# A First Investigation of Sturmian Trees

Jean Berstel<sup>2</sup>, Luc Boasson<sup>1</sup> Olivier Carton<sup>1</sup>, Isabelle Fagnot<sup>2</sup>

> <sup>1</sup>LIAFA, CNRS Université Paris 7

<sup>2</sup>IGM, CNRS Université de Marne-la-Vallée

STACS'2007, Aachen



#### Outline

- 1 Sturmian words
- 2 Sturmian trees
- 3 Slow automata
- 4 Rank and degree
- 6 Results



A factor w of a word x is a finite word that occurs in x, that is, there are words u and y such that x = uwy.

## Example (Fibonacci word)

 $x = a b a a b a b a b a a b a a b a b a a b a b a a b \dots$ 

| Length: n | 1                                   | 2                                         | 3                        | 4                                    | 5                                                  |
|-----------|-------------------------------------|-------------------------------------------|--------------------------|--------------------------------------|----------------------------------------------------|
| Factors   | $egin{array}{c} a \\ b \end{array}$ | $egin{array}{c} aa \ ab \ ba \end{array}$ | aab<br>aba<br>baa<br>bab | aaba<br>abaa<br>abab<br>baab<br>baba | aabaa<br>aabab<br>abaab<br>ababa<br>baaba<br>babaa |
| #         | 2                                   | 3                                         | 4                        | 5                                    | 6                                                  |

A factor w of a word x is a finite word that occurs in x, that is, there are words u and y such that x = uwy.

#### Example (Fibonacci word) $x = \begin{bmatrix} a \\ b \end{bmatrix} b \begin{bmatrix} a \\ a \\ b$ Length: $n \mid 1$ 3 aabaabaaabaaaaababaabaaaabababababaabbabaaFactors baabababababbababaabababaa5 #

A factor w of a word x is a finite word that occurs in x, that is, there are words u and y such that x = uwy.

# 

| Length: $n$ | 1                   | 2                                         | 3                        | 4                                    | 5                                                  |
|-------------|---------------------|-------------------------------------------|--------------------------|--------------------------------------|----------------------------------------------------|
| Factors     | а<br><mark>b</mark> | $egin{array}{c} aa \ ab \ ba \end{array}$ | aab<br>aba<br>baa<br>bab | aaba<br>abaa<br>abab<br>baab<br>baba | aabaa<br>aabab<br>abaab<br>ababa<br>baaba<br>babaa |
| #           | 2                   | 3                                         | 4                        | 5                                    | 6                                                  |

A factor w of a word x is a finite word that occurs in x, that is, there are words u and y such that x = uwy.

#### Example (Fibonacci word) $x = \begin{bmatrix} a & b \\ a & a \\ b & a \end{bmatrix}$ $\begin{bmatrix} a & b \\ a & b \\ a & a \\ b & a \\ a & b \\ a & a \\ b & a \\ a & b \\ a$ Length: $n \mid 1$ 3 aabaabaaabaaaaababaabaaaabababababaabbabaaFactors baabababababbababaabababaa5 # 6

A factor w of a word x is a finite word that occurs in x, that is, there are words u and y such that x = uwy.

# Example (Fibonacci word)

| Length: n | 1        | 2                           | 3                        | 4                                    | 5                                                  |
|-----------|----------|-----------------------------|--------------------------|--------------------------------------|----------------------------------------------------|
| Factors   | $a \\ b$ | aa<br>ab<br><mark>ba</mark> | aab<br>aba<br>baa<br>bab | aaba<br>abaa<br>abab<br>baab<br>baba | aabaa<br>aabab<br>abaab<br>ababa<br>baaba<br>babaa |
| #         | 2        | 3                           | 4                        | 5                                    | 6                                                  |

A factor w of a word x is a finite word that occurs in x, that is, there are words u and y such that x = uwy.

#### Example (Fibonacci word) $x = a b a a b a a b a a b a a b a a b a a b a a b a a b \dots$ Length: $n \mid 1$ 3 aabaabaaabaaaaababaabaaaabababaabbabaaababFactors baabababababbababaabababaa4 5 # 6

A factor w of a word x is a finite word that occurs in x, that is, there are words u and y such that x = uwy.

#### Example (Fibonacci word) $x = a b a a b a a b a a b a a b a a b a a b a a b a a b \dots$ Length: $n \mid 1$ 3 aabaabaaabaaaaababaabaaaabababababaabbabaaFactors baabababababbababaabababaa4 5 # 6

A factor w of a word x is a finite word that occurs in x, that is, there are words u and y such that x = uwy.

#### Example (Fibonacci word) Length: $n \mid 1$ 3 aabaabaaabaaaaababaabaaaabababababaabbabaaFactors baabababababbababaabababaa5 # 6

A factor w of a word x is a finite word that occurs in x, that is, there are words u and y such that x = uwy.

