
Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

Factorizations of Infinite Words

Jean Berstel

Institut Gaspard–Monge, Université de Marne–la–Vallée and CNRS (UMR 8049)

Workshop on Fibonacci Words, september 2006



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

Outline

1 Introduction
An Example
Other factorizations

2 Detecting squares
Centered squares
Suffix tree
Crochemore’s linear time algorithm

3 Standard Sturmian words

4 Prouhet-Thue-Morse
Crochemore factorization

5 Crochemore versus Ziv-Lempel



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

Fibonacci word

Defined by f0 = a, f1 = ab, fn+2 = fn+1fn. Length of fn is Fn.

F0 = 1 f0 = a
F1 = 2 f1 = ab
F2 = 3 f2 = aba
F3 = 5 f3 = abaab
F4 = 8 f4 = abaababa
F5 = 13 f5 = abaababaabaab
F6 = 21 f6 = abaababaabaababaababa
F7 = 34 f7 = abaababaabaababaababaabaababaabaab

The infinite Fibonacci word has all finite Fibonacci words as
prefixes.



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

Interpretation of numerical properties

A numerical relation: Fn = 2 + F0 + F1 + · · · + Fn−2

e.g. F6 = 21 = 2 + 1 + 2 + 3 + 5 + 8.

Three string interpretations:
1 fn = abf0f1 · · · fn−2

e.g. f6 = abaababaabaababaababa
2 fn = f R

0 f R
1 · · · f R

n−2(ba|ab)
e.g. f6 = abaababaabaababaababa

3 fn = aw0w1 · · ·wn−2(a|b)
e.g. f6 = abaababaabaababaababa



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

Lyndon factorization

The singular factorization

f6 = abaababaabaababaababa
is closely related to the Lyndon factorization

f6 = abaababaabaababaababa = ℓ1ℓ3ℓ5a
where

ℓ1 = ab = aw0

ℓ3 = aabab = w1w2

ℓ5 = aabaababaabab = w3w4

and more generally ℓ2n+1 = w2n−1w2n.



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

Ziv-Lempel and Crochemore

The Ziv-Lempel or z-factorization of a word x is

z(x) = (y1, y2, . . . , ym, . . .)
where ym is the shortest factor that did not appear before.

The Crochemore or c-factorization is

c(x) = (x1, x2, . . . , xm, . . .)
where xm is either a fresh letter, or is the longest factor that
appears already before.

Example

x = a|abaaccbaabaabaa

c(x) = (a, . . .)



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

Ziv-Lempel and Crochemore

The Ziv-Lempel or z-factorization of a word x is

z(x) = (y1, y2, . . . , ym, . . .)
where ym is the shortest factor that did not appear before.

The Crochemore or c-factorization is

c(x) = (x1, x2, . . . , xm, . . .)
where xm is either a fresh letter, or is the longest factor that
appears already before.

Example

x = aa|baaccbaabaabaa

c(x) = (a, a, . . .)



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

Ziv-Lempel and Crochemore

The Ziv-Lempel or z-factorization of a word x is

z(x) = (y1, y2, . . . , ym, . . .)
where ym is the shortest factor that did not appear before.

The Crochemore or c-factorization is

c(x) = (x1, x2, . . . , xm, . . .)
where xm is either a fresh letter, or is the longest factor that
appears already before.

Example

x = aab|aaccbaabaabaa

c(x) = (a, a, b, . . .)



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

Ziv-Lempel and Crochemore

The Ziv-Lempel or z-factorization of a word x is

z(x) = (y1, y2, . . . , ym, . . .)
where ym is the shortest factor that did not appear before.

The Crochemore or c-factorization is

c(x) = (x1, x2, . . . , xm, . . .)
where xm is either a fresh letter, or is the longest factor that
appears already before.

Example

x = aabaa|ccbaabaabaa

c(x) = (a, a, b, aa, . . .)



