Crochemore factorization of Sturmian and other infinite words

Jean Berstel and Alessandra Savelli Institut Gaspard–Monge Université de Marne–la–Vallée and CNRS (UMR 8049)

> Workshop on Words and Automata St Petersburg, 7 june 2006

Outline

I. Motivation

- A long motivation
 - Square-free words: A construction by A. Thue
 - Words with many squares
- An even longer motivation: testing square-freeness
 - $-A O(n \log n)$ algorithm
 - Centered squares
 - Looking for centered squares in linear time
- The true motivation: testing square-freeness in linear time
 - Crochemore factorization
 - Suffix trees for computing the Crochemore factorization
 - The linear time algorithm

Outline continued)

II. Crochemore factorizations

- The Crochemore factorization of the Fibonacci word
- The Crochemore factorization of standard Sturmian words
- The Crochemore factorization of the Thue-Morse word
- Crochemore factorization and Ziv-Lempel factorization

Repetitions

• A square is a sequence that is repeated. For instance ti is a square in repetition.

- A square is called a tandem repeat in computational biology.
- A word is square-free if it contains no square.

Questions

- Finding squares is difficult?
- Avoiding squares is possible?
- How many square may a word contain?
- How many square-free words exist?

A square-free word given by Axel Thue

- Axel Thue gives in 1906 an infinite ternary square-free word, constructed as follows.
- Three step construction, starting with a square-free word, e. g. abac
 - 1. Replace c by \overline{b} \overline{a} if c is preceded by a, by \overline{a} \overline{b} otherwise:

$$abac \rightarrow aba\overline{b}\,\overline{a}$$

2. Insert a *c* after each letter:

$$aba\overline{b} \overline{a} \rightarrow acbcac\overline{b}c\overline{a}c$$

3. Replace each a by aba and each b by bab, and then erase bars:

$$acbcac\overline{b}c\overline{a}c \rightarrow abacbabcabacbcac$$

• Repeat the construction.

Other constructions of this word

The word is

abac babc abac bcac babc abac babc acbc abac babc abac bcac babc acbc abac · · ·

1. By iterating a (modified) substitution:

```
a \mapsto abac c \mapsto bcac if c is preceded by a b \mapsto babc c \mapsto acbc otherwise
```

2. By iterating a substitution on four letters and then identifying two of them:

$$a \mapsto abac'$$
 $c' \mapsto bc''ac'$ $b \mapsto babc''$ $c'' \mapsto ac'bc''$

and then erase the primes and seconds.

3. By a finite automaton yields explicitly the value of the word at each position:

7

Words with many squares

Theorem At most 2n distinct squares may occur in a word of length n.

This has been improved to $2n - \Theta(\log n)$.

Example The word *ababaabababab* of length 14 contains 9 squares (this is maximal for a 14-letter word):

a ab, ba abaa, abaab, baaba, aabab

Open It is not known whether there exists a word of length n having more than n occurrences of distinct squares.

Consider the word $u_n = w_1 w_2 \cdots w_n$, where $w_i = 0^{i+1} 10^i 10^{i+1} 1$. It has length $3n^2/2 + 13n/2$ and more than $3n^2/2 + 7n/2 - 2$ distinct squares.

Example The word $u_2 = 00101001\,00010010001$ has length 19 and 11 squares.

Detecting squares in a word: A $O(n \log n)$ algorithm

There exists a linear time algorithm for testing whether a word is square-free.

• A square zz is left-centered (right-centered) in (u, v) if zz is a square in uv and the right (left) z overlaps (u, v):

- A word x = uv is square-free if u and v are square-free and if (u, v) has no centered square.
- If one can test centered squarefreeness in linear time, then this gives an $O(n \log n)$ algorithm (n = |x|).

Detecting centered squares in a word

- $p = t \wedge v$ is the longest common prefix of t and v
- $s = w \lor u$ is the longest common suffix of w and u
- (u, v) has a left-centered square if and only if there is a factorization u = wt, with nonempty t, such that

$$|p|+|s|\geq |t|.$$

- First miracle: the computation of all $t \wedge v$, for all suffixes t of u, can be performed in time O(|u|).
- So, testing whether (u, v) has no left (right) centered square can be done in time (O(|u|) (resp. (O(|v|))).

