Continuant polynomials, circular Sturmian words and the worst-case behavior of Hopcroft's automaton minimization algorithm

Jean Berstel, Luc Boasson, Olivier Carton
Institut Gaspard-Monge, Université Paris-Est Liafa, Université Paris VII
Jorcad'08, Rouen 17-19 septembre 2008

Outline

(1) Minimal automaton

- Minimal automata
(2) Hopcroft's algorithm
- The algorithm
- Cyclic automata
(3) Standard words
- Definition
- Standard words and Hopcroft's algorithm
(4) Generating series
- The equation
- Example: Fibonacci
- Acceleration
(5) Continuant polynomials
- Continuant polynomials and standard words
- Results

Automata

Each state q defines a language $L_{q}=\{w \mid q \cdot w$ is final $\}$.

The automaton is minimal if all languages L_{q} are distinct.

Here $L_{2}=L_{4}$. States 2 and 4 are (Nerode) equivalent.

The Nerode equivalence gives the coarsest partition that is compatible with the next-state function.

Refinement algorithm

Starts with the partition into two classes 05 and 12346.
A first refinement: $12346 \rightarrow 1234 \mid 6$ because of a.
A second refinement: $05 \rightarrow 0 \mid 5$ because of a.

- Hopcroft has developed in 1970 a minimization algorithm that runs in time $O(n \log n)$ on an n state automaton (discarding the alphabet).
- No faster algorithm is known for general automata.
- Question: is the time estimation sharp ?
- A first answer, by Berstel and Carton (CIAA 2004): there exist automata where you need $\Omega(n \log n)$ steps if you are "unlucky". These are related to De Bruijn words.
- A better answer, by Castiglione, Restivo and Sciortino (WORDS 2007, LATA 2008): there exist automata where you need always $\Omega(n \log n)$ steps. These are related to Fibonacci words.
- Castiglione, Restivo and Sciortino (TCS) describe deep connections between statistics related to Hopcroft's algorithm and structure of standard words.
- Here: Hopcroft's algorithm needs always $\Omega(n \log n)$ steps for all Sturmian words with bounded directive sequence, and it may require less steps.

The algorithm

HopcroftMinimization()

```
\(\mathcal{P} \leftarrow\left\{F, F^{c}\right\}\)
\(C \leftarrow \min \left(F, F^{c}\right)\)
for \(a \in A\) do
    \(\operatorname{ADD}((C, a), \mathcal{W}) \quad \triangleright \operatorname{adds}(C, a)\) to set \(\mathcal{W}\)
    while \(\mathcal{W} \neq \emptyset\) do
        \((C, a) \leftarrow \operatorname{SOME}(\mathcal{W}) \quad \triangleright\) takes some element in \(\mathcal{W}\)
        for each \(B \in \mathcal{P}\) split by \((C, a)\) do
            \(B^{\prime}, B^{\prime \prime} \leftarrow \operatorname{Split}(B, C, a)\)
            Replace \(B\) by \(B^{\prime}\) and \(B^{\prime \prime}\) in \(\mathcal{P}\)
            \(C \leftarrow \min \left(B^{\prime}, B^{\prime \prime}\right)\)
        for \(b \in A\) do
            if \((B, b) \in \mathcal{W}\) then
                Replace \((B, b)\) by \(\left(B^{\prime}, b\right)\) and \(\left(B^{\prime \prime}, b\right)\) in \(\mathcal{W}\)
                        else \(\operatorname{Add}((C, b), \mathcal{W})\)
```


Definition

The pair (C, a) splits the set B if both sets $(B \cdot a) \cap C$ and $(B \cdot a) \cap C^{c}$ are nonempty.

Notation

\mathcal{P} is the current partition. \mathcal{W} is the waiting set.

Example

Initiale partition P: 05|12346
Waiting set \mathcal{W} :
(05, a), (05, b)
Pair chosen :
(05, a)
States in inverse :
06
Class to split:
$12346 \rightarrow 1234 \mid 6$
Pairs to add :
$(6, a)$ and $(6, b)$
Class to split: $\quad 05 \rightarrow 0 \mid 5$
Pair to add:
$(5$, a) (or $(0, a))$
Pair to replace: $\quad(05, b)$: by $(0, b)$ and $(5, b)$
New partition \mathcal{P} : $\quad 0|1234| 5 \mid 6$
New waiting set $\mathcal{W}:(0, b),(6, a)$,
$(6, b),(5, a),(5, b)$

Basic fact

Splitting all sets of the current partition by one block (C, a) has a total cost of $\operatorname{Card}\left(a^{-1} C\right)$.

Cyclic automata

Definition

One-letter automaton with states on a unique cycle. The sequence of nonterminal and of terminal states form a circular binary word.

