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Outline

•Words
• Squares
• Finding squares
• Fibonacci
• Thue-Morse
• Some open problems
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Words

•Words
– Syntax: programming and natural languages

– Text: web, images, television

– Genomics: structure of genes

• Algorithms
– Translation : compilation, automata

– Data processing : pattern matching, image analysis

– Data compression

• Combinatorics
– Structure: equations, classification, generation

– (Un)avoidable regularities

– Finding regularities

– Special families of words
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The beginning of a small piece in a human gene

>ref|NT_029490.4|Hs21_29649:1-490233 Homo sapiens chromosome 21 genomic contig
AATTCTGAGAAACTTCTTTGTGAGGGTTGGATTCATTTCACACATTTGAACATTTCTTTGATTGAAGATT
TGGAAACAGTCTTTTTGTAAAATCTATAAAGGGATAATTGTGAACCCTTTGAGGCCTAGGGTGAAGTAGG
AAATATCTTCACATAAAAACTACACAGAAATTTTCTGAGAAACGTTTTAGTGATGCGTGCATTCATCTCA
CAGAGTTGAACCTTTCCTTTGCTAGAGCACTTTGGAAACAGTCCTATTGTAGAATCCCCAAAGGAATACT
TCTCAGCCGATTGAGGCCTTTGGTGATATTGGAAATATCTTCACATAAAAGCTAGACAGAAACTTTCTGA
GAAACTTATTTTTAATGAGTGCTCTCATCTCAAAGAGTTAAGTGTTTCTTTTGAATGAGCAGTTTGGAAA
CACTCTTTTTGCATAATCTGCAAATGGATAATTGGAGCGTTTTGAGGCCTATGGTGAAAAAGGAAATATC
TTCACATAAAAACTAAACAGAAGCTTTCTGAGAAACTACTTTGTAATGTGTGCATTCATCTCACAGCGTT
GAAAACTTCTTTTGATTGAGCAGTTTGTAAACAGTCTTTTTTGTAGAATCTGCAAATGGGTATTTGGAGT
GCTCTGAGTTCTATAGTGAAAAAGGAAATATCTTCCAAAAAAAACTAGAAAGAAACATTCTGAGAAACTT
CTTTGTGATATGTACTTTCATCTCACAGAGTTGAACCTTTCTTTTCATTGAGCAGTTTGGAAACAGACTT
TTTATAGAATCTGGAAATGCATATTTGGAGAGCTTTGAGGCCTATGGAGAAAAAGGAAATATCTTCAGAT
AAACACTAAACAGAAGCTTTCTGAGAAACTTCTTTGTGATGTCTGCATTCATATCACAGAGCTGAAACTT
TCTTTTGATTTAGCAGTTTGTAAACAGTCTTTTGGTAGAATCTGCAAATAGATACTTGGAGTGCTTTGAG
GCCTATGTTGAAAAAGGAAATATCTTCACAAAAAATCTAGAAAGATACATTCTGAGAAACTTCTTTGTGA
...
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Repetition

• A square is a sequence that is repeated. For instance ti is a square in
repetition. In TTCTGAGAAACTT, there are TT (twice) and GAGA

• A square is called a tandem repeat in computational biology.
• A run is a maximal repetition (called also tandem array). AAA is a run.
• Aword is square-free if it contains no square. For instance, GTGATGTCTGCAT.
Questions

• Finding squares is difficult ?
• Avoiding squares is possible ?
•How many square may a word contain ?
•How many square-free words exist ?
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Square-free words

• Axel Thue (1906) gives an infinite square-free word over four letters.
• This word is obtained by iterating the morphism

0 → 03121

1 → 01321

2 → 01231

3 → 01213

• The word starts with
03121 01213 01321 01231 01321 · · ·

• Construction of the morphism: take 121, insert 3 at all possible places,
and start with 0.
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Another square-free word by Axel Thue

• Axel Thue gives, in the same paper, an infinite ternary square-free word.

