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Minimal automaton

Automata

Each state g defines a language
Lg ={w | q-wis final}.

The automaton is minimal if all
languages L are distinct.

Here L, = L,. States 2 and 4 are
(Nerode) equivalent.

The Nerode equivalence gives the
coarsest partition that is compatible
with the next-state function.

Refinement algorithm

Starts with the partition into two classes 05 and 12346.
A first refinement: 12346 — 1234(6 because of a.
A second refinement: 05 — 0|5 because of a.
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Minimal automaton

Outline

@ Hopcroft has developed in 1970 a minimization algorithm that runs in time O(nlog n) on an
n state automaton (discarding the alphabet).

@ No faster algorithm is known for general automata.
@ Question: is the time estimation sharp ?

o A first answer, by Berstel and Carton (CIAA 2004): there exist automata where you need
Q(nlog n) steps if you are “unlucky”. These are related to De Bruijn words.

@ A better answer, by Castiglione, Restivo and Sciortino (WORDS 2007, LATA 2008): there
exist automata where you need always Q(nlog n) steps. These are related to Fibonacci words.

@ Castiglione, Restivo and Sciortino (TCS) describe deep connections between statistics related
to Hopcroft's algorithm and structure of standard words.

@ Here: Hopcroft's algorithm needs always Q(nlog n) steps for all Sturmian words with
bounded directive sequence, and it may require less steps.

o 5 = =
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Hopcroft's algorithm

The algorithm

HOPCROFTMINIMIZATION()

1 P—{F,F}
2 C < min(F,F°)
3 forac Ado
4 ADD((C, a), W) > adds (C, a) to set W
5 while W = () do
6 (C,a) < SoME(W) > takes some element in W
7 for each B € P split by (C, a) do
8 B’,B" «— SpLIT(B, C, a)
9 REPLACE B by B’ and B” in P
10 C — min(B’,B")
11 for b € A do
12 if (B, b) € W then
13 REPLACE (B, b) by (B’,b) and (B”,b) in W
14 else ApD((C, b), W)
Definition

The pair (C, a) splits the set B if both sets (B -a)N C and (B - a) N C¢ are nonempty.

Notation

‘P is the current partition. WV is the waiting set.
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Hopcroft's algorithm

Initiale partition P: 05|12346
Waiting set W : (05, a), (05, b)

Pair chosen : (05, a)

States in inverse : 06

Class to split: 12346 — 1234|6
Pairs to add : (6, a) and (6, b)
Class to split : 05 — 0|5

Pair to add: (5, a) (or (0,a))

Pair to replace: (05, b) : by (0, b) and (5, b)
New partition P:  0]1234|5|6
New waiting set WV: (0, b), (6, a),

(6, b), (5, a), (5, b)

Basic fact

Splitting all sets of the current partition by one block (C, a) has a total cost of Card(a=1C).
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(IR T I Cyclic automata

Cyclic automata

Definition
One-letter automaton with states on a unique cycle. The sequence of nonterminal and of
terminal states form a circular binary word.

Example: Cyclic automaton A,, for w = 01001010

Initiale partition P: Qo = 13468, Q1 = 257

Waiting set W : 257

States in inverse of Qq: 146

Class to split: 13468 — Qo1 = 146, Qoo = 38

New waiting set W: Qoo

New partition P: Qoo = 38, Qo1 = 146, Q1 = Q1o = 257

States in inverse of Qpo: 27

Class to split: 257 — Q00 = 27, Q101 =5

New waiting set WV: Q100

New partition P: Qoo1 = 38, Qoio = 146, Q100 = 27,
Qi1 =5

Notation
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Standard words

Standard words

Definition and examples
o directive sequence d = (di, db, d3, . ..) sequence of positive integers
@ standard words s, of binary words defined by sp =1,s; =0 and
Sni1=Sa"so_1 (n>1).
@ For d = (1), one gets the Fibonacci words.
@ For d = (2,3), one gets sp = 1,51 = 0, s, = 001, s3 = 0010010010, . .