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

Ziv-Lempel and Crochemore

The Ziv-Lempel or z-factorization of a word x is

z(x) = (y1, y2, . . . , ym, . . .)
where ym is the shortest factor that did not appear before.

The Crochemore or c-factorization is

c(x) = (x1, x2, . . . , xm, . . .)
where xm is either a fresh letter, or is the longest factor that
appears already before.

Example

x = aabaac|cbaabaabaa

c(x) = (a, a, b, aa, c, . . .)



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

Ziv-Lempel and Crochemore

The Ziv-Lempel or z-factorization of a word x is

z(x) = (y1, y2, . . . , ym, . . .)
where ym is the shortest factor that did not appear before.

The Crochemore or c-factorization is

c(x) = (x1, x2, . . . , xm, . . .)
where xm is either a fresh letter, or is the longest factor that
appears already before.

Example

x = aabaacc|baabaabaa

c(x) = (a, a, b, aa, c, c, . . .)



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

Ziv-Lempel and Crochemore

The Ziv-Lempel or z-factorization of a word x is

z(x) = (y1, y2, . . . , ym, . . .)
where ym is the shortest factor that did not appear before.

The Crochemore or c-factorization is

c(x) = (x1, x2, . . . , xm, . . .)
where xm is either a fresh letter, or is the longest factor that
appears already before.

Example

x = aabaaccbaa|baabaa

c(x) = (a, a, b, aa, c, c, baa, . . .)



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

Ziv-Lempel and Crochemore

The Ziv-Lempel or z-factorization of a word x is

z(x) = (y1, y2, . . . , ym, . . .)
where ym is the shortest factor that did not appear before.

The Crochemore or c-factorization is

c(x) = (x1, x2, . . . , xm, . . .)
where xm is either a fresh letter, or is the longest factor that
appears already before.

Example

x = aabaaccbaabaabaa

c(x) = (a, a, b, aa, c, c, baa, baabaa)
z(x) = (a, ab, aac, cb, aabaab, aa)



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

Z and C for Fibonacci

The Ziv-Lempel factorization of the Fibonacci word f is

z(f ) = abaababaabaababaabab · · ·
that is the singular factorization.

The Crochemore factorization of the Fibonacci word f is

c(f ) = abaababaabaababaabab · · ·
which is basically the factorization into reversals.



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

Detecting squares in a word: A O(n log n) algorithm

(there exists a linear time algorithm for testing whether a word
is square-free)

A square zz is left-centered (right-centered) in (u, v) if zz
is a square in uv and the right (left) z overlaps (u, v):

u v u v
z z z z

A word x = uv is square-free if u and v are square-free
and if (u, v) has no centered square.

If one can test centered squarefreeness in linear time, then
this gives an O(n log n) algorithm (n = |x |).



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

Detecting centered squares in a word

u v
w t p

s s
p

z z

p = t ∧ v is the longest common prefix of t and v

s = w ∨ u is the longest common suffix of w and u
(u, v) has a left-centered square if and only if there is a
factorization u = wt , with nonempty t , such that
|p| + |s| ≥ |t |.

First miracle: the computation of all t ∧ v , for all suffixes t
of u, can be performed in time O(|u|).
So, testing whether (u, v) has no left (right) centered
square can be done in time (O(|u|) (resp. (O(|v |)).



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

A linear time algorithm

A linear time algorithm for testing square-freeness is based on
the Crochemore-factorization:

c(x) = (x1, x2, . . . , xm)
where each xk is either a fresh letter, or is the longest factor
that appears already before.

c(ababaab) = a|b|aba|ab
c(abacbabcba) = a|b|a|c|ba|b|cba

The efficient computation of the c-factorization of x uses the
suffix tree of the word x .



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

The suffix tree of a word

This is the suffix tree of abacbabcba. (In yellow the starting
index of the position.)