Example: Cyclic automaton \mathcal{A}_{w} for $w=01001010$

Initiale partition $\mathcal{P}: \quad Q_{0}=13468, Q_{1}=257$
Waiting set \mathcal{W} : $\quad 257$
States in inverse of Q_{1} : 146
Class to split:
$13468 \rightarrow Q_{01}=146, Q_{00}=38$
New waiting set \mathcal{W} :
New partition \mathcal{P} :
Q_{00}
$Q_{00}=38, Q_{01}=146, Q_{1}=Q_{10}=257$
States in inverse of Q_{00} : 27
Class to split:
$257 \rightarrow Q_{100}=27, Q_{101}=5$
New waiting set \mathcal{W} :
Q_{100}
New partition \mathcal{P} :
$Q_{001}=38, Q_{010}=146, Q_{100}=27$,
$Q_{101}=5$

Standard words

Definition and examples

- directive sequence $d=\left(d_{1}, d_{2}, d_{3}, \ldots\right)$ sequence of positive integers
- standard words s_{n} of binary words defined by $s_{0}=1, s_{1}=0$ and

$$
s_{n+1}=s_{n}^{d_{n}} s_{n-1} \quad(n \geq 1)
$$

- For $d=(\overline{1})$, one gets the Fibonacci words.
- For $d=(\overline{2,3})$, one gets $s_{0}=1, s_{1}=0, s_{2}=001, s_{3}=0010010010, \ldots$

Proposition

A standard word is primitive. If $u 01$ is a standard word, then u is a palindrome, $u 10$ is standard and $u 01$ and $u 10$ are conjugate words.

Proposition (Borel, Reutenauer)

A word w is standard if and only if it has exactly $i+1$ circular factors of length i, and exactly one circular special factor for each $i=0, \ldots,|w|-2$.

Standard words and Hopcroft's algorithm

Theorem (Castiglione, Restivo, Sciortino)

Let w be a standard word.

- Hopcroft's algorithm on the cyclic automaton \mathcal{A}_{w} is uniquely determined.
- At each step i of the execution, the current partition is composed if the $i+1$ classes Q_{u} indexed by the circular factors of length i, and the waiting set is a singleton.
- This singleton is the smaller of the sets $Q_{u 0}, Q_{u 1}$, where u is the unique circular special factor of length i-1.

Corollary

Let $\left(s_{n}\right)_{n \geq 0}$ be a standard sequence. Then the complexity of Hopcroft's algorithm on the automaton $\mathcal{A}_{s_{n}}$ is proportional to $\left\|s_{n}\right\|$, where

$$
\|w\|=\sum_{u \in C F(w)} \min \left(|w|_{u 0},|w|_{u 1}\right) .
$$

Standard words and Hopcroft's algorithm

Example

We compute $\|w\|=\sum_{u \in C F(w)} \min \left(|w|_{u 0},|w|_{u 1}\right)$ for $w=01001010$.

u	$\|w\|_{u 0}$	$\|w\|_{u 1}$	\min
ε	5	3	3
0	2	3	2
10	2	1	1
010	2	1	1
0010	1	1	1
10010	1	1	1
010010	1	1	1

So the number $\|w\|$ equals 10 .

Theorem (Our main result)

Let $\left(s_{n}\right)_{n \geq 0}$ be the standard sequence defined by a directive sequence d with bounded elements. Then $\left\|s_{n}\right\|=\Theta\left(n\left|s_{n}\right|\right)$, and the complexity of Hopcroft's algorithm on the automata $\mathcal{A}_{s_{n}}$ is in $\Theta(N \log N)$ with $N=\left|s_{n}\right|$.

Generating series

Let $d=\left(d_{1}, d_{2}, \ldots\right)$ and $\left(s_{n}\right)_{n \geq 0}$ be the standard sequence defined by d. Set $a_{n}=\left|s_{n}\right|_{1}$ and $c_{n}=\left\|s_{n}\right\|=\sum_{u \in C F\left(s_{n}\right)} \min \left(|s-n|_{u 0},\left|s_{n}\right|_{u 1}\right)$.
c_{n} is the complexity of Hopcroft's algorithm for s_{n}, and a_{n} is (almost) the length of s_{n}.
The generating series are $A_{d}(x)=\sum_{n \geq 1} a_{n} x^{n}, \quad C_{d}(x)=\sum_{n \geq 0} c_{n} x^{n}$.

