Crochemore factorization of Sturmian and other infinite words

Jean Berstel and Alessandra Savelli Institut Gaspard-Monge
Université de Marne-la-Vallée and CNRS (UMR 8049)
Workshop on Words and Automata
St Petersburg, 7 june 2006

Outline

I. Motivation

- A long motivation
- Square-free words: A construction by A. Thue
- Words with many squares
- An even longer motivation: testing square-freeness
- A $O(n \log n)$ algorithm
- Centered squares
- Looking for centered squares in linear time
- The true motivation: testing square-freeness in linear time
- Crochemore factorization
- Suffix trees for computing the Crochemore factorization
- The linear time algorithm

Outline continued)

II. Crochemore factorizations

- The Crochemore factorization of the Fibonacci word
- The Crochemore factorization of standard Sturmian words
- The Crochemore factorization of the Thue-Morse word
- Crochemore factorization and Ziv-Lempel factorization

Repetitions

- A square is a sequence that is repeated. For instance $t i$ is a square in repetition.
- A square is called a tandem repeat in computational biology.
- A word is square-free if it contains no square.

Questions

- Finding squares is difficult ?
- Avoiding squares is possible?
- How many square may a word contain ?
- How many square-free words exist?

A square-free word given by Axel Thue

- Axel Thue gives in 1906 an infinite ternary square-free word, constructed as follows.
- Three step construction, starting with a square-free word, e. g. abac

1. Replace c by $\bar{b} \bar{a}$ if c is preceded by a, by $\bar{a} \bar{b}$ otherwise:

$$
a b a c \rightarrow a b a \bar{b} \bar{a}
$$

2. Insert a c after each letter:

$$
a b a \bar{b} \bar{a} \rightarrow a c b c a c \bar{b} c \bar{a} c
$$

3. Replace each a by $a b a$ and each b by $b a b$, and then erase bars:

$$
\text { acbcac } \bar{b} c \bar{a} c \rightarrow \text { abacbabcabacbcac }
$$

- Repeat the construction.

Other constructions of this word

The word is
abac babc abac bcac babc abac babc acbc abac babc abac bcac babc acbc abac ...

1. By iterating a (modified) substitution:

$$
\begin{array}{ll}
a \mapsto a b a c & c \mapsto b c a c \text { if } c \text { is preceded by } a \\
b \mapsto b a b c & c \mapsto a c b c \text { otherwise }
\end{array}
$$

2. By iterating a substitution on four letters and then identifying two of them:

$$
\begin{aligned}
a & \mapsto a b a c^{\prime} & c^{\prime} & \mapsto b c^{\prime \prime} a c^{\prime} \\
b & \mapsto b a b c^{\prime \prime} & c^{\prime \prime} & \mapsto a c^{\prime} b c^{\prime \prime}
\end{aligned}
$$

and then erase the primes and seconds.
3. By a finite automaton yields explicitly the value of the word at each position:

Words with many squares

Theorem At most $2 n$ distinct squares may occur in a word of length n.
This has been improved to $2 n-\Theta(\log n)$.
Example The word ababaababaabab of length 14 contains 9 squares (this is maximal for a 14-letter word):

```
a
ab,ba
aba
ababa,babaa,abaab, baaba,aabab
```

Open It is not known whether there exists a word of length n having more than n occurrences of distinct squares.

Consider the word $u_{n}=w_{1} w_{2} \cdots w_{n}$, where $w_{i}=0^{i+1} 10^{i} 10^{i+1} 1$.
It has length $3 n^{2} / 2+13 n / 2$ and more than $3 n^{2} / 2+7 n / 2-2$ distinct squares.

Example The word $u_{2}=0010100100010010001$ has length 19 and 11 squares.

Detecting squares in a word: A $O(n \log n)$ algorithm

There exists a linear time algorithm for testing whether a word is squarefree.

