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Factors of an infinite word

A factor of a word x is a finite word that occurs in x .

Example (Fibonacci word)

x = a b a a b a b a a b a a b a b a a b a b a a b . . .
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Sturmian words

Proposition (Hedlund & Morse)

An infinite word x is ultimately periodic iff there is an integer n such that x has at most n distinct

factors of length n.

Definition

An infinite word x is Sturmian if the number of its factors of length n is n + 1 for each n.

Sturmian words are non ultimately periodic words with the smallest complexity.

Example (Fibonacci word: fn+2 = fn+1fn)
f0 = a

f1 = ab

f2 = aba

f3 = abaab

f4 = abaababa

f5 = abaababaabaab

fω = abaababa · · ·
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A characterization: cutting sequences

y = βx + ρ

x = a b b a b a b b a b b a b

Theorem

A infinite word is Sturmian iff it is the cutting sequence of a straight line y = βx + ρ with an

irrational slope β.
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Central words, Christoffel words, standard words

y = 5/8x

x = 01001010010 is a central word.
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Central words, Christoffel words, standard words

b b

b b b

b b

b b b

b b
y = 5/8x

x = 01001010010 is a central word.

A central word x is a palindrome

The upper Christoffel word is 1x0

The lower Christoffel word is 0x1

The words is x10 and x01 are standard words
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Construction of all standard words

Definition

A finite or infinite sequence d = (d0, d1, . . .) of integers with d0 ≥ 0, dn > 0 for n ≥ 1 is a
directive sequence. Define

s−1 = b, s0 = a, sn+1 = sdn
n sn−1 (n ≥ 0)

Each word sn is a standard word produced by the directive sequence (d0, . . . , dn−1). The infinite
word s = lim sn is the characteristic word produced by the directive sequence d.

Example

d = (1, 1, 1, 1, 1) produces s5 = abaababaabaab. Indeed

s0 = a

s1 = ab

s2 = aba

s3 = abaab

s4 = abaababa

s5 = abaababaabaab
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Recall that
s−1 = b, s0 = a, sn+1 = sdn

n sn−1 (n ≥ 0)

Other examples

For d = (1, 1, 1, 2), one gets s−1 = b, s=a, s1 = ab, s2 = aba, s3 = abaab and
s4 = (abaab)(abaab)aba.

The sequence d = (0, 1, 1, 1, 2) produces s−1 = b, s0 = a, s1 = b, s2 = ba, s3 = bab,
s4 = babba, s5 = (babba)(babba)bab.

d = (1, 1, 1, 1, 1, 1, . . .) produces the infinite Fibonacci word.

Theorem

The set of standard words is the set of all words sn produced by all directive sequences. The set

of characteristic words is the set of all limits of directive sequences.
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Balanced words

Definition

A set X of finite words is balanced if, for every letter a and every u, v in X of the same
length, ˛̨

˛|u|a − |v |a

˛̨
˛ ≤ 1

A finite or infinite word is balanced if the set of its factors is balanced.

Example

The Thue-Morse word t = abbabaabbaababba · · · is not balanced since aa and bb are
factors.

The Fibonacci word is balanced. The word baab s a factor of the Fibonacci word but its
square baabbaab is not balanced.

Theorem

An infinite word is Sturmian if and only if it is balanced and aperiodic.

An finite word is balanced if and only if it a factor of a Sturmian word.
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Strongly balanced words
O. Jenkinson, L. Zamboni, “Characterisations of balanced words via orderings”, Theoret.

Comput. Sci. 310 (2004), 247-271.
A word w is strongly balanced if it is primitive and if w2 is balanced.

Example

The word 01110 is balanced but not strongly balanced since w2 = 0111001110.

The word 1010010 is strongly balanced.

Proposition

The following properties are equivalent

w is strongly balanced;

w is a conjugate of a standard word;

every conjugate of w is balanced;

w is conjugate to an upper Christoffel word;

w is conjugate to a lower Christoffel word.

Example

w = 1010010 is conjugate to the standard word 0101001 produced by d = (1, 2, 1), and to the
upper Christoffel word 1010100 and to the lower Christoffel word 0010101.
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Burrows-Wheeler transform
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Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT) is a reversible transformation that produces a
permutation BWT(w) of an input sequence w .

The transform is easier to compress.

BWT is used in the BZIP2 algorithm.

BWT has a strong relation to the Gessel-Reutenauer transform.

References

S. Mantaci, A. Restivo, G. Rosone, M. Sciortino, “An extension of the Burrows Wheeler
transform”, to appear in the special issue of TCS devoted to the Burrows Wheeler Transform.

S. Mantaci, A. Restivo, M. Sciortino, “Burrows Wheeler transform and Sturmian words”,
Inform. Proc. Letters 86 (2003), 241-246.

