Operations preserving regular languages*

J. Berstel ${ }^{1}$, L. Boasson ${ }^{2}$, O. Carton ${ }^{2}$, B. Pettazoni ${ }^{3}$, J.-E. Pin ${ }^{2}$

${ }^{1}$ IGM, Université de Marne-la-Vallée
${ }^{2}$ LIAFA, Université de Paris VII
${ }^{3}$ Lycée M. Berthelot, Saint-Maur
*Presented at FCT'2003, Malmö.

Filters

Filter: increasing sequence $\left(s_{n}\right)_{n \geq 0}$ of integers
Example: $s=0,1,4,9,16,25, \ldots$
Filtering a word $w=a_{0} \cdots a_{n}$ by s yields

$$
w[s]=a_{s_{0}} a_{s_{1}} \cdots a_{s_{k}} \quad \text { where } \quad s_{k} \leq n<s_{k+1}
$$

Example: $w=a b r a c a d a b r a$

w	a	b	r	a	c
a	d	a	b	$r a$	
s	0	1	4	9	
$w[s]$	a	b	c	r	

$$
w[s]=a b c r
$$

Filtering a set $L \subset A^{*}$ of words : $L[s]=\{w[s] \mid w \in L\}$

Some examples

Let $L=(a b)^{*}$.

$$
\begin{array}{ll}
s_{n}=3 n+1 & a b a b a b a b a b a b a b a b a b a \cdots \\
s_{n}=n^{2} & a b a b a b a b a b a b a b a b a b a b a b \cdots \\
s_{n}=n! & a b a b a b a b a b a b a b a b a b a b a b a \cdots \\
s_{n}=n(n+1) & \text { ababababababababa} \cdots
\end{array}
$$

Filtering problem

A filter preserves regular sets if, for any regular language L, the language $L[s]$ regular.

Problem: characterize filters preserving regular sets.
Regulator: A relation $R: A^{*} \rightarrow B^{*}$ such that $R(L)$ is regular for every regular L.

Examples: the following filters are regulators:

- $\{2 n \mid n \geq 0\}$, (it is a rational transduction)
- $\left\{n^{2} \mid n \geq 0\right\}$, (! it is not a rational transduction)
- $\left\{2^{n} \mid n \geq 0\right\}$, (!!)
- $\{n!\mid n \geq 0\}$. (!?!)

But $\left\{\left.\binom{2 n}{n} \right\rvert\, n \geq 0\right\}$ is not a regulator.

A counter-example

Let $L=(a b)^{*}$. Let s be the filter with support
$\mathbb{N} \backslash\{n(n+1) \mid n \geq 0\}=\{1,3,4,5,7,8,9,10,11,13, \ldots\}$
abababababababababababababababa...
$L[s]$ is the set of prefixes of the infinite word
$b(a b)^{0} b(a b)^{1} b(a b)^{2} b(a b)^{3} \cdots$
and $L[s]$ is not regular. Thus s is not a regulator.

Ultimately periodic sequences

- A sequence s is ultimately periodic modulo p if the sequence $s_{n} \bmod p$ is ultimately periodic.
- A sequence s is ultimately periodic with threshold t if the sequence $\min \left(s_{n}, t\right)$ is ultimately periodic.
The sequence

01020103010201040102010301020105 ...

is ultimately periodic with threshold t, for each t.
The sequence s where s_{n} is the number of 1 's in the binary expansion of n

$$
0111223122323341223 \ldots
$$

is not ultimately periodic with threshold 1 .

Residually ultimately periodic sequences

A sequence s is residually ultimately periodic (r.u.p.) if it is both

- ultimately periodic modulo p for each $p>0$,
- ultimately periodic with threshold t for each $t \geq 0$.

Proposition $1 A$ sequence s is r.u.p. iff, for each morphism φ from \mathbb{N} onto a finite semigroup, the sequence $\varphi\left(s_{n}\right)$ is ultimately periodic.

