Operations preserving regular languages*

J. Berstel¹, L. Boasson², O. Carton², B. Pettazoni³, J.-E. Pin²

- ¹ IGM, Université de Marne-la-Vallée
- ² LIAFA, Université de Paris VII
- ³ Lycée M. Berthelot, Saint-Maur

*Presented at FCT'2003, Malmö.

Filters

Filter: increasing sequence $(s_n)_{n>0}$ of integers

Example: $s = 0, 1, 4, 9, 16, 25, \dots$

Filtering a word $w = a_0 \cdots a_n$ by s yields

$$w[s] = a_{s_0} a_{s_1} \cdots a_{s_k}$$
 where $s_k \le n < s_{k+1}$

Example: w = abracadabra

\overline{w}	a	b	r	\overline{a}	c	\overline{a}	\overline{d}	\overline{a}	b	r	\overline{a}
s	0	1			4					9	
w[s]	\overline{a}	b			c					r	

$$w[s] = abcr$$

Filtering a set $L \subset A^*$ of words : $L[s] = \{w[s] \mid w \in L\}$

Some examples

Let
$$L = (ab)^*$$
.

Filtering problem

A filter preserves regular sets if, for any regular language L, the language L[s] regular.

Problem: characterize filters preserving regular sets.

Regulator : A relation $R:A^*\to B^*$ such that R(L) is regular for every regular L.

Examples: the following filters are regulators:

- $\{2n \mid n \geq 0\}$, (it is a rational transduction)
- $\{n^2 \mid n \geq 0\}$, (! it is not a rational transduction)
- $\{2^n \mid n \ge 0\}, (!!)$
- $\{n! \mid n \ge 0\}$. (!?!)

But $\{\binom{2n}{n} \mid n \geq 0\}$ is not a regulator.

A counter-example

Let $L = (ab)^*$. Let s be the filter with support

$$\mathbb{N} \setminus \{n(n+1) \mid n \ge 0\} = \{1, 3, 4, 5, 7, 8, 9, 10, 11, 13, \ldots\}$$

L[s] is the set of prefixes of the infinite word

$$b(ab)^0b(ab)^1b(ab)^2b(ab)^3\cdots$$

and L[s] is not regular. Thus s is not a regulator.

Ultimately periodic sequences

- A sequence s is ultimately periodic modulo p if the sequence $s_n \mod p$ is ultimately periodic.
- A sequence s is ultimately periodic with threshold t if the sequence $\min(s_n, t)$ is ultimately periodic.

The sequence

 $010\mathbf{2}010\mathbf{3}0102010\mathbf{4}010201030102010\mathbf{5}\cdots$

is ultimately periodic with threshold t, for each t.

The sequence s where s_n is the number of 1's in the binary expansion of n

 $0111223122323341223 \cdots$

is not ultimately periodic with threshold 1.

Residually ultimately periodic sequences

A sequence s is residually ultimately periodic (r.u.p.) if it is both

- ultimately periodic modulo p for each p > 0,
- ultimately periodic with threshold t for each $t \geq 0$.

Proposition 1 A sequence s is r.u.p. iff, for each morphism φ from \mathbb{N} onto a finite semigroup, the sequence $\varphi(s_n)$ is ultimately periodic.

Montréal, le 30 avril 2004 – p.7/27

Solution of the filtering problem

Theorem 2 A filter $(s_n)_{n\geq 0}$ preserves regular sets iff the sequence $\partial s_n = s_{n+1} - s_n$ is residually ultimately periodic.

The sequence $\partial s_n = s_{n+1} - s_n$ is the differential of s. A sequence s is differentially residually ultimately periodic (d.r.u.p.) if ∂s is r.u.p.

Montréal, le 30 avril 2004 - p.8/27

Properties of r.u.p. sequences

Theorem 3 (Zhang 98, Carton-Thomas 02) Let $(u_n)_{n\geq 0}$ and $(v_n)_{n\geq 0}$ be r.u.p. sequences. The following seuquences are also r.u.p.:

- $ullet u_{v_n}$ (composition), $u_n + v_n$, $u_n v_n$, $u_n^{v_n}$,
- u_n-v_n provided $u_n\geq v_n$ and $\lim_{n\to\infty}(u_n-v_n)=+\infty$,
- (generalized sum) $\sum_{0 \le i \le v_n} u_i$,
- (generalized product) $\prod_{0 \le i \le v_n} u_i$.

Montréal, le 30 avril 2004 - p.9/27

Examples of r.u.p. sequences

- The sequences n^k and k^n (for fixed k).
- The exponential tower k^{k^k} of height n.
- The family of r.u.p. is not closed under quotient. Indeed, define

$$u_n = egin{cases} 1 & \text{if } n \text{ is prime} \\ n! + 1 & \text{otherwise} \end{cases}.$$

Then u_n is not r.u.p., but nu_n is r.u.p.