M. Crochemore, J. Désarménien, D. Perrin, “A note on the Burrows-Wheeler
transformation”, Theoret. Comput. Sci. 332 (2005), 567-572.
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How does Burrows-Wheeler Transform work?

INPUT: w = abraca

OUTPUT: BWT(w) = x = caraab and 1

2
666664

a a b r a c

a b r a c a

a c a a b r

b r a c a a

c a a b r a

r a c a a b

3
777775

1 The conjugates of w are ordered lexicographically.

2 The output is the last column of the table: caraab, and the position of the input:1
(numbering starts at 0).

Two words u and v are conjugate if and only if BWT(u) = BWT(v).
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Reversibility of the Burrows-Wheeler Transform

The Burrows-Wheeler Transform is reversible: given BWT(w) and an index i , it is possible to
recover w .
Given BWT(w) = x = caraab and i = 1, do the following

1 The first column f of the table is obtained by sorting the letters in x (the last column).
0 a c

1 a a

2 a r

3 b a

4 c a

5 r b

2 Define a permutation τ on the set {0, . . . , n − 1} that maps a position in f to the
corresponding position in x .

τ =

„
0 1 2 3 4 5
1 3 4 5 0 2

«
=

`
1 3 5 4 0

´

Thus
1 3 5 2 4 0

w = a b r a c a
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Properties of the Burrows-Wheeler Transform

1 BWT is injective on conjugacy classes.

2 BWT is not surjective: there are words (e.g. bccaaab) that are not images of a word.

3 Why useful: it produces a clustering effect. In each row but one, the symbol in the last
colum is the symbol preceeding the conjugate. So conjugates that are gouped together have
also the same final symbol.

Theorem

A word w over {0, 1} is strongly balanced if and only if its Burrows-Wheeler Transform is of the

form 1q0p. Moreover, in the table, each row is obtained from the preceeding by replacing a factor

01 by a factor 10, and all columns also are conjugates.

0 0 1 0 1 0 1
0 1 0 0 1 0 1
0 1 0 1 0 0 1
0 1 0 1 0 1 0
1 0 0 1 0 1 0
1 0 1 0 0 1 0
1 0 1 0 1 0 0
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Gessel-Reutenauer bijection

I. Gessel, C. Reutenauer, “Counting permutations with given cycle structure and descent set”, J.

Comb. Theory A, 64, 1993, 189-215.

Definition

The standardization associates to w = a1 · · · an over an ordered alphabet A a permutation σ
defined by

σ(i) < σ(j) iff ai < aj or (ai = aj and i < j)

Example

0
@

1 2 3 4 5 6 7 8 9 10 11 12 13 14
c c b b b c a c a a a b b a

11 12 6 7 8 13 1 14 2 3 4 9 10 5

1
A

(1 11 4 7)
c a b a

(2 12 9)
c b a

(3 6 13 10)
b c b a

(5 8 14)
b c a
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Gessel-Reutenauer transform

Theorem (Gessel-Reutenauer)

The standardization σ induces a bijection between all words over A and the family of multisets of

conjugacy classes of primitive words over A.

Definition

Define a new order on finite order on words by

u � v iff uω < vω or (uω = vω and |u| < |v |)

Example

aba ≺ ab because abaaba · · · < ababab · · · .
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Gessel-Reutenauer coding

INPUT: S = {caba, bcba, bca, cba}
OUTPUT: ccbbbcacaaabba and 9, 10, 11, 14

1 Sort the conjugates of words in S by ≺

2 The output word is the sequence of last letters

3 The output indices are the positions of the input
words

1 a b a c

2 a b c

3 a b c b

4 a c a b

5 a c b

6 b a b c

7 b a c a

8 b a c

9 → b c a

10 → b c b a

11 → c a b a

12 c a b

13 c b a b

14 → c b a
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Gessel-Reutenauer decoding

INPUT: ccbbbcacaaabba and 9, 10, 11, 14
OUPUT: S = {caba, bcba, bca, cba}

1 Sort the input alphabetically (with an order-preserving sorting algorithm)

2 Compute the letter-correspndence permutation

3 Output the permutation in cycle form, and compute the multiset
0
BB@

a a a a a b b b b b c c c c

1 2 3 4 5 6 7 8 9 10 11 12 13 14
7 9 10 11 14 3 4 5 12 13 1 2 6 8
c c b b b c a c a a a b b a

1
CCA

Cycle form

( 1 7 4 11 ) ( 2 9 12 ) ( 3 10 13 6 ) ( 5 14 8 )
a b a c a b c a b c b a c b

Output
caba bca bcba cba
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Sturmian trees
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Factors in a tree
J. Berstel, L. Boasson, O. Carton, I. Fagnot, “A First Investigation of Sturmian Trees”,
STACS’2007, LNCS 4393, 73-84.

