Operations preserving recognizable languages*

J. Berstel¹, L. Boasson², O. Carton², B. Pettazoni³, J.-E. Pin²

- IGM, Université de Marne-la-Vallée
- ² LIAFA, Université de Paris VII
- ³ Lycée M. Berthelot, Saint-Maur

*Presented at FCT'2003, Malmö.

Filters

Filter: increasing sequence $(s_n)_{n>0}$ of integers

Example: $s = 0, 1, 4, 9, 16, 25, \dots$

Image of a word $w = a_0 \cdots a_n$

$$w[s] = a_{s_0} a_{s_1} \cdots a_{s_k}$$
 where $s_k \le n < s_{k+1}$

Example: w = abracadabra

\overline{w}	a	b	r	a	c	a	d	a	b	r	\overline{a}
s	0	1			4					9	
w[s]	\overline{a}	b			c					r	

$$w[s] = abcr$$

Image of a set $L \subset A^*$ of words : $L[s] = \{w[s] \mid w \in L\}$

Filtering problem

A filter preserves recognizable sets if, for any recognizable language L, the language L[s] recognizable.

Problem: characterize filters preserving recognizable sets.

Examples: the following filters preserve recognizable sets:

- $\{2n \mid n \geq 0\}$, (it is a rational transduction)
- $\{n^2 \mid n \geq 0\}$, (! it is not a rational transduction)
- $\{2^n \mid n \ge 0\}$, (!!)
- $\{n! \mid n \geq 0\}$. (!?!)

But $\{\binom{2n}{n} \mid n \geq 0\}$ does not preserve recognizable sets.

The filter $s = \{n^2 \mid n \ge 0\}$

This filter does not preserve context-free languages, and so is not a rational transduction.

Let $L=\{ca^nba^{n+1}\mid n\geq 1\}$. The language $M=L[s]\cap ca^+ba^+$ is not context-free.

General form of words in M: $ca_1a_4\cdots a_{k^2}b_{(k+1)^2}a^{\lambda}$, where λ is the number of squares between $(k+1)^2$ and $2(k+1)^2$.

$$\lambda=\lambda_k=\lfloor\sqrt{2}(k+1)\rfloor-(k+1)$$
 and the set $\{(k,\lambda_k)\mid k\geq 1\}$ is not "semilinear".

Solution of the filtering problem

Let $r \geq 0$ be a threshold and $q \geq 1$ a period. Two integers k and k' satisfy

$$k \equiv_{r,q} k'$$
 iff $\begin{cases} k = k' & if \ k < r \ or \ k' < r \ k \equiv k' \ mod \ q \end{cases}$ otherwise.

 $(s_n)_{n\geq 0}$ is residually ultimately periodic, if for any threshold r and period $q\geq 1$, there exist $t\geq 0$ and $p\geq 1$, such that

$$s_n \equiv_{r,q} s_{n+p}$$
 for all $n \ge t$

i.e. the sequence $s_n \mod r, q$ is ultimately periodic.

Theorem 1 A filter $(s_n)_{n\geq 0}$ preserves recognizable sets iff the sequence $\partial s_n = s_{n+1} - s_n$ is residually ultimately periodic.

Example

Recall

$$k \equiv_{r,q} k'$$
 iff
$$\begin{cases} k = k' & when \ k < r \ or \ k' < r \\ k \equiv k' \mod q & otherwise. \end{cases}$$

The representative of k is k itself if $0 \le k < r$, and is the unique integer $\bar{k} \equiv k \mod q$ and $r \le \bar{k} < r + q$ otherwise.

For r = 7, q = 5, integers greater than 12 are reduced to one among $7, 8, 9, 10, 11 \mod 5$.

The set of squares has representatives

$$0, 1, 4, 9, 11, 10, 11, 9, 11, 10, 11, \cdots$$

It is ultimately periodic for this r and this q.

Residually ultimately periodic

Proposition 2 *s* is residually ultimately periodic if and only if

- 1. s is ultimately periodic for each p > 0,
- 2. s is ultimately periodic with threshold t for each $t \geq 0$

By definition, s is ultimately periodic with threshold t iff the sequence $(\min(s_n, t))$ is ultimately periodic.