Proposition

For any directive sequence $d=\left(d_{1}, d_{2}, \ldots\right)$, one has

$$
C_{d}(x)=A_{d}(x)+x^{\delta(d)} C_{\tau(d)}(x)+x^{1+\delta(T(d))} C_{\tau(T(d))}(x) .
$$

Here

$$
\tau(d)=\left\{\begin{array}{ll}
\left(d_{1}-1, d_{2}, d_{3}, \ldots\right) & \text { if } d_{1}>1 \\
\left(d_{2}, d_{3}, \ldots\right) & \text { otherwise } .
\end{array} \quad \delta(d)= \begin{cases}0 & \text { if } d_{1}>1 \\
1 & \text { otherwise }\end{cases}\right.
$$

and $T(d)=\tau^{d_{1}}(d)=\left(d_{2}, d_{3}, \ldots\right)$.
Example: For $d=(1,2,3,4, \ldots)$, one gets $\tau(d)=(2,3,4, \ldots)$ and $\delta(d)=1$.

Example: Fibonacci

For $d=(\overline{1})$, one has $\tau(d)=T(d)=d$, and $\delta(d)=1$. The equation becomes

$$
C_{d}(x)=A_{d}(x)+\left(x+x^{2}\right) C_{d}(x),
$$

from which we get $C_{d}(x)=\frac{A_{d}(x)}{1-x-x^{2}}$. Clearly $a_{n+2}=a_{n+1}+a_{n}$ for $n \geq 0$, and since $a_{0}=1$ and $a_{1}=0$, one gets $A_{d}(x)=\frac{x^{2}}{1-x-x^{2}}$. Thus

$$
C_{d}(x)=\frac{x^{2}}{\left(1-x-x^{2}\right)^{2}} .
$$

This proves that $c_{n} \sim C n \varphi^{n}$, where φ is the golden ratio. This was proved by Castiglione, Restivo and Sciortino (WORDS'07).

Another example

Proposition

$$
C_{d}(x)=A_{d}(x)+x^{\delta(d)} C_{\tau(d)}(x)+x^{1+\delta(T(d))} C_{\tau(T(d))}(x)
$$

Example $(d=(\overline{2,3}))$

$$
\begin{aligned}
& C_{(\overline{2,3})}=A_{\overline{(\overline{3,3}})}+C_{(1, \overline{3,2})}+x C_{(2, \overline{2,3})} \\
& C_{(1, \overline{3,2})}=A_{(1, \overline{3,2})}+x C_{(\overline{3,2})}+x C_{(2, \overline{2,3})} \\
& C_{(2, \overline{2,3})}=A_{(2, \overline{2,3})}+C_{(1, \overline{2,3})}+x C_{(1, \overline{3,2})} \\
& C_{(\overline{3,2})}=A_{(\overline{3,2})}+C_{(2,2,3)}+x C_{(1, \overline{3,2})} \\
& C_{(1, \overline{2,3})}=A_{(1, \overline{2,3})}+x C_{(\overline{2,3})}+x C_{(1, \overline{3,2})}
\end{aligned}
$$

Here $A_{(\overline{2,3})}=A_{(1, \overline{3,2})}$ and $A_{(\overline{3,2})}=A_{(2, \overline{2,3})}=A_{(1, \overline{2,3})}$. Set $D_{1}=C_{(1, \overline{3,2})}$ and $D_{2}=C_{(2, \overline{2,3})}$.

$$
C_{(\overline{2,3})}=A_{(\overline{2,3})}+D_{1}+x D_{2},
$$

where D_{1} and D_{2} satisfy the equations

$$
\begin{aligned}
& D_{1}=A_{(\overline{2,3})}+x A_{(\overline{3,2})}+2 x D_{2}+x^{2} D_{1} \\
& D_{2}=2 A_{(\overline{3,2})}+x A_{(\overline{2,3})}+3 x D_{1}+x^{2} D_{2} .
\end{aligned}
$$

Thus the original system of 5 equations in the C_{u} is replaced by a system of 2 equations in D_{1} and D_{2}.

Acceleration

Let $d=\left(d_{1}, d_{2}, \ldots\right)$ be a directive sequence, and for $i \geq 1$, set

$$
e_{i}=T^{i-1}(d)=\left(d_{i}, d_{i+1}, \ldots\right)
$$

Set also

$$
D_{i}=x^{\left.\delta\left(e_{i}\right)\right)} C_{\tau\left(e_{i}\right)}, \quad B_{i}=\left(d_{i}-1\right) A_{e_{i}}+x A_{e_{i+1}} .
$$

With these notations, the following system of equation holds.

