# **Combinatorics on Words Examples and Problems**

Jean Berstel Institut Gaspard–Monge Université de Marne–la–Vallée and CNRS (UMR 8049)

## **Outline**

- Words
- Squares
- Finding squares
- Fibonacci
- Thue-Morse
- Some open problems

### Words

- Words
  - Syntax: programming and natural languages
  - Text: web, images, television
  - Genomics: structure of genes
- Algorithms
  - Translation : compilation, automata
  - Data processing : pattern matching, image analysis
  - Data compression
- Combinatorics
  - Structure: equations, classification, generation
  - (Un)avoidable regularities
  - Finding regularities
  - Special families of words

# The beginning of a small piece in a human gene

>ref | NT\_029490.4 | Hs21\_29649:1-490233 Homo sapiens chromosome 21 genomic contig TGGAACAGTCTTTTTGTAAAATCTATAAAGGGATAATTGTGAACCCTTTGAGGCCTAGGGTGAAGTAGG AAATATCTTCACATAAAAACTACACAGAAATTTTCTGAGAAACGTTTTAGTGATGCGTGCATTCATCTCA CAGAGTTGAACCTTTCCTTTGCTAGAGCACTTTGGAAACAGTCCTATTGTAGAATCCCCAAAGGAATACT TCTCAGCCGATTGAGGCCTTTGGTGATATTGGAAATATCTTCACATAAAAGCTAGACAGAAACTTTCTGA GAAACTTATTTTTAATGAGTGCTCTCATCTCAAAGAGTTTAAGTGTTTCTTTTGAATGAGCAGTTTGGAAA CACTCTTTTTGCATAATCTGCAAATGGATAATTGGAGCGTTTTGAGGCCTATGGTGAAAAAGGAAATATC TTCACATAAAAACTAAACAGAAGCTTTCTGAGAAACTACTTTGTAATGTGTGCATTCATCTCACAGCGTT TTTATAGAATCTGGAAATGCATATTTGGAGAGCTTTGAGGCCTATGGAGAAAAAGGAAATATCTTCAGAT AAACACTAAACAGAAGCTTTCTGAGAAACTTCTTTGTGATGTCTGCATTCATATCACAGAGCTGAAACTT TCTTTTGATTTAGCAGTTTGTAAACAGTCTTTTGGTAGAATCTGCAAATAGATACTTGGAGTGCTTTGAG GCCTATGTTGAAAAAGGAAATATCTTCACAAAAAATCTAGAAAGATACATTCTGAGAAACTTCTTTTGTGA

. . .

## Repetition

- A square is a sequence that is repeated. For instance ti is a square in repetition. In TTCTGAGAAACTT, there are TT (twice) and GAGA
- A square is called a tandem repeat in computational biology.
- A run is a maximal repetition (called also tandem array). AAA is a run.
- A word is square-free if it contains no square. For instance, GTGATGTCTGCAT.

#### Questions

- Finding squares is difficult?
- Avoiding squares is possible?
- How many square may a word contain?
- How many square-free words exist?

# **Square-free words**

• Axel Thue (1906) gives an infinite square-free word over four letters.

• This word is obtained by iterating the morphism

 $0 \rightarrow 03121$ 

 $1 \rightarrow 01321$ 

 $2 \rightarrow 01231$ 

 $3 \rightarrow 01213$ 

• The word starts with

03121 01213 01321 01231 01321 · · ·

• Construction of the morphism: take 121, insert 3 at all possible places, and start with 0.

# Another square-free word by Axel Thue

- Axel Thue gives, in the same paper, an infinite ternary square-free word.
- Three step construction, starting with a square-free word, e. g. *abac* 
  - 1. Replace c by  $\underline{b}\underline{a}$  if c is preceded by a, by  $\underline{a}\underline{b}$  otherwise:

$$abac \rightarrow aba\underline{b}\underline{a}$$

2. Insert a *c* after each letter:

$$aba\underline{b}\underline{a} \rightarrow acbcac\underline{b}c\underline{a}c$$

3. Replace each a by aba and each b by bab, and then erase underbars:

$$acbcac\underline{b}c\underline{a}c \rightarrow abacbabcabacbcac$$

• Repeat the construction.

#### Other constructions of this word

#### The word is

abac babc abac bcac babc abac babc acbc abac babc abac bcac babc acbc abac ...