Proposition

A standard word is primitive. If u0l is a standard word, then u is a palindrome, ulQ is standard
and u01 and ul0 are conjugate words.

Proposition (Borel, Reutenauer)

A word w is standard if and only if it has exactly i + 1 circular factors of length i, and exactly one
circular special factor for each i =0, ..., |w| — 2.
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Standard words

Standard words and Hopcroft's algorithm

Theorem (Castiglione, Restivo, Sciortino)

Let w be a standard word.

@ Hopcroft's algorithm on the cyclic automaton A, is uniquely determined.

@ At each step i of the execution, the current partition is composed if the i + 1 classes Q,
indexed by the circular factors of length i, and the waiting set is a singleton.

@ This singleton is the smaller of the sets Quo, Qu1, where u is the unique circular special
factor of length i — 1.

Corollary

Let (sn)n>0 be a standard sequence. Then the complexity of Hopcroft's algorithm on the
automaton As, is proportional to ||s,||, where

[wil = > min(jwluo, [w|u1).

u€ CF(w)

[m] = =
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Standard words

Standard words and Hopcroft's algorithm

Example
We compute ||w| = Zuec,_-(w) min(|w|yo, |w|u1) for w = 01001010.
u | [wlw | Wl | min
€ 5 3 3
0 2 3 2
10 2 1 1
010 2 1 1
0010 1 1 1
10010 1 1 1
010010 1 1 1

So the number ||w|| equals 10.

Theorem (Our main result)

Let (sn)n>0 be the standard sequence defined by a directive sequence d with bounded elements.
Then ||sp|| = ©(n|sn|), and the complexity of Hopcroft's algorithm on the automata As, is in
O(Nlog N) with N = |sp|.
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Generating series

Generating series

Let d = (di,d>,...) and (sn)n>0 be the standard sequence defined by d. Set an, = |sp[1 and

Ch = ”s"” = Z min(|5 - n|u07 |5n|u1)-
u€CF(sp)
¢cn is the complexity of Hopcroft's algorithm for s,, and a, is (almost) the length of s,.

The generating series are Ag(x) = Z anx" Cy(x) = Z cnx"
n>1 n>0

Proposition

For any directive sequence d = (di, db, ...), one has

Ca(x) = Ag(x) + x> D Cr gy (x) + XTI C 74 ().

Here

7(d) = (di —1,db,d3,...) ifds >.1 5(d) = 0 ifdy >.17
(do,d3,...) otherwise . 1 otherwise.

and T(d) = 7%(d) = (b, ds, . . .).
Example: For d = (1,2,3,4,...), one gets 7(d) = (2,3,4,...) and §(d) =
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Generating series

Example: Fibonacci

For d = (1), one has 7(d) = T(d) = d, and 6(d) = 1. The equation becomes

Ca(x) = Ag(x) + (x +x*)Ca(x) ,

A
from which we get Cy(x) = ldi(x)z. Clearly apy2 = apt1 + an for n > 0, and since ap =1
—Xx—x
and a; = 0, one gets Ay(x) = X Thus
1—x—x?
2
Co(x) = x

(1 —x—x2)2°
This proves that ¢, ~ Cnp", where ¢ is the golden ratio. This was proved by Castiglione, Restivo
and Sciortino (WORDS'07).
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Generating series

Another example

Proposition

Cy(x) = Ag(x) + <D C () (x) + x1FTENC 74 (x)

Example (d = (2,3))
Cen =A@y * Cump txCem
Cuma) = Azt *Caa) +xCe )
Cezm) =Aeznt Cuzm) +*Cuam
Cea =462 * Sz T *Cum
Caza) = Azt *Caz) +*Cu )

Here A(T,3) = A(l,ﬁ) and A(ﬁ) = A(Z,ﬁ) = A(I,Tﬁ) Set D1 = C(I,TQ) and D2 = C(Z,ﬁ)
Ca3) = A3t D1+ xD2,
where D; and D, satisfy the equations
D1 = Az + xAgz) + 2xD2 + x?Dy
Dy = 2A35) + xA@3) + 3xD1 + x°D;.