Solution of the filtering problem

Theorem 2 A filter $\left(s_{n}\right)_{n \geq 0}$ preserves regular sets iff the sequence $\partial s_{n}=s_{n+1}-s_{n}$ is residually ultimately periodic.

The sequence $\partial s_{n}=s_{n+1}-s_{n}$ is the differential of s. A sequence s is differentially residually ultimately periodic (d.r.u.p.) if ∂s is r.u.p.

Properties of r.u.p. sequences

Theorem 3 (Zhang 98, Carton-Thomas 02) Let $\left(u_{n}\right)_{n \geq 0}$ and $\left(v_{n}\right)_{n \geq 0}$ be r.u.p. sequences. The following seuquences are also r.u.p.:

- $u_{v_{n}}$ (composition), $u_{n}+v_{n}, u_{n} v_{n}, u_{n}^{v_{n}}$,
- $u_{n}-v_{n}$ provided $u_{n} \geq v_{n}$ and $\lim _{n \rightarrow \infty}\left(u_{n}-v_{n}\right)=+\infty$,
- (generalized sum) $\sum_{0 \leq i \leq v_{n}} u_{i}$,
- (generalized product) $\prod_{0 \leq i \leq v_{n}} u_{i}$.

Examples of r.u.p. sequences

- The sequences n^{k} and k^{n} (for fixed k).
- The exponential tower $k^{k^{k} . .^{k}}$ of height n.
- The family of r.u.p. is not closed under quotient. Indeed, define
$u_{n}=\left\{\begin{array}{ll}1 & \text { if } n \text { is prime } \\ n!+1 & \text { otherwise }\end{array}\right.$.
Then u_{n} is not r.u.p., but $n u_{n}$ is r.u.p.
- For any (even non recursive) strictly increasing function $\varphi: \mathbb{N} \rightarrow \mathbb{N}$, the sequence $u_{n}=n!\varphi(n)$ is r.u.p. non recursive.
- If $\lim _{n \rightarrow \infty} u_{n}=+\infty$, then u is ultimately periodic with threshold t for each $t \geq 0$.

R.u.p. and d.r.u.p.

A sequence s is d.r.u.p. if its sequence of differences ∂s is r.u.p..

- D.r.u.p. sequences have closure properties very similar to r.u.p. sequences.
- Every d.r.u.p. sequence is r.u.p.
- There are r.u.p. sequences which are not d.r.u.p.

Let b_{n} be a sequence of 0 and 1 's which is not ultimately periodic. Then b_{n} is not r.u.p. because it is not ultimately periodic with threshold 1 .
The sequence $u_{n}=\left(\sum_{0 \leq i \leq n} b_{i}\right)$! is r.u.p. but ∂u_{n} is not r.u.p. because $\left.\min (\partial u)_{n}, 1\right)=b_{n}$.

- If s r.u.p. and $\lim \partial s_{n}=\infty \Rightarrow s$ then it is d.r.u.p.

Sequences which are not r.u.p.

- Spectra: $\{\lfloor\alpha n\rfloor \mid n \geq 1\}$ for irrational α.
- The sequence of positions of 1 's in the Thue-Morse sequence.
- The sequence of Catalan numbers.

A filter preserving regular sets is drup

Proposition 4 A filter s preserving regular sets is ultimately periodic for each $p>0$.

$$
\begin{aligned}
& \text { Let } A=\{0,1, \ldots, p-1\} \text {. Set } \\
& \qquad x=(01 \cdots(p-1))^{\omega}
\end{aligned}
$$

so $x(i) \equiv i(\bmod p)$, and set

$$
y=x[s]=x\left(s_{0}\right) x\left(s_{1}\right) \cdots x\left(s_{i}\right) \cdots .
$$

At position i, one gets

$$
y(i)=x\left(s_{i}\right) \equiv s_{i} \quad(\bmod p)
$$

Let L be the set of prefixes of x. Then L is regular. The set $L[s]$ is the set of prefixes of y. It is regular only if y is ultimately periodic. Thus s is ultimately periodic modulo p.

