A First Investigation of Sturmian Trees

Jean Berstel², Luc Boasson¹ Olivier Carton¹, Isabelle Fagnot²

> ¹LIAFA, CNRS Université Paris 7

²IGM, CNRS Université de Marne-la-Vallée

STACS'2007, Aachen

Outline

- 1 Sturmian words
- 2 Sturmian trees
- 3 Slow automata
- 4 Rank and degree
- 6 Results

A factor w of a word x is a finite word that occurs in x, that is, there are words u and y such that x = uwy.

Example (Fibonacci word)

 $x = a b a a b a b a b a a b a a b a b a a b a b a a b \dots$

Length: n	1	2	3	4	5
Factors	$egin{array}{c} a \\ b \end{array}$	$egin{array}{c} aa \ ab \ ba \end{array}$	aab aba baa bab	aaba abaa abab baab baba	aabaa aabab abaab ababa baaba babaa
#	2	3	4	5	6

A factor w of a word x is a finite word that occurs in x, that is, there are words u and y such that x = uwy.

Example (Fibonacci word) $x = \begin{bmatrix} a \\ b \end{bmatrix} b \begin{bmatrix} a \\ a \\ b$ Length: $n \mid 1$ 3 aabaabaaabaaaaababaabaaaabababababaabbabaaFactors baabababababbababaabababaa5

A factor w of a word x is a finite word that occurs in x, that is, there are words u and y such that x = uwy.

Length: n	1	2	3	4	5
Factors	а <mark>b</mark>	$egin{array}{c} aa \ ab \ ba \end{array}$	aab aba baa bab	aaba abaa abab baab baba	aabaa aabab abaab ababa baaba babaa
#	2	3	4	5	6

A factor w of a word x is a finite word that occurs in x, that is, there are words u and y such that x = uwy.

Example (Fibonacci word) $x = \begin{bmatrix} a & b \\ a & a \\ b & a \end{bmatrix}$ $\begin{bmatrix} a & b \\ a & b \\ a & a \\ b & a \\ a & b \\ a & a \\ b & a \\ a & b \\ a$ Length: $n \mid 1$ 3 aabaabaaabaaaaababaabaaaabababababaabbabaaFactors baabababababbababaabababaa5 # 6

A factor w of a word x is a finite word that occurs in x, that is, there are words u and y such that x = uwy.

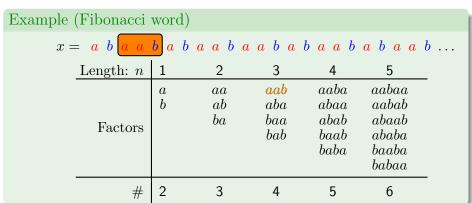
Example (Fibonacci word)

Length: n	1	2	3	4	5
Factors	$a \\ b$	aa ab <mark>ba</mark>	aab aba baa bab	aaba abaa abab baab baba	aabaa aabab abaab ababa baaba babaa
#	2	3	4	5	6

A factor w of a word x is a finite word that occurs in x, that is, there are words u and y such that x = uwy.

Example (Fibonacci word) $x = a b a a b a a b a a b a a b a a b a a b a a b a a b \dots$ Length: $n \mid 1$ 3 aabaabaaabaaaaababaabaaaabababaabbabaaababFactors baabababababbababaabababaa4 5 # 6

A factor w of a word x is a finite word that occurs in x, that is, there are words u and y such that x = uwy.


Example (Fibonacci word) $x = a b a a b a a b a a b a a b a a b a a b a a b a a b \dots$ Length: $n \mid 1$ 3 aabaabaaabaaaaababaabaaaabababababaabbabaaFactors baabababababbababaabababaa4 5 # 6

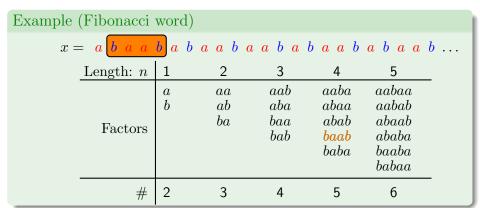
A factor w of a word x is a finite word that occurs in x, that is, there are words u and y such that x = uwy.