Examples: The sequence of squares.

The sequence

 $010\mathbf{2}010\mathbf{3}0102010\mathbf{4}010201030102010\mathbf{5}\cdots$

Removal problem

Let S be a relation over N and $L \subset A^*$. Define

$$L/S = \{u \mid \exists v \ (|u|,|v|) \in S \text{ and } uv \in L\}$$

Example : Let $S = \{(n, n) \mid n \in \mathbb{N}\}$. Then L/S is the set of first halves of words in L.

A relation S preserves recognizable sets over \mathbb{N} if, for any recognizable $K \subseteq \mathbb{N}$, the set S(K) is recognizable over \mathbb{N} (i.e. a finite union of arithmetic progressions and of a finite set).

Theorem 3 (Seiferas, McNaughton)

L/S is recognizable for any recognizable set L iff S^{-1} preserves recognizable sets over \mathbb{N} .

Transductions

Transductions are relations from A^* into B^* and later into some monoid M.

Filtering transduction: Let $s=(s_n)_{n\geq 0}$ be a sequence of integers. Define τ_s

$$\tau_s(a_0 \cdots a_n) = A^{s_0} a_0 A^{s_1 - s_0 - 1} \cdots A^{s_n - s_{n-1} - 1} a_n A^{\leq s_{n+1} - s_n - 1}$$

One has

$$L[s] = \tau_s^{-1}(L).$$

Removal transduction: Let S be a relation over \mathbb{N} . Define τ_S

$$\tau_S(u) = \bigcup_{(|u|,n)\in S} uA^n.$$

One has

$$L/S = \tau_S^{-1}(L).$$

Transducers

Let A be an alphabet and M be a monoid.

$$\mathcal{T} = (Q, A \times \mathfrak{P}(M), E, I, F)$$
 transitions final states

Transitions: $q \xrightarrow{a|R} q'$ where $a \in A$ and $R \in \mathfrak{P}(M)$.

Initial and final labels: The entries of the vectors $I, F \in \mathfrak{P}(M)^Q$.

A transducer realizes a transduction τ from A^* to M defined as follows.

For
$$w = a_1 \cdots a_n$$
,

au(w) is the union of all products $I_0R_1\cdots R_nF_n$ for all paths

$$\stackrel{I_0}{\rightarrow} q_0 \stackrel{a_1|R_1}{\longrightarrow} q_1 \stackrel{a_2|R_2}{\longrightarrow} q_2 \quad \cdots \quad q_{n-1} \stackrel{a_n|R_n}{\longrightarrow} q_n \stackrel{F_n}{\rightarrow}$$

Rational transductions

A transduction is rational if it can be realized by a finite transducer with output labels that are rational subsets of M.

Theorem 4 Let τ be a rational transduction from A^* to M. If K is a recognizable subset of A^* , then $\tau(K)$ is rational subset of M. If L is a recognizable subset of M, then $\tau^{-1}(L)$ is a regular language over A.

However, the filtering transduction and the removal transduction are **not** rational.

Residually rational transductions

A transduction τ from A^* to B^* is residually rational if for any morphism μ from B^* into a **finite** monoid M, $\mu \circ \tau$ is rational.

Theorem 5 If τ is residually rational and $L \subset B^*$ is recognizable, then $\tau^{-1}(L)$ is also recognizable.

Proof. Let $\mu: B^* \to M$ be the syntactic morphism of L. Then

$$\tau^{-1}(L) = (\mu \circ \tau)^{-1}(P).$$

where $L = \mu^{-1}(P)$.

Filtering transduction

Proposition 6 The filtering transduction is residually rational.

Recall that $\tau_s: A^* \to A^*$ is

$$\tau_s(a_0 \cdots a_n) = A^{s_0} a_0 A^{d_1} a_1 \cdots a_{n-1} A^{d_n} a_n A^{\leq d_{n+1}}$$

where $d_n = s_{n+1} - s_n - 1$.

Let $R=\mu(A)$ be the image of A in a finite monoid M. Since $\mathfrak{P}(M)$ is finite, there r and q such that

$$R^r = R^{r+q}$$
.