A filter preserving regular sets is drup (2)

Proposition 5 If a filter s preserves regular sets, then ∂s is ultimately periodic with threshold t for each $t \geq 0$.

Set $d_{i}=\min \left(t, s_{i+1}-s_{i}-1\right)$. We show that the infinite word $d=d_{0} d_{1} \cdots$ is ultimately periodic.
Define a prefix code over $B=\{0,1, \ldots, t\} \cup\{a\}$ by

$$
P=\left\{0,1 a, 2 a^{2}, \ldots, t a^{t}, a\right\}
$$

The language $P^{*}[s]$ is regular, and so is $R=P^{*}[s] \cap\{0,1, \ldots, t\}^{*}$.

$$
d=x[s]
$$

for the word x defined by $x\left(s_{i}\right)=d_{i}$ and $x(m)=a$ if $m \neq d_{i}$, for $i \geq 0$. $x \in P^{\omega}$ because $d_{i} \leq s_{i+1}-s_{i}-1$. So each prefix of d is in R.

A filter preserving regular sets is drup (3)

$$
\begin{aligned}
& a_{a \cdots}^{s_{0}} \sqrt{a \cdots} \sqrt[s_{1}]{a \cdots} \sqrt{s_{2}} \sqrt{a \cdots} \\
x= & a^{s_{0}} d_{0} a^{s_{1}-s_{0}-1} d_{1} a^{s_{2}-s_{1}-1} \cdots d_{i} a^{s_{i+1}-s_{i}-1} \ldots
\end{aligned}
$$

The word $d_{0} d_{1} \cdots d_{n-1}$ is the maximal word of length n in R (for the order $0<1<\cdots<t$). Indeed, if $d_{i}<d_{i}^{\prime}$ then $d_{i}<t$, so $d_{i}=s_{i+1}-s_{i}-1$ and d_{i}^{\prime} is not followed by d_{i}^{\prime} letters a.
The word d is read in a trim automaton recognizing R by taking at each state the edge with maximal label. Thus it is ultimately periodic.

Transductions

Transductions are relations from A^{*} into B^{*} and later into some monoid M.

Inverse filtering transduction: Let $s=\left(s_{n}\right)_{n \geq 0}$ be a sequence of integers. Define τ_{s}

$$
\tau_{s}\left(a_{0} \cdots a_{n}\right)=A^{s_{0}} a_{0} A^{s_{1}-s_{0}-1} \cdots A^{s_{n}-s_{n-1}-1} a_{n} A^{\leq s_{n+1}-s_{n}-1}
$$

One has

$$
L[s]=\tau_{s}^{-1}(L)
$$

Transducers

Let A be an alphabet and M be a monoid.

Transitions: $q \xrightarrow{a \mid R} q^{\prime}$ where $a \in A$ and $R \in \mathfrak{P}(M)$. Initial and final labels: The entries of the vectors $I, F \in \mathfrak{P}(M)^{Q}$.

A transducer realizes a transduction τ from A^{*} to M defined as follows. For $w=a_{1} \cdots a_{n}$,
$\tau(w)$ is the union of all products $I_{0} R_{1} \cdots R_{n} F_{n}$ for all paths

$$
\xrightarrow{I_{0}} q_{0} \xrightarrow{a_{1} \mid R_{1}} q_{1} \xrightarrow{a_{2} \mid R_{2}} q_{2} \cdots q_{n-1} \xrightarrow{a_{n} \mid R_{n}} q_{n} \xrightarrow{F_{n}}
$$

A transducer

$$
\tau(a b)=a^{*} b^{*}\left(a b \cdot b^{*} \cup b \cdot b a \cdot a^{*}\right)
$$

Rational and recognizable sets

Let M be a monid.
$\operatorname{Rat}(M)$ denotes the set of rational subsets of M obtained from the singletons using the operations union, product and star.
$\operatorname{Rec}(M)$ denotes the set of recognizable subsets of M, that is subsets P of M for which there exists a morphism φ of M onto a finite monoid F, and a subset Q of F such that $P=\varphi^{-1}(Q)$.