Thus the original system of 5 equations in the C, is replaced by a system of 2 equations in D;

and Dy.
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Generating series

Acceleration

Let d = (di, do,...) be a directive sequence, and for i > 1, set

e = Tiil(d) = (d,', dit1,.. ) .
Set also
D =x"ENC oy,  Bi=(di — 1A + xAq,, -
With these notations, the following system of equation holds.
Proposition
The following equations hold

Cq = Ag + D1 + xDs
D; = B; + dixDj 11 + x* D4 (i>1)

Berstel, Boasson, Carton (IGM, Liafa) Hopcroft and Sturm



Continuant polynomials

Continuant Polynomials

Definition

The continuant polynomials Kp(x1,...,xn), for n > —1 are a family of polynomials in the
variables xi, ..., x, defined by K_1 =0, Ko = 1 and, for n > 1, by

Kn(X1y .-y xn) = x1Kn—1(x2, - - -y Xn) + Kn—2(X3, - -« , Xn) -

The first continuant polynomials are

Ki(x1) = x1
Ka(x1,x2) = x1x2 + 1
K3(x1, X2, x3) = x1x2X3 + X1 + X3
Ka(x1, X2, X3, X4) = X1X2X3X4 + X1X2 + x3X4 + x1x4 + 1.
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Continuant polynomials

Combinatorial Interpretation

The Morse code

Ks(x1, X2, X3, X4, X5) = X1X2X3X4X5 + X3X4X5 + X1X4X5
+ X1X2X5 + X1X2X3 + X5 + X3 + X1

X1 X2 X3 Xa Xs

O O O O O X1X2X3X4X5
00O O O O X3X4X5
O 00O O O X1X4X5
O O 00O O X1X2X5
o O O 00O X1X2X3
o—0O OO O X5

o—0O O OO X3
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Continuant polynomials

Equivalent definitions

Kn(x1, .., %xn) = xaKn—1(x2, .. ., xn) + Kn—2(x3, ..., Xxn),
Kn(xt, .., %xn) = Kn—1(x1, - .., Xn—1)xn + Kn—2(x1, ..., Xn—2)

See Graham, Knuth, Patashnik, Concrete Mathematics, for other properties. J

Berstel, Boasson, Carton (IGM, fa Hopcroft and Sturm



Continuant polynomials

Continuant polynomials and continued fractions

Let d = (di,d>, d3,...) be a sequence of positive numbers. The continued fraction defined by d
is denoted o = [di, db, d3,...] and is defined by

a=d + i

dr +
2Tt

The finite initial parts [d1, d> ..., ds] of d define rational numbers

1 _ Kn(dly---ydn)
1 Kpa(deyeeydn)

di +
dy +

d+

3 -+

n

Berstel, Boasson, Carton (IGM, Liafa) Hopcroft and Sturm



Continuant polynomials

Continuant polynomials and standard words

One has
anta = Kn(da, ..., dpy1) (n>-1)

and
Ag(x) =D Kn(da, o, dni1)x" .
n>0

The series Cy also has an expression with continuants

Ca=x> (Kn(da, .-, dnt1) + Npga(di, ., dns1) + No(dr, ..., dn))x" .
n>0

where

Lo(x1,. ..y %xn) = Kn(X1, ..., Xn) — Kn—1(x2, . .., Xn) -

n—1
Nn(x1,...,xn) = Z Ki(x1, .y xi)Lp—i(Xiz1, - - s Xn) -
i=0
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Continuant polynomials GEETHIES

Theorem
For any sequence d, one has c, = ©(nay).

V.
It suffices to show that N,(di,...,dn) = ©(nKn(d1,...,dn).
Corollary
If a, grows at most exponentially, then c, = ©(ap log an) and n = ©(log an).

v
Corollary
If the elements of the sequence d are bounded, then c, = ©(a, log an).

V.
Corollary
There exist directive sequences d such that c, = O(an log log an).

v
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