• Three step construction, starting with a square-free word, e. g. abac
1. Replace c by b a if c is preceded by a, by a b otherwise:

abac→ abab a
2. Insert a c after each letter:

abab a→ acbcacbcac
3. Replace each a by aba and each b by bab, and then erase underbars:

acbcacbcac→ abacbabcabacbcac
• Repeat the construction.
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Other constructions of this word

The word is

abac babc abac bcac babc abac babc acbc abac babc abac bcac babc acbc abac · · ·

1. By iterating a (modified) substitution:

a 7→ abac
b 7→ babc
c 7→ bcac if c is preceded by a
c 7→ acbc otherwise

This gives
a
abac
abac babc abac bcac
abac babc abac bcac babc abac babc acbc · · ·
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2. By iterating a substitution on four letters and then identifying two of
them:

a 7→ abac′

b 7→ babc′′

c′ 7→ bc′′ac′

c′′ 7→ ac′bc′′

and then erase the primes and seconds This gives

a
abac′

abac′ babc′′ abac′ bc′′ac′

· · ·
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Recognition of this word by a finite automaton

3. A finite automaton yields explicitly the value of the word at each posi-
tion:

a b

c′

c′′
1

3

0, 2

1

3

0, 2

0

1

3

2

2

3

3

0

1310 = 314 and a · 31 = c′ · 1 = c′′, so the thirteenth symbol is c′′.
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Detecting squares in a word

There exists a linear time algorithm for testing whether a word is square-
free.
It is based on the socalled c-factorization:

c(x) = (x1, x2, . . . , xm)

where each xk is either a fresh letter, or is the longest factor that appears
already before.

c(ababaab) = a|b|aba|ab
c(abacbabcba) = a|b|a|c|ba|b|cba

c(abaababaabaababaababa) = a|b|a|aba|baaba|ababaaba|ba
The computation of the c-factorization of x uses the suffix tree of theword x.
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The suffix tree of a word

This is the suffix tree of abacbabcba.

10

9
a

b
5cba

0acbabcba
2cbabcba

b 6cba

8a
4bcba

1cbabcba
7cba 3bcba

The suffix tree of a word can be computed in linear time.
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Augmented suffix tree

At each node, the first occurrence of the factor is reported. For abacbabcba:

0

0
a

0b
5cba

0acbabcba
2cbabcba

1
b 6cba

1a
4bcba

1cbabcba
3cba 3bcba

This gives in linear time the c-factorization:

c(abacbabcba) = a|b|a|c|ba|b|cba
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Words with many squares

Theorem At most 2n distinct squares may occur in a word of length n.

Example The word ababaababaabab of length 14 contains 9 squares (this is
maximal for a 14-letter word):

a
ab, ba
aba
ababa, babaa, abaab, baaba, aabab

Open It is not known whether there exists a word of length n having more
than n occurrences of distinct squares.
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Theorem A word of length n contains at most O(n log n) occurrences of primi-
tive squares.

Example The word

f6 = abaababaabaababaababa

of length 21 = F6 contains a total of 1+ 2+ 3+ 4+ 4 = 14 distinct primi-
tive squares:

a
ab, ba
aba, baa, aab
ababa, abaab, baaba, aabab
abaababa, baababaa, aababaab, ababaaba

and 26 occurrences of primitive squares: 4× a+ 3× ab+ 3× ba+ · · ·.
Theorem The Fibonacci word of length Fn contains 2(Fn−2− 1) distinct (prim-
itive) squares and 2/5n(Fn + Fn−2)− 12/5Fn−1 − Fn−2 + n+ 1 occurrences of
squares.
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Two particular infinite words

• Fibonacci word
– The most popular of the Sturmian words

–Has many extremal properties

• Thue-Morse word
– The most popular of the automatic words

–Has been introduced by Thue for proving the existence of binary infi-
nite overlap-free words

–Has been introduced indepently by Marston Morse for proving the
existence of uniformly recurrent non periodic word

Both words have been generalized in several ways.
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Fibonacci word

Defined by f0 = a, f1 = ab, fn+2 = fn+1 fn. Length of fn is Fn.

F0 = 1 f0 = a
F1 = 2 f1 = ab
F2 = 3 f2 = aba
F3 = 5 f3 = abaab
F4 = 8 f4 = abaababa
F5 = 13 f5 = abaababaabaab
F6 = 21 f6 = abaababaabaababaababa
F7 = 34 f7 = abaababaabaababaababaabaababaabaab

The infinite Fibonacci word has all finite Fibonacci words as prefixes.
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Interpretation of numerical properties

Numerical relation

Fn = 2+ F0+ F1+ · · · + Fn−2
e.g. F6 = 21 = 2+ 1+ 2+ 3+ 5+ 8.

