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Outline

I. Motivation

• A long motivation

– Square-free words: A construction by A. Thue

–Words with many squares

• An even longer motivation: testing square-freeness

– A O(n log n) algorithm

– Centered squares

– Looking for centered squares in linear time

• The true motivation: testing square-freeness in linear time

– Crochemore factorization

– Suffix trees for computing the Crochemore factorization

– The linear time algorithm
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Outline continued)

II. Crochemore factorizations

• The Crochemore factorization of the Fibonacci word

• The Crochemore factorization of standard Sturmian words

• The Crochemore factorization of the Thue-Morse word

• Crochemore factorization and Ziv–Lempel factorization
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Repetitions

• A square is a sequence that is repeated. For instance ti is a square in
repetition.

• A square is called a tandem repeat in computational biology.

• A word is square-free if it contains no square.

Questions

• Finding squares is difficult ?

• Avoiding squares is possible ?

•How many square may a word contain ?

•How many square-free words exist ?
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A square-free word given by Axel Thue

• Axel Thue gives in 1906 an infinite ternary square-free word, constructed
as follows.

• Three step construction, starting with a square-free word, e. g. abac

1. Replace c by b a if c is preceded by a, by a b otherwise:

abac→ abab a

2. Insert a c after each letter:

abab a→ acbcacbcac

3. Replace each a by aba and each b by bab, and then erase bars:

acbcacbcac→ abacbabcabacbcac

• Repeat the construction.
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Other constructions of this word

The word is

abac babc abac bcac babc abac babc acbc abac babc abac bcac babc acbc abac · · ·

1. By iterating a (modified) substitution:

a 7→ abac
b 7→ babc

c 7→ bcac if c is preceded by a
c 7→ acbc otherwise

2. By iterating a substitution on four letters and then identifying two of
them:

a 7→ abac′

b 7→ babc′′
c′ 7→ bc′′ac′

c′′ 7→ ac′bc′′

and then erase the primes and seconds.

3. By a finite automaton yields explicitly the value of the word at each
position:
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Words with many squares

Theorem At most 2n distinct squares may occur in a word of length n.

This has been improved to 2n− Θ(log n).

Example The word ababaababaabab of length 14 contains 9 squares (this is
maximal for a 14-letter word):

a
ab, ba
aba
ababa, babaa, abaab, baaba, aabab



WoWA, 7 june 2006 8

Open It is not known whether there exists a word of length n having more
than n occurrences of distinct squares.

Consider the word un = w1w2 · · ·wn, where wi = 0i+110i10i+11.
It has length 3n2/2+ 13n/2 andmore than 3n2/2+ 7n/2− 2 distinct squa-
res.

Example The word u2 = 00101001 00010010001 has length 19 and 11 squa-
res.
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Detecting squares in a word: A O(n logn) algorithm

There exists a linear time algorithm for testing whether a word is square-
free.

• A square zz is left-centered (right-centered) in (u, v) if zz is a square in
uv and the right (left) z overlaps (u, v):

u v u v
z z z z

• A word x = uv is square-free if u and v are square-free and if (u, v) has
no centered square.

• If one can test centered squarefreeness in linear time, then this gives an
O(n log n) algorithm (n = |x|).
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Detecting centered squares in a word
u v

w t p
s s

p
z z

• p = t ∧ v is the longest common prefix of t and v

• s = w ∨ u is the longest common suffix of w and u

• (u, v) has a left-centered square if and only if there is a factorization
u = wt, with nonempty t, such that

|p| + |s| ≥ |t| .

• First miracle: the computation of all t ∧ v, for all suffixes t of u, can be
performed in time O(|u|).

• So, testing whether (u, v) has no left (right) centered square can be done
in time (O(|u|) (resp. (O(|v|)).
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A linear time algorithm

A linear time algorithm for testing whether a word is square-free is based
on the socalled c-factorization (for Crochemore-factorization):

c(x) = (x1, x2, . . . , xm)

where each xk is either a fresh letter, or is the longest factor that appears
already before.

c(ababaab) = a|b|aba|ab
c(abacbabcba) = a|b|a|c|ba|b|cba

The efficient computation of the c-factorization of x uses the suffix tree of
the word x.
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The suffix tree of a word

This is the suffix tree of abacbabcba.