- A square $z z$ is left-centered (right-centered) in (u, v) if $z z$ is a square in $u v$ and the right (left) z overlaps (u, v) :

U	7
z	z

- A word $x=u v$ is square-free if u and v are square-free and if (u, v) has no centered square.
- If one can test centered squarefreeness in linear time, then this gives an $O(n \log n)$ algorithm $(n=|x|)$.

Detecting centered squares in a word

- $p=t \wedge v$ is the longest common prefix of t and v
- $s=w \vee u$ is the longest common suffix of w and u
- (u, v) has a left-centered square if and only if there is a factorization $u=w t$, with nonempty t, such that

$$
|p|+|s| \geq|t|
$$

- First miracle: the computation of all $t \wedge v$, for all suffixes t of u, can be performed in time $O(|u|)$.
- So, testing whether (u, v) has no left (right) centered square can be done in time $(O(|u|)$ (resp. $(O(|v|))$.

A linear time algorithm

A linear time algorithm for testing whether a word is square-free is based on the socalled c-factorization (for Crochemore-factorization):

$$
c(x)=\left(x_{1}, x_{2}, \ldots, x_{m}\right)
$$

where each x_{k} is either a fresh letter, or is the longest factor that appears already before.

$$
\begin{aligned}
c(a b a b a a b) & =a|b| a b a \mid a b \\
c(a b a c b a b c b a) & =a|b| a|c| b a|b| c b a
\end{aligned}
$$

The efficient computation of the c-factorization of x uses the suffix tree of the word x.

The suffix tree of a word

This is the suffix tree of abacbabcba.

Second miracle : the suffix tree of a word can be computed in linear time.

Augmented suffix tree

At each node, the first occurrence of the factor is reported. For abacbabcba:

This gives in linear time the c-factorization:

$$
c(a b a c b a b c b a)=a|b| a|c| b a|b| c b a
$$

Squares in c-factorizations

Theorem Let $c(x)=\left(x_{1}, \ldots, x_{k}\right)$ be the c-factorization of x. Then x is squarefree iff the following hold for all j

1. The occurrence of x_{j} in $c(x)$ and the first occurrence of x_{j} do not overlap.
2. $\left(x_{j-1}, x_{j}\right)$ has no centered square,
3. $\left(x_{1} \cdots x_{j-2}, x_{j-1} x_{j}\right)$ has no right centered square.

Cost for each j :

1. $O(1)$.
2. $\left|x_{j-1}\right|+\left|x_{j}\right|$
3. $\left|x_{j-1}\right|+\left|x_{j}\right|$

So total cost is linear in the length of x.

Fibonacci word

Defined by $f_{0}=a, f_{1}=a b, f_{n+2}=f_{n+1} f_{n}$. Length of f_{n} is F_{n}.

$$
\begin{array}{ll}
F_{0}=1 & f_{0}=a \\
F_{1}=2 & f_{1}=a b \\
F_{2}=3 & f_{2}=a b a \\
F_{3}=5 & f_{3}=a b a a b \\
F_{4}=8 & f_{4}=a b a a b a b a \\
F_{5}=13 & f_{5}=a b a a b a b a a b a a b \\
F_{6}=21 & f_{6}=\text { abaababaabaababaababa } \\
F_{7}=34 & f_{7}=a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b
\end{array}
$$

The infinite Fibonacci word has all finite Fibonacci words as prefixes.

Interpretation of numerical properties

Numerical relation

$$
F_{n}=2+F_{0}+F_{1}+\cdots+F_{n-2}
$$

e.g. $F_{6}=21=2+1+2+3+5+8$.

String interpretation

$$
f_{n}=a b f_{0} f_{1} \cdots f_{n-2}
$$

e.g. $f_{6}=a b a a b a b a a b a a b a b a a b a b a$.

Noncommutativity of words gives richer interpretations:

$$
f_{n}=f_{0}^{R} f_{1}^{R} \cdots f_{n-2}^{R}(b a \mid a b)
$$

e.g. $f_{6}=$ abaababaabaababaababa.