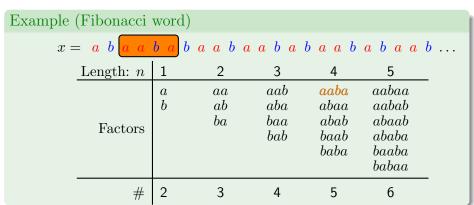
Example (Fibonacci word) Length: $n \mid 1$ 3 aabaabaaabaaaaababaabaaaabababababaabbabaaFactors baabababababbababaabababaa5 # 6

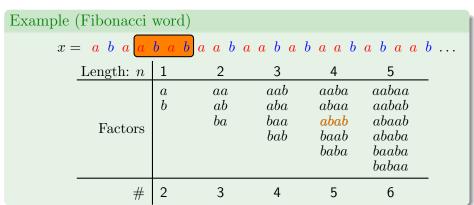
A factor w of a word x is a finite word that occurs in x, that is, there are words u and y such that x = uwy.

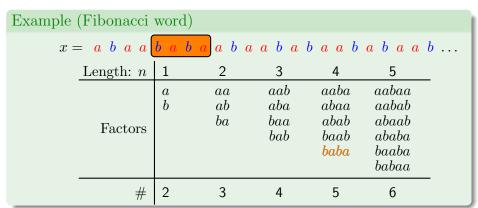
Example (Fibonacci word) $x = a b a a b a b a a b a a b a b a a b a a b a a b a a b \dots$ Length: $n \mid 1$ 3 aabaabaaabaaaaababaabaaaabababaabbabaa ababFactors baabababababbababaabababaa4 5 # 6

A factor w of a word x is a finite word that occurs in x, that is, there are words u and y such that x = uwy.


Example (Fibonacci word) $x = a b a a b a b a b a a b a a b a a b a a b a a b a a b \dots$ Length: $n \mid 1$ 3 aabaabaaabaaaaaababaabaaaabababababaabbabaaFactors baabababababbababaabababaa4 5 # 6


A factor w of a word x is a finite word that occurs in x, that is, there are words u and y such that x = uwy.


Example (Fibonacci word) $x = a b a a b a b a b a b a a b a a b a a b a a b a a b \dots$ Length: $n \mid 1$ 3 aabaabaaabaaaaaabaabaaaababababababaabbabaaFactors baababababab bababaabababaa4 5 # 6


A factor w of a word x is a finite word that occurs in x, that is, there are words u and y such that x = uwy.

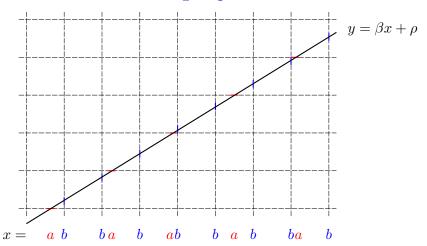
Example (Fibonacci word) $x = \begin{bmatrix} a & b & a & a \end{bmatrix} b a b a a b a a b a a b a a b a a b a a b a a b \dots$ Length: $n \mid 1$ 3 aabaabaaabaaaaababaabaaaabababaabbabaaababFactors baabababababbababaabababaa4 5 # 6

Sturmian words

Proposition (Hedlund & Morse)

An infinite word x ultimately periodic iff there is an integer n such that x has at most n distinct factors of length n.

An infinite word x is Sturmian if the number of its factors of length n is n+1 for each n.

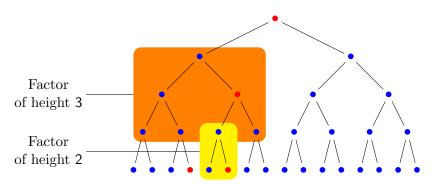

Sturmian words are non ultimately periodic words with the smallest complexity.

Example (Fibonacci word: $f_{n+2} = f_{n+1}f_n$) $f_0 = a$ $f_1 = ab$ $f_2 = aba$

 $f_{\omega} = abaababa \cdots$

 $f_3 = abaab$

Characterization: cutting sequences



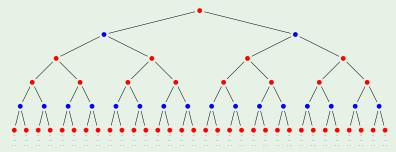
Theorem

A infinite word is Sturmian iff it is the cutting sequence of a straight line $y = \beta x + \rho$ with an irrational slope β .