Definition

A factor of height h of a tree t is a subtree of height h that occurs in t.
A suffix of tree t is an infinite subtree of t.

Factor
of height 3

Factor
of height 2

Suffix

•

••

••••

••••••••

••••••••••••••••
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Rational tree

Definition

A tree is rational if it has a finite number of distinct suffixes.

Proposition (Carpi, De Luca, Varricchio)

A complete tree t is rational if there is some integer h such that t has at most h distinct factors

of height h.

Example (Only two distinct suffixes)

Red nodes at even levels, blue nodes at odd levels.
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Sturmian tree

Definition

A tree is Sturmian if it has h + 1 distinct factors of height h for each h.

Remark

Sturmian trees are irrational trees with the smallest complexity.

Example (Easy one: uniform tree)

An Sturmian word x = abaaba . . . is repeated on each branch.
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Example (Unexpected one: Dyck tree)

A node is • if it is a Dyck word over the alphabet {0, 1}.

The Dyck tree

D∗

2 = {ε, 01, 0101, 0011, . . .}

0

0 1

1

Its factors
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Example (The two-sided Dyck tree is not Sturmian)

A node is • if it is a tow-sided Dyck word over the alphabet {0, 1}.

The two-sided Dyck tree

D∗

2 = {ε, 01, 10, 0011, 0101, 0110, 1001, 1010, 1100, . . .}

0

0 1

1

1

Its four factors of height 2
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Slow automata

Let A a (infinite) minimal deterministic automaton over D = {0, 1} with states Q and final states
F automaton.

Definition

The Moore equivalence ∼h of order h is

q ∼1 q′ ⇐⇒ (q ∈ F ⇔ q′ ∈ F )

q ∼h+1 q′ ⇐⇒ (q ∼h q′) and (∀a ∈ D q · a ∼h q′ · a)

Definition

An infinite automaton is slow iff the Moore equivalence ∼h of order h has h + 1 classes for each h.

Remark

In a slow automaton, exactly one equivalence class of ∼h is split into two classes of ∼h+1.

Proposition

A tree t is Sturmian iff the minimal automaton of its language is slow.
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A first slow automaton

Automaton of the Dyck language.

State 0 is both the initial and the unique terminal state.

∞ 0 1 2 3 . . .0, 1
1

0

1

0

1

0

1

0

1

Moore equivalences:

0 | 12345 · · ·∞
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1

0

1

0

1

0

1

0

1

1

Moore equivalences:
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1

0

1

0

1
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A first slow automaton

Automaton of the Dyck language.

State 0 is both the initial and the unique terminal state.

∞ 0 1 2 3 . . .0, 1
1

0

1

0

1

0

1

0

1

1 2 3

Moore equivalences:

0 | 12345 · · ·∞
0 | 1 | 2345 · · ·∞
0 | 1 | 2 | 345 · · ·∞
0 | 1 | 2 | 3 | 45 · · ·∞
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Another slow automaton

Automaton accepting the prefixes of 01001010 · · · .

∞

0 1 2 3 4 5 6 · · ·

0, 1

0

1 0

1 0

1

0

1 0

1 0

1 0

1

Equivalence classes:

∞ | 012 · · ·
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Another slow automaton

Automaton accepting the prefixes of 01001010 · · · .

∞

0 1 2 3 4 5 6 · · ·

0, 1

0

1 0

1 0

1

0

1 0

1 0

1 0

1
0 2 3 5

Equivalence classes:

∞ | 012 · · ·
∞ | 0235 · · · | 146 · · ·

Jean Berstel (IGM) Survey on Sturm CAI 2007, Thessaloniki 29 / 42



Another slow automaton

Automaton accepting the prefixes of 01001010 · · · .

∞

0 1 2 3 4 5 6 · · ·

0, 1

0

1 0

1 0

1

0

1 0

1 0

1 0

1
0 2 3 52

Equivalence classes:

∞ | 012 · · ·
∞ | 0235 · · · | 146 · · ·
∞ | 035 · · · | 2 · · · | 146 · · ·
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Rank and degree

Definition

A node is called irrational if the infinite subtree rooted in this node is not rational.

The rank is the number of distinct rational subtrees.

The degree is the number of branches of irrational nodes.

Examples

The uniform tree has rank 0 and degree ∞.

The Dyck tree has rank 1 and degree ∞.

The indicator tree of a Sturmian word has rank 1 and degree 1.
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Rank and degree of the indicator tree

Take any Sturmian word (e.g. 01001010 · · · ) and distinguish the branch labeled by this word.

The only rational tree is the tree rooted in the blue node. The only irrational path is composed of
the red nodes.
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Rank and degree of the Dyck tree

The only rational subtree is composed of blue nodes only, so the degree is 1.