One gets even another interpretation:

$$
f_{n}=a w_{0} w_{1} \cdots w_{n-2}(a \mid b)
$$

e.g. $f_{6}=$ abaababaabaababaababa.

The second factorization is (almost) the c-factorization.

Crochemore factorization of the Fibonacci word

Comparison of three factorizations:

- h: as a product of finite Fibonacci words
- w : as a product of singular words
- c : as a product of reversals of Fibonacci words

Theorem The c-factorization of the Fibonacci word f is

$$
c(f)=(a, b, a, a b a, b a a b a, \ldots)=\left(a, b, a, f_{2}^{R}, f_{3}^{R}, \ldots\right)
$$

Crochemore factorization of standard Sturmian words

A standard Sturmian word is defined by a directive sequence $\left(d_{1}, d_{2}, \ldots\right)$. It is the limit of the words s_{n} with

$$
s_{-1}=b, s_{0}=a, \text { and } s_{n}=s_{n-1}^{d_{n}} s_{n-2},
$$

Theorem Let s be the standard Sturmian word defined by the directive sequence $\left(d_{1}, d_{2}, \ldots\right)$. Then

$$
c(s)=\left(a, a^{d_{1}-1}, b, a^{d_{1}} \widetilde{s}_{1}^{d_{2}-1}, \widetilde{s}_{2}^{d_{3}}, \widetilde{s}_{3}^{d_{4}}, \ldots, \widetilde{s}_{n}^{d_{n+1}}, \ldots\right)
$$

Here \widetilde{w} is the reversal of w.

Crochemore factorization of the Thue-Morse word

The Thue-Morse infinite word is

$$
t=a b b a b a a b b a a b a b b a \ldots
$$

obtained by iterating the morphism τ defined by $\tau(a)=a b, \tau(b)=b a$. One gets

$$
c(t)=a|b| b|a b| a|a b b a| a b a|b b a b a a b| a b b a a b|b a b a a b b a a b a b b a| \cdots
$$

Each long enough factor is obtained from a previous one by applying the morphism τ.
Theorem The c-factorization $c(t)=\left(c_{1}, c_{2}, \ldots\right)$ of the Thue-Morse sequence is

$$
\left(a, b, b, a b, a, a b b a, a b a, b b a b a a b, c_{9}, c_{10}, \ldots\right)
$$

where $c_{n+2}=\tau\left(c_{n}\right)$ for every $n \geq 8$.
So, $c_{9}=a b b a a b=\tau(a b a), c_{10}=b a b a a b b a a b a b b a=\tau($ bbabaab $)$.
Synchronization is late!

Crochemore factorization of generalized Thue-Morse words

 Better behaviour !Let $t^{(m)}$ be the word on $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ obtained as the limit of the morphism τ_{m} defined by

$$
\tau_{m}\left(a_{i}\right)=a_{i} a_{i+1} \cdots a_{m} a_{1} \cdots a_{i-1} \quad(i=1, \ldots, m)
$$

Theorem For $m \geq 3$, the c-factorization $c\left(t^{(m)}\right)=\left(c_{1}^{(m)}, c_{2}^{(m)}, \ldots\right)$ satisfies the relation $c_{n+2(m-1)}^{(m)}=\tau_{m}\left(c_{n}\right)$ for $n>m$.