10

9
a

b
5cba

0acbabcba
2cbabcba

b 6cba

8a
4bcba

1cbabcba
7cba 3bcba

Second miracle : the suffix tree of a word can be computed in linear time.
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Augmented suffix tree

At each node, the first occurrence of the factor is reported. For abacbabcba:

0

0
a

0b
5cba

0acbabcba
2cbabcba

1
b 6cba

1a
4bcba

1cbabcba
3cba 3bcba

This gives in linear time the c-factorization:

c(abacbabcba) = a|b|a|c|ba|b|cba
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Squares in c-factorizations

Theorem Let c(x) = (x1, . . . , xk) be the c-factorization of x. Then x is square-
free iff the following hold for all j

1. The occurrence of xj in c(x) and the first occurrence of xj do not overlap.

2. (xj−1, xj) has no centered square,

3. (x1 · · · xj−2, xj−1xj) has no right centered square.

Cost for each j:

1.O(1).

2. |xj−1| + |xj|

3. |xj−1| + |xj|

So total cost is linear in the length of x.
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Fibonacci word

Defined by f0 = a, f1 = ab, fn+2 = fn+1 fn. Length of fn is Fn.

F0 = 1 f0 = a
F1 = 2 f1 = ab
F2 = 3 f2 = aba
F3 = 5 f3 = abaab
F4 = 8 f4 = abaababa
F5 = 13 f5 = abaababaabaab
F6 = 21 f6 = abaababaabaababaababa
F7 = 34 f7 = abaababaabaababaababaabaababaabaab

The infinite Fibonacci word has all finite Fibonacci words as prefixes.
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Interpretation of numerical properties

Numerical relation

Fn = 2+ F0+ F1+ · · · + Fn−2

e.g. F6 = 21 = 2+ 1+ 2+ 3+ 5+ 8.

String interpretation
fn = ab f0 f1 · · · fn−2

e.g. f6 = abaababaabaababaababa.
Noncommutativity of words gives richer interpretations:

fn = f R0 f
R
1 · · · f

R
n−2(ba|ab)

e.g. f6 = abaababaabaababaababa.
One gets even another interpretation:

fn = aw0w1 · · ·wn−2(a|b)

e.g. f6 = abaababaabaababaababa.
The second factorization is (almost) the c-factorization.



WoWA, 7 june 2006 17

Crochemore factorization of the Fibonacci word

Comparison of three factorizations:

• h: as a product of finite Fibonacci words

• w: as a product of singular words

• c: as a product of reversals of Fibonacci words

h : a b a a b a b a a b a a b a b a a b a b a · · ·

w : a b a a b a b a a b a a b a b a a b a b · · ·

c : a b a a b a b a a b a a b a b a a b a · · ·

Theorem The c-factorization of the Fibonacci word f is

c( f ) = (a, b, a, aba, baaba, . . .) = (a, b, a, f R2 , f
R
3 , . . .)
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Crochemore factorization of standard Sturmian words

A standard Sturmian word is defined by a directive sequence (d1, d2, . . .). It
is the limit of the words sn with

s−1 = b, s0 = a, and sn = sdnn−1sn−2,

Theorem Let s be the standard Sturmian word defined by the directive sequence
(d1, d2, . . .). Then

c(s) = (a, ad1−1, b, ad1 s̃ d2−11 , s̃ d32 , s̃
d4
3 , . . . , s̃

dn+1
n , . . .)

Here w̃ is the reversal of w.
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Crochemore factorization of the Thue-Morse word

The Thue-Morse infinite word is

t = abbabaabbaababba · · ·

obtained by iterating the morphism τ defined by τ(a) = ab, τ(b) = ba. One
gets

c(t) = a|b|b|ab|a|abba|aba|bbabaab|abbaab|babaabbaababba| · · ·

Each long enough factor is obtained from a previous one by applying the
morphism τ.