•

••

••••

••••••••

••••••••••••••••

The degree is infinite because every (prefix of a) Dyck word extends to an infinite irrational path
by concatenating some infinite product of distinct Dyck words.
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Results

rank
degree finite infinite

1 characterized example later
≥ 2, finite proved to be empty example in full paper

infinite example of Dyck tree example in full paper
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Characterization: a generalization of the indicator tree

Example (Indicator tree)

∞

0 1 2 3 4 5 6 · · ·

0, 1

0

1 0

1 0

1

0

1 0

1 0

1 0

1

General situation

More than one rational subtrees

The infinite path is interleaved with a fixed finite path.
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Sturmian graphs

This name is given in the paper
Ch. Epifanio, F. Mignosi, J. Shallit, I. Venturini, “On Sturmian graphs”, Discrete Appl. Math

155 (2007), 1014-1030, to graphs associated to central words.

Definition

The CDWAG (compact directed acyclic word graph) G(w) of a word w is the minimal automaton
recognizing the set of suffixes of w , after removing nonfinal states with outdegree 1.

Example

For w = abaababaaba, the automaton G(w) is (all states are final)

a ba aba baaba

ba

aba

baaba
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Directive sequence of central words

Definition

The standard word s produced by d = (d0, d1, . . . , dk ) is s = sk , where s−1 = b, s0 = a,

sn+1 = s
dn
n sn−1. The central word produced by d is the word c = s=, that is s without its last

two letters.

Example

For d = (1, 2, 2), the standard words are s1 = ab, s2 = (ab)2a, s = s3 = (ababa)2ab. The
central word is

c = ababaababa

Observe that c = ababaababa = u0u
2
1u2, where ui = esi .

For d = (1, 2, 1, 1), the standard words are s1 = ab, s2 = (ab)2a, s3 = ababaab, and
s = s4 = ababaabababa It is the same as the word s3 up to the two last letters. So it defines
the same central word.

Directive sequences (d0, . . . , dn, 1) and (d0, . . . , dn + 1) produce the same standard word up to
the two last letters, so they produce the same central word.
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CDAWGs of central words

Construction

The CDAWG of a central word c with dirctive sequence d = d ′1 is constructed by induction. Set
d ′ = d”δ.

1 if δ 6= 1, repeat the last edge of the graph of d ′.

2 otherwise, add a new state and 1+ δ edges to this state. All these edges have the same label.

Example

d s c G

11 = 2 aba a a

12 = 111 ababa a|ba a ba

13 = 121 ababaab a|ba|ba a ba ba

122 = 1211 ababaababaab a|ba|ba|ababa
a ba ba ababa
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Example (continued)

Notation : sd the word produced by the directive sequence d, ud = esd . For instance
s122 = ((ab)(ab)a)(ababa)ab, s1211 = ((ab)(ab)a)(ab)(ababa).

d = 1211, s1211 = ababaabababa, c = a|ba|ba|z = u0u
2
1u12 (with z = ababa)

a ba ba ababa

d = 123 = 1221, s1221 = ababaababaabababa, c = a|ba|ba|z |z = u0u
2
1u2

12

a ba ba z z

d = 1231, s1231 = ababaababaababaababaab, c = a|ba|ba|z |z |z = u0u
2
1u3

12

a ba ba z z z
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Example (end)

d = 1231, s1231 = ababaababaababaababaab, c = a|ba|ba|z |z |z = u0u
2
1u3

12

a ba ba z z z

d = 1232 = 12311, s12311 = ababaababaababaabababaababaababaababaab,
c = a|ba|ba|z |z |z |baz3 = u0u

2
1u3

12u123

a ba ba z z z baz3
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Size of the CDAWG

Length of the central word

The length of the central word c defined by d = (d0, d1, . . . , dk ) is |ℓk | − 2, where ℓn = |sn| − 2
and

ℓ−1 = ℓ0 = 1, ℓn+1 = dnℓn + ℓn−1 .

Observation

Let H(c) be the graph obtained from the G(c) by replacing each label by its length. H(c) counts
from 0 to |c|: each integer h with 0 ≤ h ≤ |c| is the sum of the weights of exactly one path in
H(c) starting at the initial state.

Example

a ba ba ababa 1 2 2 5
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Size of counting graphs

Problem

What is the minimal size of a graph with outdegree at most 2 counting from 0 to n?

If the size of the labels increase exponentially, like for the Fibonacci word, then the size is
O(log n). It is conjectured that the bound O(log n) always holds. Related to the following
conjecture.

Conjecture (Zaremba)

There exists an integer K such that for all positive m, there exists some i⊥m, i < m such that all

partial quotients in the continued fraction expansions of i/m are bounded by K.
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Sturmian graphs
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