Example $m=3$. Morphism $0 \mapsto 012,1 \mapsto 120,2 \mapsto 201$. $c_{n+4}^{(3)}=\tau_{3}\left(c_{n}\right)$ for $n>3$.

$$
\begin{aligned}
c\left(t^{(3)}\right)= & 0|1| 2 \mid \\
& 12|0| 20|1| \\
& 120201|012| 201012|120| \\
& 120201012201012120|012120201| \cdots
\end{aligned}
$$

Crochemore factorization of the period-doubling word

 Define $\delta(a)=a b, \delta(b)=a a$, and set $q_{0}=a$ and $q_{n+1}=\delta\left(q_{n}\right)$. Thus$$
\begin{array}{ll}
q_{0}=a & q_{3}=a b a a a b a b \\
q_{1}=a b & q_{4}=a b a a a b a b a b a a a b a a \\
q_{2}=a b a a &
\end{array}
$$

The limit q is the period doubling sequence

$$
q=a b a a a b a b a b a a a b a \text { aabaaabababaaaba } \cdots\left(=q_{0}^{R} q_{1}^{R} q_{2}^{R} q_{3}^{R} q_{4}^{R} \cdots\right)
$$

Theorem The c-factorization of q is

$$
c(q)=\left(a, q_{0}^{S}, q_{0}^{R}, q_{1}^{S}, q_{1}^{R}, q_{2}^{S}, q_{2}^{R}, \ldots\right) .
$$

Here w^{R} is the reversal, and w^{S} is obtained from w^{R} by replacing the first letter by its opposite.

$$
c(q)=a|b| a|a a| b a|b a b a| a a b a|a a b a a a b a| b a b a a a b a \mid \cdots
$$

Ziv-Lempel factorization

The Ziv-Lempel or z-factorization $z(x)$ of a word x is

$$
z(x)=\left(y_{1}, y_{2}, \ldots, y_{m}, y_{m+1}, \ldots\right)
$$

where y_{m} is the shortest prefix of $y_{m} y_{m+1} \cdots$ which occurs only once in $y_{1} y_{2} \cdots y_{m}$.
Example For $x=$ aabaaccbaabaabaa.

$$
\begin{aligned}
& c(x)=(a, a, b, a a, c, c, b a a, \text { baabaa }) \\
& z(x)=(a, a b, a a c, c b, a a b a a b, a a) .
\end{aligned}
$$

Crochemore factorization versus Ziv-Lempel factorization

The factorizations are closely related:
Proposition Let $\left(c_{1}, c_{2}, \ldots\right)$ and $\left(z_{1}, z_{2}, \ldots\right)$ be the Crochemore and the Ziv-Lempel factorizations of a word w, then the following hold for each i, j.
\bullet If $\left|c_{1} \cdots c_{i-1}\right| \geq\left|z_{1} \cdots z_{j-1}\right|$ and $\left|c_{1} \cdots c_{i}\right|<\left|z_{1} \cdots z_{j}\right|$, then $\left|z_{1} \cdots z_{j}\right|=\left|c_{1} \cdots c_{i}\right|+1$.
\bullet If $\left|z_{1} \cdots z_{j-1}\right|<\left|c_{1} \cdots c_{i}\right| \leq\left|z_{1} \cdots z_{j}\right|$, then $\left|c_{1} \cdots c_{i+1}\right| \leq\left|z_{1} \cdots z_{j+1}\right|$.

An example

Consider the word

$$
v=a b a a a b a b a b a a a b a a \cdots
$$

defined as the limit of the sequence

$$
v_{0}=a, \quad v_{2 n+1}=v_{2 n} b v_{2 n}, \quad v_{2 n}=v_{2 n-1} a v_{2 n-1}
$$

Thus

$$
\begin{array}{ll}
v_{0}=a & v_{2}=a b a a a b a \\
v_{1}=a b a & v_{3}=a b a a a b a b a b a a a b a
\end{array}
$$

Each Ziv-Lempel factor of v properly includes a Crochemore factor ending just a letter before it, as illustrated in this figure:

$z:$	a	b	a	a	a	b	a	b	a	b	a	a	a	b	a	a	\cdots
$c:$	a	b	a	a	a	b	a	b	a	b	a	a	a	b	a	a	\cdots

Open problems

- characterize c-factorizations of automatic words.
- are c-factorizations and z-factorizations really different?