- For any (even non recursive) strictly increasing function $\varphi: \mathbb{N} \to \mathbb{N}$, the sequence $u_n = n! \varphi(n)$ is r.u.p. non recursive.
- If $\lim_{n\to\infty}u_n=+\infty$, then u is ultimately periodic with threshold t for each $t\geq 0$.

Montréal, le 30 avril 2004 - p.10/27

R.u.p. and d.r.u.p.

A sequence s is d.r.u.p. if its sequence of differences ∂s is r.u.p..

- D.r.u.p. sequences have closure properties very similar to r.u.p. sequences.
- Every d.r.u.p. sequence is r.u.p.
- There are r.u.p. sequences which are not d.r.u.p.

Let b_n be a sequence of 0 and 1's which is not ultimately periodic. Then b_n is not r.u.p. because it is not ultimately periodic with threshold 1.

The sequence $u_n = (\sum_{0 \le i \le n} b_i)!$ is r.u.p. but ∂u_n is not r.u.p. because $\min(\partial u)_n, 1) = b_n$.

• If s r.u.p. and $\lim \partial s_n = \infty \Rightarrow s$ then it is d.r.u.p.

Montréal, le 30 avril 2004 – p.11/27

Sequences which are not r.u.p.

- Spectra: $\{ |\alpha n| \mid n \geq 1 \}$ for irrational α .
- ullet The sequence of positions of 1's in the Thue-Morse sequence.
- The sequence of Catalan numbers.

Montréal, le 30 avril 2004 - p.12/27

A filter preserving regular sets is drup

Proposition 4 A filter s preserving regular sets is ultimately periodic for each p > 0.

Let
$$A = \{0, 1, \dots, p-1\}$$
. Set

$$x = (01 \cdots (p-1))^{\omega}$$

so $x(i) \equiv i \pmod{p}$, and set

$$y = x[s] = x(s_0)x(s_1)\cdots x(s_i)\cdots$$

At position i, one gets

$$y(i) = x(s_i) \equiv s_i \pmod{p}$$
.

Let L be the set of prefixes of x. Then L is regular. The set L[s] is the set of prefixes of y. It is regular only if y is ultimately periodic. Thus s is ultimately periodic modulo p.

A filter preserving regular sets is drup (2)

Proposition 5 If a filter s preserves regular sets, then ∂s is ultimately periodic with threshold t for each $t \geq 0$.

Set $d_i = \min(t, s_{i+1} - s_i - 1)$. We show that the infinite word $d = d_0 d_1 \cdots$ is ultimately periodic.

Define a prefix code over $B = \{0, 1, \dots, t\} \cup \{a\}$ by

$$P = \{0, 1a, 2a^2, \dots, ta^t, a\}$$

The language $P^*[s]$ is regular, and so is $R = P^*[s] \cap \{0, 1, \dots, t\}^*$.

$$d = x[s]$$

for the word x defined by $x(s_i) = d_i$ and x(m) = a if $m \neq d_i$, for $i \geq 0$. $x \in P^{\omega}$ because $d_i \leq s_{i+1} - s_i - 1$. So each prefix of d is in R.

Montréal, le 30 avril 2004 – p.14/27

A filter preserving regular sets is drup (3)

$$x = a^{s_0} d_0 a^{s_1 - s_0 - 1} d_1 a^{s_2 - s_1 - 1} \cdots d_i a^{s_{i+1} - s_i - 1} \cdots$$

The word $d_0d_1\cdots d_{n-1}$ is the maximal word of length n in R (for the order $0<1<\cdots< t$). Indeed, if $d_i< d_i'$ then $d_i< t$, so $d_i=s_{i+1}-s_i-1$ and d_i' is not followed by d_i' letters a.

The word d is read in a trim automaton recognizing R by taking at each state the edge with maximal label. Thus it is ultimately periodic.

Transductions

Transductions are relations from A^* into B^* and later into some monoid M.

Inverse filtering transduction: Let $s=(s_n)_{n\geq 0}$ be a sequence of integers. Define τ_s

$$\tau_s(a_0 \cdots a_n) = A^{s_0} a_0 A^{s_1 - s_0 - 1} \cdots A^{s_n - s_{n-1} - 1} a_n A^{\leq s_{n+1} - s_n - 1}$$

One has

$$L[s] = \tau_s^{-1}(L).$$

Transducers

Let A be an alphabet and M be a monoid.

$$\mathcal{T} = (Q, A \times \mathfrak{P}(M), E, I, F)$$
 transitions final states

Transitions: $q \xrightarrow{a|R} q'$ where $a \in A$ and $R \in \mathfrak{P}(M)$.