Proposition

The following equations hold

$$
\begin{aligned}
& C_{d}=A_{d}+D_{1}+x D_{2} \\
& D_{i}=B_{i}+d_{i} \times D_{i+1}+x^{2} D_{i+2} \quad(i \geq 1)
\end{aligned}
$$

Continuant Polynomials

Definition

The continuant polynomials $K_{n}\left(x_{1}, \ldots, x_{n}\right)$, for $n \geq-1$ are a family of polynomials in the variables x_{1}, \ldots, x_{n} defined by $K_{-1}=0, K_{0}=1$ and, for $n \geq 1$, by

$$
K_{n}\left(x_{1}, \ldots, x_{n}\right)=x_{1} K_{n-1}\left(x_{2}, \ldots, x_{n}\right)+K_{n-2}\left(x_{3}, \ldots, x_{n}\right) .
$$

The first continuant polynomials are

$$
\begin{aligned}
& K_{1}\left(x_{1}\right)=x_{1} \\
& K_{2}\left(x_{1}, x_{2}\right)=x_{1} x_{2}+1 \\
& K_{3}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}+x_{1}+x_{3} \\
& K_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2} x_{3} x_{4}+x_{1} x_{2}+x_{3} x_{4}+x_{1} x_{4}+1
\end{aligned}
$$

Combinatorial Interpretation

The Morse code

$$
\begin{aligned}
K_{5}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) & =x_{1} x_{2} x_{3} x_{4} x_{5}+x_{3} x_{4} x_{5}+x_{1} x_{4} x_{5} \\
& +x_{1} x_{2} x_{5}+x_{1} x_{2} x_{3}+x_{5}+x_{3}+x_{1}
\end{aligned}
$$

$x_{1} x_{2} x_{3} x_{4}$

Equivalent definitions

$$
\begin{aligned}
& K_{n}\left(x_{1}, \ldots, x_{n}\right)=x_{1} K_{n-1}\left(x_{2}, \ldots, x_{n}\right)+K_{n-2}\left(x_{3}, \ldots, x_{n}\right), \\
& K_{n}\left(x_{1}, \ldots, x_{n}\right)=K_{n-1}\left(x_{1}, \ldots, x_{n-1}\right) x_{n}+K_{n-2}\left(x_{1}, \ldots, x_{n-2}\right)
\end{aligned}
$$

See Graham, Knuth, Patashnik, Concrete Mathematics, for other properties.

Continuant polynomials and continued fractions

Let $d=\left(d_{1}, d_{2}, d_{3}, \ldots\right)$ be a sequence of positive numbers. The continued fraction defined by d is denoted $\alpha=\left[d_{1}, d_{2}, d_{3}, \ldots\right]$ and is defined by

$$
\alpha=d_{1}+\frac{1}{d_{2}+\frac{1}{d_{3}+\cdots}} .
$$

The finite initial parts $\left[d_{1}, d_{2} \ldots, d_{n}\right]$ of d define rational numbers

$$
d_{1}+\frac{1}{d_{2}+\frac{1}{d_{3}+\ddots+\frac{1}{d_{n}}}}=\frac{K_{n}\left(d_{1}, \ldots, d_{n}\right)}{K_{n-1}\left(d_{2}, \ldots, d_{n}\right)} .
$$

Continuant polynomials and standard words

One has

$$
a_{n+2}=K_{n}\left(d_{2}, \ldots, d_{n+1}\right) \quad(n \geq-1)
$$

and

$$
A_{d}(x)=x^{2} \sum_{n \geq 0} K_{n}\left(d_{2}, \ldots, d_{n+1}\right) x^{n} .
$$

The series C_{d} also has an expression with continuants

$$
C_{d}=x^{2} \sum_{n \geq 0}\left(K_{n}\left(d_{2}, \ldots, d_{n+1}\right)+N_{n+1}\left(d_{1}, \ldots, d_{n+1}\right)+N_{n}\left(d_{1}, \ldots, d_{n}\right)\right) x^{n} .
$$

where

$$
\begin{aligned}
& L_{n}\left(x_{1}, \ldots, x_{n}\right)=K_{n}\left(x_{1}, \ldots, x_{n}\right)-K_{n-1}\left(x_{2}, \ldots, x_{n}\right) . \\
& N_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{n-1} K_{i}\left(x_{1}, \ldots, x_{i}\right) L_{n-i}\left(x_{i+1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Theorem

For any sequence d, one has $c_{n}=\Theta\left(n a_{n}\right)$.
It suffices to show that $N_{n}\left(d_{1}, \ldots, d_{n}\right)=\Theta\left(n K_{n}\left(d_{1}, \ldots, d_{n}\right)\right.$.

Corollary

If a_{n} grows at most exponentially, then $c_{n}=\Theta\left(a_{n} \log a_{n}\right)$ and $n=\Theta\left(\log a_{n}\right)$.

Corollary

If the elements of the sequence d are bounded, then $c_{n}=\Theta\left(a_{n} \log a_{n}\right)$.

Corollary

There exist directive sequences d such that $c_{n}=O\left(a_{n} \log \log a_{n}\right)$.