10

9
a

b
5cba

0acbabcba
2cbabcba

b 6cba

8a
4bcba

1cbabcba
7cba 3bcba

Second miracle : the suffix tree of a word can be computed in
linear time.



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

Augmented suffix tree

At each node, the first occurrence of the factor is reported. For
abacbabcba:

0

0
a

0b
5cba

0acbabcba
2cbabcba

1
b 6cba

1a
4bcba

1cbabcba
3cba 3bcba

This gives in linear time the c-factorization:

c(abacbabcba) = a|b|a|c|ba|b|cba



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

Squares in c-factorizations

Theorem (Crochemore)

Let c(x) = (x1, . . . , xk ) be the c-factorization of x. Then x is
square-free iff the following hold for all j

1 The occurrence of xj in c(x) and the first occurrence of xj

do not overlap.
2 (xj−1, xj ) has no centered square,
3 (x1 · · · xj−2, xj−1xj ) has no right centered square.

Cost for each j :

1 O(1).
2 |xj−1| + |xj |

3 |xj−1| + |xj |

So total cost is linear in the length of x .



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

Crochemore factorization of the Fibonacci word

Comparison of three factorizations:

h: as a product of finite Fibonacci words

w : as a product of singular words

c: as a product of reversals of Fibonacci words

h : a b a a b a b a a b a a b a b a a b a b a · · ·

w : a b a a b a b a a b a a b a b a a b a b · · ·

c : a b a a b a b a a b a a b a b a a b a · · ·

Theorem

The c-factorization of the Fibonacci word f is

c(f ) = (a, b, a, aba, baaba, . . .) = (a, b, a, f R
2 , f R

3 , . . .)



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

Crochemore factorization of standard Sturmian words

A standard Sturmian word is defined by a directive sequence
(d1, d2, . . .). It is the limit of the words sn with

s
−1 = b, s0 = a, and sn = sdn

n−1sn−2,

Theorem

Let s be the standard Sturmian word defined by the directive
sequence (d1, d2, . . .). Then

c(s) = (a, ad1−1, b, ad1 s̃ d2−1
1 , s̃ d3

2 , s̃ d4
3 , . . . , s̃ dn+1

n , . . .)

Here w̃ is the reversal of w .



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

Prouhet-Thue-Morse

For n = 3, take the morphism

0 7→ 012 1 7→ 120 2 7→ 201
One gets

s = 012 120 201 120 201 012 · · ·

Also s(n) is the sum of the digits of n in base 3 modulo 3.

E. M. Wright in: Prouhet’s 1851 solution of the Tarry-Escott
problem of 1910:

Prouhet’s note is no more than an “Extrait par l’auteur” of a
“Mémoire présenté” to the Academy. The secretaire-archiviste
of the Academy was kind enough to inform me that the memoir
was returned to the author in 1852. But there appears to be no
trace in the literature of its publication.



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

Construction

“In order to group integers, write clockwise the indices 0, 1, 2,
. . . , n − 1 on a circle. Then read the indices clockwise, and omit
one index at each tour, two indices after n tours,three after n2

tours, et ainsi de suite. The indices show to which group
beongs each term.”

For n = 3
0 · 5 7 · 11 13 15 · 19 21 · 26
1 3 · 8 9 · 14 16 · 20 22 24 ·

2 4 6 · 10 12 · 17 18 · 23 25 ·

or equivalently

012/0120/1201/2/0120/1201/2012/0/1201/2012/0120/1/2/012 · · ·



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

Thue-Morse

For n = 2:
t = 0110100110010110 · · ·

with partition

0 3 5 6 9 10 12 15
1 2 4 7 8 11 13 14

A solution to the Tarry-Escott problem:

0 + 3 = 1 + 2

02 + 32 + 52 + 62 = 12 + 22 + 42 + 72 (= 70)

03 + 33 + 53 + 63 + 93 + 103 + 123 + 153

= 13 + 23 + 43 + 73 + 83 + 113 + 133 + 143

(= 7200)



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

Crochemore factorization of the Thue-Morse word

The Thue-Morse infinite word is obtained by iterating the
morphism τ defined by τ(a) = ab, τ(b) = ba. One gets

c(t) = abbabaabbaababbabaab|abbaabbabaabbaababba · · ·
Each long enough factor is obtained from a previous one by
applying the morphism τ .