Factor of a tree

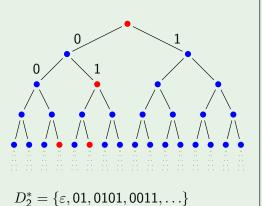
A factor of height h of a tree t is a subtree of height h that occurs in t.

Sturmian tree

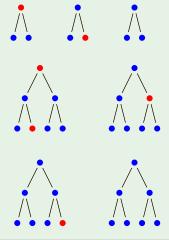

Proposition (Carpi et al)

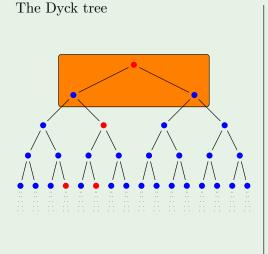
A complete tree t is rational if there is some integer h such that t has at most h distinct factors of height h.

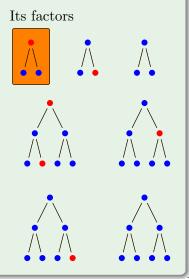
A tree is Sturmian if the number of its factors of height h is h + 1 for each h.

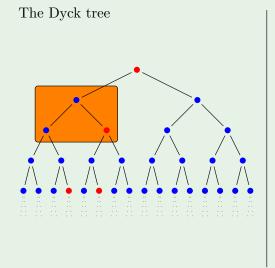

Example (Easy one: uniform tree)

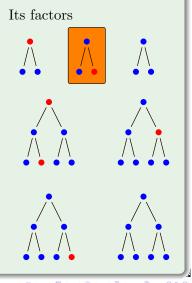
An Sturmian word x = abaaba... is repeated on each branch.

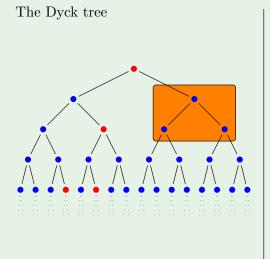


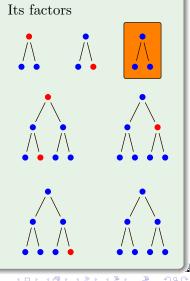

A node is \bullet if it is a Dyck word over the alphabet $\{0,1\}$.

