent less than or equal to k.

Problem *Is it true that the repetition threshold is always* k/(k-1) ?

Open problems : avoidable pattern

- E is a pattern alphabet, A is a target alphabet.
- $\mathcal{M}(E,A)$ is the set of morphisms from E^+ to A^+ .
- For p over E, the pattern language of p over A is the set $H(p) = \{h(p) \mid h \in \mathcal{M}(E,A)\}.$
- A word w over A avoids p if no factor of w is in H(p).

Examples

- A square-free word is a word that avoids the pattern $\alpha\alpha$.
- No word over n letters of length n+1 avoids the pattern $\alpha\beta\alpha$.

A pattern p is k-avoidable if there exists an infinite word over k letters that avoids p.

Problem Is there a pattern that is 4- unavoidable and 5-avoidable?