#### Example (Fibonacci word) $x = a b a a b a b a a b a a b a b a a b a a b a a b a a b \dots$ Length: $n \mid 1$ 3 aabaabaaabaaaaababaabaaaabababaabbabaa ababFactors baabababababbababaabababaa4 5 # 6



A factor w of a word x is a finite word that occurs in x, that is, there are words u and y such that x = uwy.

#### Example (Fibonacci word) $x = a b a a b a b a b a a b a a b a a b a a b a a b a a b \dots$ Length: $n \mid 1$ 3 aabaabaaabaaaaaababaabaaaabababababaabbabaaFactors baabababababbababaabababaa4 5 # 6

A factor w of a word x is a finite word that occurs in x, that is, there are words u and y such that x = uwy.

#### Example (Fibonacci word) $x = a b a a b a b a b a b a a b a a b a a b a a b a a b \dots$ Length: $n \mid 1$ 3 aabaabaaabaaaaaabaabaaaababababababaabbabaaFactors baababababab bababaabababaa4 5 # 6

A factor w of a word x is a finite word that occurs in x, that is, there are words u and y such that x = uwy.

#### Example (Fibonacci word) $x = \begin{bmatrix} a & b & a & a \end{bmatrix} b a b a a b a a b a a b a a b a a b a a b a a b \dots$ Length: $n \mid 1$ 3 aabaabaaabaaaaababaabaaaabababaabbabaaababFactors baabababababbababaabababaa4 5 # 6









#### Sturmian words

#### Proposition (Hedlund & Morse)

An infinite word x ultimately periodic iff there is an integer n such that x has at most n distinct factors of length n.

An infinite word x is Sturmian if the number of its factors of length n is n+1 for each n.

Sturmian words are non ultimately periodic words with the smallest complexity.

# Example (Fibonacci word: $f_{n+2} = f_{n+1}f_n$ ) $f_0 = a$ $f_1 = ab$ $f_2 = aba$

 $f_{\omega} = abaababa \cdots$ 

 $f_3 = abaab$ 

# Characterization: cutting sequences



#### Theorem

A infinite word is Sturmian iff it is the cutting sequence of a straight line  $y = \beta x + \rho$  with an irrational slope  $\beta$ .

#### Factor of a tree

A factor of height h of a tree t is a subtree of height h that occurs in t.





#### Sturmian tree

#### Proposition (Carpi et al)

A complete tree t is rational if there is some integer h such that t has at most h distinct factors of height h.

A tree is Sturmian if the number of its factors of height h is h + 1 for each h.

#### Example (Easy one: uniform tree)

An Sturmian word x = abaaba... is repeated on each branch.



A node is  $\bullet$  if it is a Dyck word over the alphabet  $\{0,1\}$ .

The Dyck tree



Its factors











































#### Slow automata

Let  $\mathcal{A} = (Q, A, \cdot, q_0, F)$  be a (infinite) deterministic automaton. Define the Moore equivalence  $\sim_n$  by induction.

$$q \sim_1 q' \iff (q \in F \Leftrightarrow q' \in F)$$
  
 $q \sim_{n+1} q' \iff (q \sim_n q') \text{ and } (\forall a \in A \ q \cdot a \sim_n q' \cdot a)$ 

The relation  $q \sim_n q'$  does not hold if there is a word w of length n such that  $q \cdot w \in F$  and  $q' \cdot w \notin F$  (or  $q \cdot w \notin F$  and  $q' \cdot w \in F$ )

An infinite automaton is slow iff each equivalence  $\sim_n$  has n+1 classes.

#### Proposition

A tree t is Sturmian iff the minimal automaton of  $t^{-1}(a)$  is slow.



# Application to the Dyck tree

The minimal automaton of the Dyck language is the following.



The Moore equivalences of this automaton

$$\sim_1$$
:  $0 \mid 1, 2, 3, 4, \dots \infty$ 

$$\sim_2$$
: 0 | 1 | 234 ...  $\infty$ 

$$\sim_3$$
: 0 | 1 | 2 | 3, 4, ...  $\infty$ 

$$\sim_4$$
: 0 | 1 | 2 | 3 | 4,... $\infty$ 

# Rank and degree

- A node is called irrational if the infinite subtree rooted in this node is not rational.
- The rank is the number of distinct rational subtrees.
- The degree is the number of branches of irrational nodes.

#### Examples

- The uniform tree has rank 0 and degree  $\infty$ .
- The Dyck tree has rank 1 and degree  $\infty$ .

### Results

|                  | rank                 |                       |  |
|------------------|----------------------|-----------------------|--|
| degree           | finite               | infinite              |  |
| 1                | characterized        | example later         |  |
| $\geq$ 2, finite | proved to be empty   | example in full paper |  |
| infinite         | example of Dyck tree | example in full paper |  |



#### Characterization

#### Example (Indicator tree)

Take any Sturmian word (e.g.  $01001010\cdots$ ) and distinguish the branch labeled by this word.



Rank 1
Degree 1

# Yet another example