Theorem

The c-factorization c(t) = (c1, c2, . . .) of the Thue-Morse
sequence is

(a, b, b, ab, a, abba, aba, bbabaab, c9, c10, . . .)
where cn+2 = τ(cn) for every n ≥ 8.

So, c9 = abbaab = τ(aba),
c10 = babaabbaababba = τ(bbabaab).

Synchronizes quite late !



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

Crochemore factorization of generalized Thue-Morse
words

Let t(m) be the word on {0, . . . , m − 1} obtained by the
morphism τm defined by τm(a) = a(a + 1) · · · (m − 1)01(a − 1)
for a = 0, . . . , m − 1.

Theorem

For m ≥ 3, the c-factorization c(t(m)) = (c(m)
1 , c(m)

2 , . . .) satisfies

the relation c(m)
n+2(m−1) = τm(cn) for n > m.

Example m = 3. Morphism 0 7→ 012, 1 7→ 120, 2 7→ 201.
c(3)

n+4 = τ3(cn) for n > 3.

c(t(3)) =012120201

120201012201012120

120 201 012 201 012 120012120201 · · ·



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

Period-doubling word

Define δ(a) = ab, δ(b) = aa, and set q0 = a and qn+1 = δ(qn).
Thus q0 = a q1 = ab q2 = abaa · · · .
The limit is the period doubling sequence

q = a ba aaba babaaabaaabaaabababaaaba · · · (= qR
0 qR

1 qR
2 qR

3 qR
4 · · · )

Theorem

The c-factorization of q is

c(q) = (a, qS
0 , qR

0 , qS
1 , qR

1 , qS
2 , qR

2 , . . .).

Here wR is the reversal, and wS is obtained from wR by
replacing the first letter by its opposite.

c(q) = a|b|a|aa|ba|baba|aaba|aabaaaba|babaaaba| · · ·



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

Crochemore versus Ziv-Lempel

The factorizations are closely related:

Proposition

Let (c1, c2, . . .) and (z1, z2, . . .) be the Crochemore and the
Ziv-Lempel factorizations of a word w, then the following hold
for each i , j .

If |c1 · · · ci−1| ≥ |z1 · · · zj−1| and |c1 · · · ci | < |z1 · · · zj |,
then |z1 · · · zj | = |c1 · · · ci | + 1.

If |z1 · · · zj−1| < |c1 · · · ci | ≤ |z1 · · · zj |, then
|c1 · · · ci+1| ≤ |z1 · · · zj+1|.



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

An example

Consider the word

v = abaaabababaaabaa · · ·
defined as the limit of the sequence

v0 = a, v2n+1 = v2nbv2n, v2n = v2n−1av2n−1

Thus
v0 = a
v1 = aba

v2 = abaaaba
v3 = abaaabababaaaba

Each Ziv-Lempel factor of v properly includes a Crochemore
factor ending just a letter before it, as illustrated in this figure:

z : a b a a a b a b a b a a a b a a · · ·

c : a b a a a b a b a b a a a b a a · · ·



Introduction Detecting squares Standard Sturmian words Prouhet-Thue-Morse Crochemore versus Ziv-Lempel

Open problems

characterize c-factorizations of automatic words.

are c-factorizations and z-factorizations really different?


	Introduction
	An Example
	Other factorizations

	Detecting squares
	Centered squares
	Suffix tree
	Crochemore's linear time algorithm

	Standard Sturmian words
	Prouhet-Thue-Morse
	Crochemore factorization

	Crochemore versus Ziv-Lempel