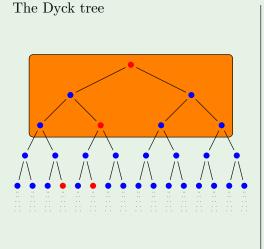

The Dyck tree

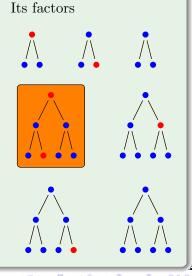


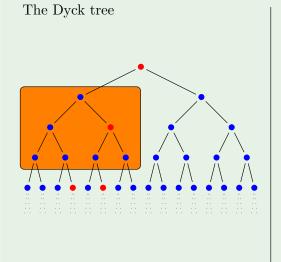

Its factors

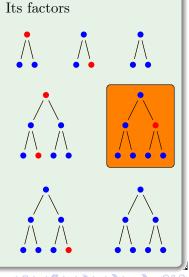


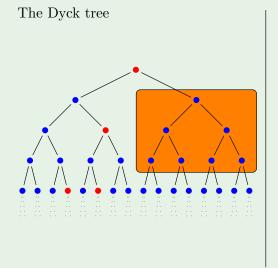


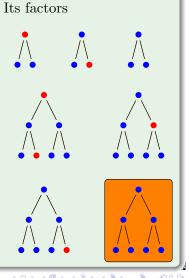


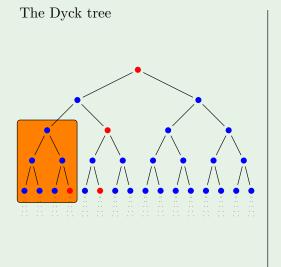


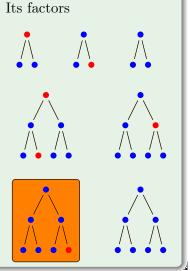


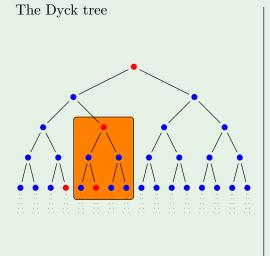


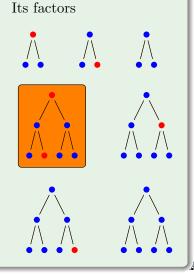


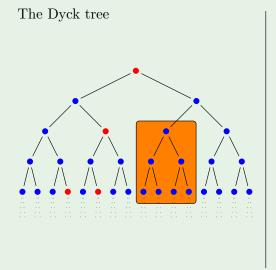


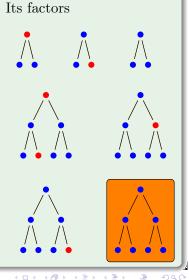


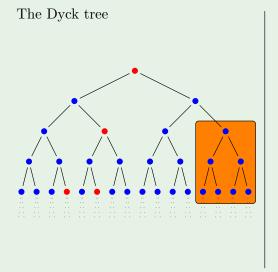


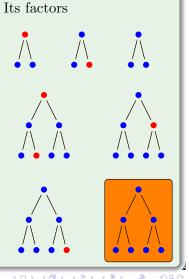












Slow automata

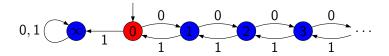
Let $\mathcal{A} = (Q, A, \cdot, q_0, F)$ be a (infinite) deterministic automaton. Define the Moore equivalence \sim_n by induction.

$$q \sim_1 q' \iff (q \in F \Leftrightarrow q' \in F)$$

 $q \sim_{n+1} q' \iff (q \sim_n q') \text{ and } (\forall a \in A \ q \cdot a \sim_n q' \cdot a)$

The relation $q \sim_n q'$ does not hold if there is a word w of length n such that $q \cdot w \in F$ and $q' \cdot w \notin F$ (or $q \cdot w \notin F$ and $q' \cdot w \in F$)

An infinite automaton is slow iff each equivalence \sim_n has n+1 classes.


Proposition

A tree t is Sturmian iff the minimal automaton of $t^{-1}(a)$ is slow.

Application to the Dyck tree

The minimal automaton of the Dyck language is the following.

The Moore equivalences of this automaton

$$\sim_1$$
: $0 \mid 1, 2, 3, 4, \dots \infty$

$$\sim_2$$
: 0 | 1 | 234 ... ∞

$$\sim_3$$
: 0 | 1 | 2 | 3, 4, ... ∞

$$\sim_4$$
: 0 | 1 | 2 | 3 | 4,... ∞

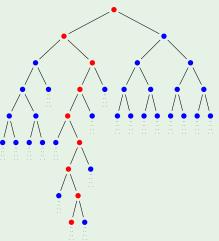
Rank and degree

- A node is called irrational if the infinite subtree rooted in this node is not rational.
- The rank is the number of distinct rational subtrees.
- The degree is the number of branches of irrational nodes.

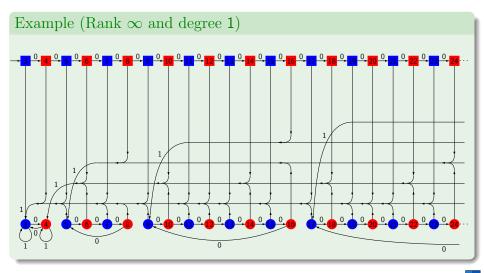
Examples

- The uniform tree has rank 0 and degree ∞ .
- The Dyck tree has rank 1 and degree ∞ .

Results


	rank		
degree	finite	infinite	
1	characterized	example later	
\geq 2, finite	proved to be empty	example in full paper	
infinite	example of Dyck tree	example in full paper	

Characterization


Example (Indicator tree)

Take any Sturmian word (e.g. $01001010\cdots$) and distinguish the branch labeled by this word.

Rank 1
Degree 1

Yet another example