1. By iterating a (modified) substitution:

```
a \mapsto abac
b \mapsto babc
c \mapsto bcac if c is preceded by a
c \mapsto acbc otherwise
```

## This gives

```
a abac abac bcac abac babc abac babc acbc ...
```

2. By iterating a substitution on four letters and then identifying two of them:

$$a \mapsto abac'$$
 $b \mapsto babc''$ 
 $c' \mapsto bc''ac'$ 
 $c'' \mapsto ac'bc''$ 

and then erase the primes and seconds This gives

```
a
abac'
abac' babc" abac' bc"ac'
```

# Recognition of this word by a finite automaton

3. A finite automaton yields explicitly the value of the word at each posi-





 $13_{10} = 31_4$  and  $a \cdot 31 = c' \cdot 1 = c''$ , so the thirteenth symbol is c''.

## Detecting squares in a word

There exists a linear time algorithm for testing whether a word is squarefree.

It is based on the socalled *c*-factorization:

$$c(x) = (x_1, x_2, \ldots, x_m)$$

where each  $x_k$  is either a fresh letter, or is the longest factor that appears already before.

```
c(ababaab) = a|b|aba|ab c(abacbabcba) = a|b|a|c|ba|b|cba c(abaababaabaabaababa) = a|b|a|aba|baaba|abaaba|ba
```

The computation of the *c*-factorization of *x* uses the suffix tree of the word x.

## The suffix tree of a word

This is the suffix tree of abacbabcba.



The suffix tree of a word can be computed in linear time.

# Augmented suffix tree

At each node, the first occurrence of the factor is reported. For *abacbabcba*:



This gives in linear time the *c*-factorization:

c(abacbabcba) = a|b|a|c|ba|b|cba

## Words with many squares

**Theorem** At most 2n distinct squares may occur in a word of length n.

**Example** The word *ababaabababab* of length 14 contains 9 squares (this is maximal for a 14-letter word):

a ab, ba abaa, abaab, baaba, aabab

**Open** It is not known whether there exists a word of length n having more than n occurrences of distinct squares.

**Theorem** A word of length n contains at most  $O(n \log n)$  occurrences of primitive squares.

## **Example** The word

```
f_6 = abaababaabaabaababa
```

of length  $21 = F_6$  contains a total of 1 + 2 + 3 + 4 + 4 = 14 distinct primitive squares:

and 26 occurrences of primitive squares:  $4 \times a + 3 \times ab + 3 \times ba + \cdots$ .

**Theorem** The Fibonacci word of length  $F_n$  contains  $2(F_{n-2}-1)$  distinct (primitive) squares and  $2/5n(F_n+F_{n-2})-12/5F_{n-1}-F_{n-2}+n+1$  occurrences of squares.

## Two particular infinite words

#### Fibonacci word

- The most popular of the Sturmian words
- Has many extremal properties

#### Thue-Morse word

- The most popular of the automatic words
- Has been introduced by Thue for proving the existence of binary infinite overlap-free words
- Has been introduced indepently by Marston Morse for proving the existence of uniformly recurrent non periodic word

Both words have been generalized in several ways.

#### Fibonacci word

The infinite Fibonacci word has all finite Fibonacci words as prefixes.

## Interpretation of numerical properties

#### Numerical relation

$$F_n = 2 + F_0 + F_1 + \cdots + F_{n-2}$$

e.g. 
$$F_6 = 21 = 2 + 1 + 2 + 3 + 5 + 8$$
.

### **String interpretation**

$$f_n = abf_0f_1\cdots f_{n-2}$$

e.g.  $f_6 = abaababaabaabaababaaba$ .

Noncommutativity of words gives richer interpretations:

$$f_n = f_0^R f_1^R \cdots f_{n-2}^R (ba|ab)$$

e.g.  $f_6 = abaababaabaabaababaababa$ .

One gets even another interpretations:

$$f_n = aw_0w_1\cdots w_{n-2}(a|b)$$

e.g.  $f_6 = abaababaabaabaababaababa$ .

## Fibonacci number system

All natural numbers have a unique binary representation in Fibonacci numbers, provided consecutive Fibonacci numbers are not used.

| $F_5$ | $F_4$ | $F_3$ | $F_2$ | $F_1$ |                                           | f |
|-------|-------|-------|-------|-------|-------------------------------------------|---|
| 8     | 5     | 3     | 2     | 1     | n                                         |   |
|       |       |       |       | 0     | 0                                         | а |
|       |       |       |       | 1     | 1                                         | b |
|       |       |       | 1     | 0     | 2                                         | a |
|       |       | 1     | 0     | 0     | 3                                         | a |
|       |       | 1     | 0     | 1     | 4                                         | b |
|       | 1     | 0     | 0     | 0     | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | a |
|       | 1     | 0     | 0     | 1     | 6                                         | b |
|       | 1     | 0     | 1     | 0     | 7                                         | a |
| 1     | 0     | 0     | 0     | 0     | 8                                         | a |
| 1     | 0     | 0     | 0     | 1     | 9                                         | b |
| 1     | 0     | 0     | 1     | 0     | 10                                        | a |

Turku, 24 may 2006 20

#### Construction of Fibonacci-even numbers

So *n* is *Fibonacci-even* if and only f(n) = a.

$$E_f = \{0, 2, 3, 5, 7, 8, 10, \ldots\}$$

Construction by a *min-excluded* algorithm:

The sequences  $E_f$  and  $O_f$  are complementary Beatty sequences:

$$E_f = \{ \lfloor n\tau \rfloor - 1 \mid n \ge 1 \}, \qquad E_f = \{ \lfloor n\tau^2 \rfloor - 1 \mid n \ge 1 \}$$

Here 
$$\tau = (1 + \sqrt{5})/2$$
.