Since $(d_n)_{n>0}$ is residually ultimately periodic, there are t and p such that

$$R^{d_n} = R^{d_{n+p}}$$
 for every $n \ge t$.

Thus, $\mu \circ \tau_s$ is realized by the following transducer:

Filtering transducer

Removal transduction

Proposition 7 The removal transduction is residually rational.

Recall that the removal transduction is defined by

$$\tau_S(u) = \bigcup_{(|u|,m)\in S} uA^m.$$

Let $R=\mu(A)$ be the image of A in a finite monoid M. Since $\mathfrak{P}(M)$ is finite, there r and q such that

$$R^r = R^{r+q}$$
.

Define r + q recognizable sets K_i of integers by

$$K_i = \begin{cases} \{i\} & \text{if } 0 \le i < r \\ \{i + qn \mid n \ge 0\} & \text{if } r \le i < r + q. \end{cases}$$

Removal transduction

Since the sets $S^{-1}(K_i)$ are recognizable, there are t and p such that for any $0 \le i < r + q$ and any $n \ge t$,

$$n \in S^{-1}(K_i) \iff n + p \in S^{-1}(K_i) \quad n \ge t$$

whence

$$S(n) \cap K_i \neq \emptyset \iff S(n+p) \cap K_i \neq \emptyset$$

Setting
$$R_n = R^{S(n)} = \bigcup_{m \in S(n)} R^m$$
, one gets $R_n = R_{n+p}$ for $n \ge t$.

Removal transducer

A filter preserving recognizable sets is drup

Proposition 8 A filter preserving recognizable sets is ultimately periodic for each p > 0.

Let $A = \{0, 1, \dots, p-1\}$, and let $u = a_0 a_1 \cdots$ be the infinite word defined by $a_i = s_i \mod p$:

$$s = s_0 \ s_1 \ s_2 \cdots$$
$$u = a_0 \ a_1 \ a_2 \cdots$$

Set $v = (01 \cdots (p-1))^{\omega}$. The letter at position s_i in v is a_i .

Let L be the set of prefixes of v. Then L[s] is the set of prefixes of u.

Since L[s] is regular, the infinite word u is ultimately periodic.

A filter preserving recognizable sets is drup (2)

Proposition 9 If a filter s preserves recognizable sets, then ∂s is ultimately periodic with threshold t for each $t \geq 0$.

Set $d_i = \min(t, s_{i+1} - s_i - 1)$. We show that the infinite word $d = d_0 d_1 \cdots$ is ultimately periodic.

Set $B = \{0, 1, \dots, t\} \cup \{a\}$ and define a prefix code

$$P = \{0, 1a, 2a^2, \dots, ta^t, a\}$$

The language $P^*[s]$ is recognizable, and so is

$$R = P^*[s] \cap \{0, 1, \dots, t\}.$$

$$a \cdots \begin{vmatrix} s_0 & s_1 & s_2 \\ \hline a \cdots & a \cdots & a \cdots \end{vmatrix}$$

The maximal word (for the order $0 < 1 < \cdots < t$) of length n in R is $d_0d_1\cdots d_{n-1}$. The word d is read in a trim automaton recognizing R by taking at each state the edge with maximal label. Thus it is ultimately periodic.

Rup and drup

A sequence s is differentially residually ultimately periodic if

- $\partial s = (s_{n+1} s_n)$ is residually ultimately periodic.
- $s \text{ drup} \Rightarrow s \text{ rup}.$
- s rup and $\lim \partial s_n = \infty \Rightarrow s$ drup.
- s rup and ∂s bounded (s "syndetic") $\Rightarrow \partial s$ ultimately periodic.

The set of residually ultimately periodic sequences is closed under sum, product, exponentiation, composition (u_{v_n}) etc.

The set of differentially residually ultimately periodic sequences is closed sum, product, exponentiation, etc.

Sequences that are not rup:

Spectra $\{ |\alpha n| | n \geq 1 \}$ for irrational α .

The sequence of positions of 1's in the Thue-Morse sequence.

The sequence of Catalan numbers.