Rational transductions

A transduction is rational if it can be realized by a finite transducer with output labels that are rational subsets of M.

Theorem 6 Let τ be a rational transduction from A^{*} to M. If K is a regular language over A, then $\tau(K)$ is rational subset of M. If L is a recognizable subset of M, then $\tau^{-1}(L)$ is a regular language over A.

In order to show that d.r.u.p. filters preserve regular sets, it would be sufficient to show that the inverse filtering transduction is a rational transduction.

However, the inverse filtering transduction is not rational.

Residually rational transductions

A transduction τ from A^{*} to B^{*} is residually rational if for any morphism μ from B^{*} into a finite monoid $M, \mu \circ \tau$ is rational.

Theorem 7 If τ is residually rational and $L \subset B^{*}$ is regular, then $\tau^{-1}(L)$ is also regular, i.e. τ^{-1} is a regulator.
Proof. Let $\mu: B^{*} \rightarrow M$ be the syntactic morphism of L. Then

$$
\tau^{-1}(L)=(\mu \circ \tau)^{-1}(P)
$$

where $P=\mu(L)$.

Residually rational transductions (2)

Theorem 8 A transduction $\tau: A^{*} \rightarrow B^{*}$ is residually rational if and only if τ^{-1} is a regulator.

Inverse of filtering transduction

Proposition 9 Let s be a d.r.u.p. sequence. Then the inverse τ_{s} of the corresponding filtering transduction is residually rational (and consequently the filtering transduction of s is a regulator).

$$
\tau_{s}\left(a_{0} \cdots a_{n}\right)=A^{s_{0}} a_{0} A^{d_{1}} a_{1} \cdots a_{n-1} A^{d_{n}} a_{n}(1+A)^{d_{n+1}}
$$

where $d_{n}=s_{n+1}-s_{n}-1$.
Let $R=\mu(A)$ be the image of A in a finite monoid M. Since $\mathfrak{P}(M)$ is finite, there r and q such that

$$
R^{r}=R^{r+q}
$$

Since $\left(d_{n}\right)_{n \geq 0}$ is residually ultimately periodic, there are t and p such that

$$
R^{d_{n}}=R^{d_{n+p}} \quad \text { for every } \quad n \geq t
$$

Thus, $\mu \circ \tau_{s}$ is realized by the following transducer:

Filtering transducer

A transducer realizing $\mu \circ \tau_{s}$. Here $S=1+R=\mu(1+A)$.

Filtering transducer

Removal problem

Let S be a relation over \mathbb{N} and $L \subset A^{*}$. Define

$$
L / S=\{u \mid \exists v \quad(|u|,|v|) \in S \text { and } u v \in L\}
$$

Example : Let $S=\{(n, n) \mid n \in \mathbb{N}\}$. Then L / S is the set of first halves of words in L.

A relation S of \mathbb{N}^{2} is said to preserve recognizable sets over \mathbb{N} if, for any recognizable $K \subseteq \mathbb{N}$, the set $S(K)$ is recognizable over \mathbb{N} (i.e. a finite union of arithmetic progressions and of a finite set).

Theorem 10 (Seiferas, McNaughton)

L / S is recognizable for any recognizable set L iff S^{-1} preserves recognizable sets over \mathbb{N}.

Removal transduction

Proposition 11 If S preserves recognizable sets over \mathbb{N}, then the inverse of the removal transduction is residually rational.

The inverse of the removal transduction is defined by

$$
\tau_{S}(u)=\bigcup_{(|u|, m) \in S} u A^{m}
$$