Theorem The c-factorization c(t) = (c1, c2, . . .) of the Thue-Morse sequence is

(a, b, b, ab, a, abba, aba, bbabaab, c9, c10, . . .)

where cn+2 = τ(cn) for every n ≥ 8.

So, c9 = abbaab = τ(aba), c10 = babaabbaababba = τ(bbabaab).

Synchronization is late !
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Crochemore factorization of generalized Thue-Morse words

Better behaviour !

Let t(m) be the word on {a1, a2, . . . , am} obtained as the limit of the mor-
phism τm defined by

τm(ai) = aiai+1 · · · ama1 · · · ai−1 (i = 1, . . . ,m).

Theorem For m ≥ 3, the c-factorization c(t(m)) = (c
(m)
1 , c

(m)
2 , . . .) satisfies the

relation c
(m)
n+2(m−1) = τm(cn) for n > m.

Example m = 3. Morphism 0 7→ 012, 1 7→ 120, 2 7→ 201. c
(3)
n+4 = τ3(cn) for

n > 3.
c(t(3)) = 0|1|2|

12|0|20|1|
120201|012|201012|120|
120 201 012 201 012 120|012120201| · · ·
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Crochemore factorization of the period-doubling word

Define δ(a) = ab, δ(b) = aa, and set q0 = a and qn+1 = δ(qn). Thus

q0 = a
q1 = ab
q2 = abaa

q3 = abaaabab
q4 = abaaabababaaabaa

The limit q is the period doubling sequence

q = a ba aaba babaaaba aabaaabababaaaba · · · (= qR0 q
R
1 q
R
2 q
R
3 q
R
4 · · ·)

Theorem The c-factorization of q is

c(q) = (a, qS0 , q
R
0 , q

S
1 , q
R
1 , q

S
2 , q
R
2 , . . .).

Here wR is the reversal, and wS is obtained from wR by replacing the first
letter by its opposite.

c(q) = a|b|a|aa|ba|baba|aaba|aabaaaba|babaaaba| · · ·
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Ziv-Lempel factorization

The Ziv-Lempel or z-factorization z(x) of a word x is

z(x) = (y1, y2, . . . , ym, ym+1, . . .)

where ym is the shortest prefix of ymym+1 · · · which occurs only once in
y1y2 · · · ym.

Example For x = aabaaccbaabaabaa.

c(x) = (a, a, b, aa, c, c, baa, baabaa)

z(x) = (a, ab, aac, cb, aabaab, aa).
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Crochemore factorization versus Ziv-Lempel factorization

The factorizations are closely related:

Proposition Let (c1, c2, . . .) and (z1, z2, . . .) be the Crochemore and the Ziv-Lem-
pel factorizations of a word w, then the following hold for each i, j.

• If |c1 · · · ci−1| ≥ |z1 · · · zj−1| and |c1 · · · ci| < |z1 · · · zj|,
then |z1 · · · zj| = |c1 · · · ci|+ 1.

• If |z1 · · · zj−1| < |c1 · · · ci| ≤ |z1 · · · zj|, then |c1 · · · ci+1| ≤ |z1 · · · zj+1|.
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An example

Consider the word
v = abaaabababaaabaa · · ·

defined as the limit of the sequence

v0 = a, v2n+1 = v2nbv2n, v2n = v2n−1av2n−1

Thus
v0 = a
v1 = aba

v2 = abaaaba
v3 = abaaabababaaaba

Each Ziv-Lempel factor of v properly includes a Crochemore factor ending
just a letter before it, as illustrated in this figure:

z : a b a a a b a b a b a a a b a a · · ·

c : a b a a a b a b a b a a a b a a · · ·
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Open problems

• characterize c-factorizations of automatic words.

• are c-factorizations and z-factorizations really different?