String interpretation
fn = ab f0 f1 · · · fn−2

e.g. f6 = abaababaabaababaababa.
Noncommutativity of words gives richer interpretations:

fn = f R0 f
R
1 · · · f Rn−2(ba|ab)

e.g. f6 = abaababaabaababaababa.
One gets even another interpretations:

fn = aw0w1 · · ·wn−2(a|b)
e.g. f6 = abaababaabaababaababa.
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Fibonacci number system

All natural numbers have a unique binary representation in Fibonacci num-
bers, provided consecutive Fibonacci numbers are not used.

F5 F4 F3 F2 F1 f
8 5 3 2 1 n

0 0 a
1 1 b

1 0 2 a
1 0 0 3 a
1 0 1 4 b

1 0 0 0 5 a
1 0 0 1 6 b
1 0 1 0 7 a

1 0 0 0 0 8 a
1 0 0 0 1 9 b
1 0 0 1 0 10 a
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Construction of Fibonacci-even numbers

So n is Fibonacci-even if and only f (n) = a.

E f = {0, 2, 3, 5, 7, 8, 10, . . .}
Construction by a min-excluded algorithm:

n+ 1 1 2 3 4 5 6 7
E f 0 2 3 5 7 8
0 f 1 4 6 9

The sequences E f and O f are complementary Beatty sequences:

E f = {⌊nτ⌋ − 1 | n ≥ 1}, E f = {⌊nτ
2⌋ − 1 | n ≥ 1}

Here τ = (1+
√
5)/2.
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The Thue-Morse word

t = 0110100110010110 · · ·
is obtained by iterating the morphism

µ :
0 7→ 01
1 7→ 10

It is overlap-free : no factor of the form uvuvu with u nonempty.

ID Number: A007777
URL: http://www.research.att.com/projects/OEIS?Anum=A007777
Sequence: 1,2,4,6,10,14,20,24,30,36,44,48,60,60,62,72,82,88,96,112,

120,120,136,148,164,152,154,148,162,176,190,196,210,216,224,
228,248,272,284,296,300

Name: Number of overlap-free binary words of length n.
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Arithmetic definition of the Thue-Morse word

t = 0110100110010110 · · ·

t(n) =

{

0 if d2(n) ≡ 0(mod2)
1 otherwise

where d2(n) is the sum of the bits of the binary expansion of n.

1310 = 11012, so d2(n) = 3 ≡ 1(mod2), and t(13) = 1.

The word t is 2-automatic

0 10

1

1

0
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An unexpected usage of the Thue-Morse word

t = 0110100110010110 · · ·
Positions of 0: 1, 4, 6, 7, 10, 11, 13, 16, and of 1: 2, 3, 5, 8, 9, 12, 14, 15.

2 3
5 8
9 12
14 15

16 13
11 10
7 6

4 1
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Higher size and dimension
The construction

16 13
11 10
7 6

4 1

extends to sizes that are powers of 2 (excepted 2):

64 2 3 61 5 59 58 8
9 55 54 12 52 14 15 49
17 47 46 20 44 22 23 41
40 26 27 37 29 35 34 32
33 31 30 36 28 38 39 25
24 42 43 21 45 19 18 48
16 50 51 13 53 11 10 56
57 7 6 60 4 62 63 1

and can produce magic cubes etc.
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Run-length encoding of the Thue-Morse sequence

• Sequence 0110100110010110100101100 · · ·
• Run-length 12112221121121122 · · ·
• Summation S = 1, 3, 4, 5, 7, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 25 · · ·
• The set S is the smallest set of positive integers (for the lexicographic
order) such that n ∈ S if and only if 2n /∈ S.

• Construction by a min-excluded algorithm:
S 1 3 4 5 7 9 11 12 13
S̄ 2 6 8 10 14
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An open problem

Define the Morse blocks un and vn by: un+1 = unvn and vn+1 = vnun, with
u0 = 0, v0 = 1. Thus

u1 = 01, v1 = 10
u2 = 0110, v2 = 1001
u3 = 01101001, v3 = 10010110

1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1

Denote by en the length of a maximal common subword of un and vn.
The sequence en starts with 1, 2, 5, 12, 26, 54, 110, 226, 462, 942, 1908, . . ..

What is the formula for en?