A linear time algorithm

A linear time algorithm for testing whether a word is square-free is based on the socalled *c*-factorization (for *Crochemore*-factorization):

$$c(x) = (x_1, x_2, \ldots, x_m)$$

where each x_k is either a fresh letter, or is the longest factor that appears already before.

```
c(ababaab) = a|b|aba|ab

c(abacbabcba) = a|b|a|c|ba|b|cba
```

The efficient computation of the c-factorization of x uses the suffix tree of the word x.

The suffix tree of a word

This is the suffix tree of abacbabcba.

Second miracle: the suffix tree of a word can be computed in linear time.

Augmented suffix tree

At each node, the first occurrence of the factor is reported. For *abacbabcba*:

This gives in linear time the *c*-factorization:

c(abacbabcba) = a|b|a|c|ba|b|cba

Squares in *c*-factorizations

Theorem Let $c(x) = (x_1, ..., x_k)$ be the c-factorization of x. Then x is square-free iff the following hold for all j

- 1. The occurrence of x_i in c(x) and the first occurrence of x_i do not overlap.
- 2. (x_{j-1}, x_j) has no centered square,
- 3. $(x_1 \cdots x_{j-2}, x_{j-1}x_j)$ has no right centered square.

Cost for each *j*:

- 1. O(1).
- 2. $|x_{j-1}| + |x_j|$
- 3. $|x_{j-1}| + |x_j|$

So total cost is linear in the length of x.

Fibonacci word

The infinite Fibonacci word has all finite Fibonacci words as prefixes.

Interpretation of numerical properties

Numerical relation

$$F_n = 2 + F_0 + F_1 + \cdots + F_{n-2}$$

e.g.
$$F_6 = 21 = 2 + 1 + 2 + 3 + 5 + 8$$
.

String interpretation

$$f_n = abf_0f_1\cdots f_{n-2}$$

e.g. $f_6 = abaababaabaabaababaababa$.

Noncommutativity of words gives richer interpretations:

$$f_n = f_0^R f_1^R \cdots f_{n-2}^R (ba|ab)$$

e.g. $f_6 = abaababaabaabaababaaba$.

One gets even another interpretation:

$$f_n = aw_0w_1\cdots w_{n-2}(a|b)$$

e.g. $f_6 = abaababaabaabaababaababa$.

The second factorization is (almost) the c-factorization.

Crochemore factorization of the Fibonacci word

Comparison of three factorizations:

- *h*: as a product of finite Fibonacci words
- *w*: as a product of singular words
- *c*: as a product of reversals of Fibonacci words

Theorem *The c-factorization of the Fibonacci word f is*

$$c(f) = (a, b, a, aba, baaba, ...) = (a, b, a, f_2^R, f_3^R, ...)$$

Crochemore factorization of standard Sturmian words

A standard Sturmian word is defined by a directive sequence $(d_1, d_2, ...)$. It is the limit of the words s_n with

$$s_{-1} = b$$
, $s_0 = a$, and $s_n = s_{n-1}^{d_n} s_{n-2}$,

Theorem Let s be the standard Sturmian word defined by the directive sequence $(d_1, d_2, ...)$. Then

$$c(s) = (a, a^{d_1-1}, b, a^{d_1} \widetilde{s}_1^{d_2-1}, \widetilde{s}_2^{d_3}, \widetilde{s}_3^{d_4}, \dots, \widetilde{s}_n^{d_{n+1}}, \dots)$$

Here \widetilde{w} is the reversal of w.

Crochemore factorization of the Thue-Morse word

The *Thue-Morse infinite word* is

```
t = abbabaabbaabbaababa \cdots
```

obtained by iterating the morphism τ defined by $\tau(a)=ab$, $\tau(b)=ba$. One gets

$$c(t) = a|b|b|ab|a|abba|aba|bbabaab|abbaab|babaabbaabba|\cdots$$

Each long enough factor is obtained from a previous one by applying the morphism τ .

Theorem The c-factorization $c(t) = (c_1, c_2, ...)$ of the Thue-Morse sequence is $(a, b, b, ab, a, abba, aba, bbabaab, c_9, c_{10}, ...)$

where $c_{n+2} = \tau(c_n)$ for every $n \geq 8$.