Initial and final labels: The entries of the vectors $I, F \in \mathfrak{P}(M)^Q$.

A transducer realizes a transduction τ from A^* to M defined as follows.

For
$$w = a_1 \cdots a_n$$
,

au(w) is the union of all products $I_0R_1\cdots R_nF_n$ for all paths

$$\stackrel{I_0}{\rightarrow} q_0 \stackrel{a_1|R_1}{\rightarrow} q_1 \stackrel{a_2|R_2}{\rightarrow} q_2 \quad \cdots \quad q_{n-1} \stackrel{a_n|R_n}{\rightarrow} q_n \stackrel{F_n}{\rightarrow}$$

Montréal, le 30 avril 2004 - p.17/27

A transducer

$$\tau(ab) = a^*b^*(ab \cdot b^* \cup b \cdot ba \cdot a^*)$$

Rational and recognizable sets

Let M be a monid.

 $\mathrm{Rat}(M)$ denotes the set of rational subsets of M obtained from the singletons using the operations union, product and star.

 $\operatorname{Rec}(M)$ denotes the set of recognizable subsets of M, that is subsets P of M for which there exists a morphism φ of M onto a finite monoid F, and a subset Q of F such that $P=\varphi^{-1}(Q)$.

Montréal, le 30 avril 2004 – p.19/27

Rational transductions

A transduction is rational if it can be realized by a finite transducer with output labels that are rational subsets of M.

Theorem 6 Let τ be a rational transduction from A^* to M. If K is a regular language over A, then $\tau(K)$ is rational subset of M. If L is a recognizable subset of M, then $\tau^{-1}(L)$ is a regular language over A.

In order to show that d.r.u.p. filters preserve regular sets, it would be sufficient to show that the inverse filtering transduction is a rational transduction.

However, the inverse filtering transduction is **not** rational.

Residually rational transductions

A transduction τ from A^* to B^* is residually rational if for any morphism μ from B^* into a **finite** monoid M, $\mu \circ \tau$ is rational.

Theorem 7 If τ is residually rational and $L \subset B^*$ is regular, then $\tau^{-1}(L)$ is also regular, i.e. τ^{-1} is a regulator.

Proof. Let $\mu: B^* \to M$ be the syntactic morphism of L. Then

$$\tau^{-1}(L) = (\mu \circ \tau)^{-1}(P).$$

where $P = \mu(L)$.

Residually rational transductions (2)

Theorem 8 A transduction $\tau:A^*\to B^*$ is residually rational if and only if τ^{-1} is a regulator.

Inverse of filtering transduction

Proposition 9 Let s be a d.r.u.p. sequence. Then the inverse τ_s of the corresponding filtering transduction is residually rational (and consequently the filtering transduction of s is a regulator).

$$\tau_s(a_0 \cdots a_n) = A^{s_0} a_0 A^{d_1} a_1 \cdots a_{n-1} A^{d_n} a_n (1+A)^{d_{n+1}}$$

where $d_n = s_{n+1} - s_n - 1$.

Let $R=\mu(A)$ be the image of A in a finite monoid M. Since $\mathfrak{P}(M)$ is finite, there r and q such that

$$R^r = R^{r+q}.$$

Since $(d_n)_{n\geq 0}$ is residually ultimately periodic, there are t and p such that

$$R^{d_n} = R^{d_{n+p}}$$
 for every $n \ge t$.

Thus, $\mu \circ \tau_s$ is realized by the following transducer:

Filtering transducer

A transducer realizing $\mu \circ \tau_s$. Here $S = 1 + R = \mu(1 + A)$.

Filtering transducer

Removal problem

Let S be a relation over N and $L \subset A^*$. Define

$$L/S = \{u \mid \exists v \ (|u|,|v|) \in S \text{ and } uv \in L\}$$

Example : Let $S = \{(n, n) \mid n \in \mathbb{N}\}$. Then L/S is the set of first halves of words in L.

A relation S of \mathbb{N}^2 is said to preserve recognizable sets over \mathbb{N} if, for any recognizable $K\subseteq \mathbb{N}$, the set S(K) is recognizable over \mathbb{N} (i.e. a finite union of arithmetic progressions and of a finite set).

Theorem 10 (Seiferas, McNaughton)

L/S is recognizable for any recognizable set L iff S^{-1} preserves recognizable sets over \mathbb{N} .

Removal transduction

Proposition 11 If S preserves recognizable sets over \mathbb{N} , then the inverse of the removal transduction is residually rational.

The inverse of the removal transduction is defined by

$$\tau_S(u) = \bigcup_{(|u|,m)\in S} uA^m.$$

Montréal, le 30 avril 2004 – p.27/27