#### The Thue-Morse word

 $t = 0110100110010110 \cdots$ 

is obtained by iterating the morphism

$$\mu: \quad \begin{array}{ccc} 0 & \mapsto & 01 \\ 1 & \mapsto & 10 \end{array}$$

It is overlap-free: no factor of the form *uvuvu* with *u* nonempty.

ID Number: A007777

URL: http://www.research.att.com/projects/OEIS?Anum=A007777

Sequence: 1,2,4,6,10,14,20,24,30,36,44,48,60,60,62,72,82,88,96,112,

120,120,136,148,164,152,154,148,162,176,190,196,210,216,224,

228,248,272,284,296,300

Name: Number of overlap-free binary words of length n.

Turku, 24 may 2006 22

### Arithmetic definition of the Thue-Morse word

 $t = 0110100110010110 \cdots$ 

$$t(n) = \begin{cases} 0 & \text{if } d_2(n) \equiv 0 \pmod{2} \\ 1 & \text{otherwise} \end{cases}$$

where  $d_2(n)$  is the sum of the bits of the binary expansion of n.

$$13_{10} = 1101_2$$
, so  $d_2(n) = 3 \equiv 1 \pmod{2}$ , and  $t(13) = 1$ .

The word *t* is 2-automatic



# An unexpected usage of the Thue-Morse word

 $t = 0110100110010110 \cdots$ 

Positions of 0: 1, 4, 6, 7, 10, 11, 13, 16, and of 1: 2, 3, 5, 8, 9, 12, 14, 15.





|   | 2  | 3  |    |
|---|----|----|----|
| 5 |    |    | 8  |
| 9 |    |    | 12 |
|   | 14 | 15 |    |

| 16 |    |    | 13 |
|----|----|----|----|
|    | 11 | 10 |    |
|    | 7  | 6  |    |
| 4  |    |    | 1  |

# Higher size and dimension

The construction

| 16 |    |    | 13 |
|----|----|----|----|
|    | 11 | 10 |    |
|    | 7  | 6  |    |
| 4  |    |    | 1  |

extends to sizes that are powers of 2 (excepted 2):

| 64 | 2  | 3  | 61 | 5  | 59 | 58 | 8  |
|----|----|----|----|----|----|----|----|
| 9  | 55 | 54 | 12 | 52 | 14 | 15 | 49 |
| 17 | 47 | 46 | 20 | 44 | 22 | 23 | 41 |
| 40 | 26 | 27 | 37 | 29 | 35 | 34 | 32 |
| 33 | 31 | 30 | 36 | 28 | 38 | 39 | 25 |
| 24 | 42 | 43 | 21 | 45 | 19 | 18 | 48 |
| 16 | 50 | 51 | 13 | 53 | 11 | 10 | 56 |
| 57 | 7  | 6  | 60 | 4  | 62 | 63 | 1  |

and can produce magic cubes etc.

Turku, 24 may 2006 25

## Run-length encoding of the Thue-Morse sequence

- Sequence 0110100110010110100101100 · · ·
- Run-length 12112221121121122 · · ·
- Summation  $S = 1, 3, 4, 5, 7, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 25 \cdots$
- The set S is the smallest set of positive integers (for the lexicographic order) such that  $n \in S$  if and only if  $2n \notin S$ .
- Construction by a *min-excluded* algorithm:

## An open problem

Define the Morse blocks  $u_n$  and  $v_n$  by:  $u_{n+1} = u_n v_n$  and  $v_{n+1} = v_n u_n$ , with  $u_0 = 0$ ,  $v_0 = 1$ . Thus

$$u_1 = 01, v_1 = 10$$
  
 $u_2 = 0110, v_2 = 1001$   
 $u_3 = 01101001, v_3 = 10010110$ 



Denote by  $e_n$  the length of a maximal common subword of  $u_n$  and  $v_n$ . The sequence  $e_n$  starts with 1, 2, 5, 12, 26, 54, 110, 226, 462, 942, 1908, . . . .

What is the formula for  $e_n$ ?