So, $c_9 = abbaab = \tau(aba)$, $c_{10} = babaabbaababba = \tau(bbabaab)$.

Synchronization is late!

WoWA, 7 june 2006 20

Crochemore factorization of generalized Thue-Morse words

Better behaviour!

Let $t^{(m)}$ be the word on $\{a_1, a_2, \dots, a_m\}$ obtained as the limit of the morphism τ_m defined by

$$\tau_m(a_i) = a_i a_{i+1} \cdots a_m a_1 \cdots a_{i-1} \quad (i = 1, \ldots, m).$$

Theorem For $m \ge 3$, the c-factorization $c(t^{(m)}) = (c_1^{(m)}, c_2^{(m)}, \ldots)$ satisfies the relation $c_{n+2(m-1)}^{(m)} = \tau_m(c_n)$ for n > m.

Example m = 3. Morphism $0 \mapsto 012, 1 \mapsto 120, 2 \mapsto 201$. $c_{n+4}^{(3)} = \tau_3(c_n)$ for n > 3.

$$c(t^{(3)}) = 0|1|2|$$
 $12|0|20|1|$
 $120201|012|201012|120|$
 $120201012201012120|012120201|\cdots$

WoWA, 7 june 2006 21

Crochemore factorization of the period-doubling word

Define
$$\delta(a)=ab$$
, $\delta(b)=aa$, and set $q_0=a$ and $q_{n+1}=\delta(q_n)$. Thus $q_0=a$ $q_3=abaaabab$ $q_1=ab$ $q_4=abaaabababaaabaa$ $q_2=abaa$

The limit *q* is the *period doubling sequence*

$$q = a ba aaba babaaaba aabaaabababaaaba \cdots (= q_0^R q_1^R q_2^R q_3^R q_4^R \cdots)$$

Theorem *The c-factorization of q is*

$$c(q) = (a, q_0^S, q_0^R, q_1^S, q_1^R, q_2^S, q_2^R, \ldots).$$

Here w^R is the reversal, and w^S is obtained from w^R by replacing the first letter by its opposite.

$$c(q) = a|b|a|aa|ba|baba|aaba|aaba|aaba|babaaaba| \cdots$$

Ziv-Lempel factorization

The Ziv-Lempel or z-factorization z(x) of a word x is

$$z(x)=(y_1,y_2,\ldots,y_m,y_{m+1},\ldots)$$

where y_m is the shortest prefix of $y_m y_{m+1} \cdots$ which occurs only once in $y_1 y_2 \cdots y_m$.

Example For x = aabaaccbaabaabaa.

$$c(x) = (a, a, b, aa, c, c, baa, baabaa)$$

$$z(x) = (a, ab, aac, cb, aabaab, aa).$$

Crochemore factorization versus Ziv-Lempel factorization

The factorizations are closely related:

Proposition Let $(c_1, c_2, ...)$ and $(z_1, z_2, ...)$ be the Crochemore and the Ziv-Lempel factorizations of a word w, then the following hold for each i, j.

- If $|c_1 \cdots c_{i-1}| \ge |z_1 \cdots z_{j-1}|$ and $|c_1 \cdots c_i| < |z_1 \cdots z_j|$, then $|z_1 \cdots z_j| = |c_1 \cdots c_i| + 1$.
- If $|z_1 \cdots z_{j-1}| < |c_1 \cdots c_i| \le |z_1 \cdots z_j|$, then $|c_1 \cdots c_{i+1}| \le |z_1 \cdots z_{j+1}|$.

An example

Consider the word

$$v = abaaabababaaabaa \cdots$$

defined as the limit of the sequence

$$v_0 = a$$
, $v_{2n+1} = v_{2n}bv_{2n}$, $v_{2n} = v_{2n-1}av_{2n-1}$

Thus

$$egin{array}{lll} v_0 &= a & v_2 &= abaaaba \ v_1 &= aba & v_3 &= abaaababaaaba \end{array}$$

Each Ziv-Lempel factor of v properly includes a Crochemore factor ending just a letter before it, as illustrated in this figure:

WoWA, 7 june 2006 25

Open problems

- characterize *c*-factorizations of automatic words.
- are *c*-factorizations and *z*-factorizations really different?