Continuant polynomials, circular Sturmian words and the worst-case behavior of Hopcroft's automaton minimization algorithm

Jean Berstel, Luc Boasson, Olivier Carton

Institut Gaspard-Monge, Université Paris-Est Liafa, Université Paris VII

Jorcad'08, Rouen 17-19 septembre 2008

Outline

- Minimal automaton
 - Minimal automata
- Hopcroft's algorithm
 - The algorithm
 - Cyclic automata
- Standard words
 - Definition
 - Standard words and Hopcroft's algorithm
- Generating series
 - The equation
 - Example: Fibonacci
 - Acceleration
- Continuant polynomials
 - Continuant polynomials and standard words
 - Results

Automata

Each state q defines a language $L_q = \{ w \mid q \cdot w \text{ is final } \}.$

The automaton is minimal if all languages L_q are distinct.

Here $L_2 = L_4$. States 2 and 4 are (Nerode) equivalent.

The Nerode equivalence gives the coarsest partition that is compatible with the next-state function.

Refinement algorithm

Starts with the partition into two classes 05 and 12346.

A first refinement: $12346 \rightarrow 1234|6$ because of a.

A second refinement: $05 \rightarrow 0|5$ because of a.

Outline

- Hopcroft has developed in 1970 a minimization algorithm that runs in time $O(n \log n)$ on an n state automaton (discarding the alphabet).
- No faster algorithm is known for general automata.
- Question: is the time estimation sharp?
- A first answer, by Berstel and Carton (CIAA 2004): there exist automata where you need $\Omega(n \log n)$ steps if you are "unlucky". These are related to De Bruijn words.
- A better answer, by Castiglione, Restivo and Sciortino (WORDS 2007, LATA 2008): there exist automata where you need always $\Omega(n \log n)$ steps. These are related to Fibonacci words.
- Castiglione, Restivo and Sciortino (TCS) describe deep connections between statistics related to Hopcroft's algorithm and structure of standard words.
- Here: Hopcroft's algorithm needs always $\Omega(n \log n)$ steps for all Sturmian words with bounded directive sequence, and it may require less steps.

The algorithm

```
HOPCROFTMINIMIZATION()
  1 \mathcal{P} \leftarrow \{F, F^c\}
  2 C \leftarrow \min(F, F^c)
  3 for a \in A do
             Add((C, a), W)
                                                \triangleright adds (C, a) to set \mathcal{W}
  5
       while \mathcal{W} \neq \emptyset do
             (C, a) \leftarrow SOME(\mathcal{W}) \triangleright takes some element in \mathcal{W}
  6
             for each B \in \mathcal{P} split by (C, a) do
  8
                   B', B'' \leftarrow \text{Split}(B, C, a)
                   Replace B by B' and B" in \mathcal{P}
 10
                   C \leftarrow \min(B', B'')
                   for b \in A do
 11
 12
                         if (B, b) \in \mathcal{W} then
 13
                                Replace (B, b) by (B', b) and (B'', b) in W
                         else ADD((C, b), W)
 14
```

Definition

The pair (C, a) splits the set B if both sets $(B \cdot a) \cap C$ and $(B \cdot a) \cap C^c$ are nonempty.

Notation

 \mathcal{P} is the current partition. \mathcal{W} is the waiting set.

Example


```
Initiale partition \mathcal{P}: 05|12346
Waiting set \mathcal{W}: (05, a), (05, b)
```

Pair chosen: (05, a)States in inverse: 06

Class to split: $12346 \rightarrow 1234|6$ Pairs to add : (6, a) and (6, b)

Class to split : $05 \rightarrow 0|5$ Pair to add: (5, a) (or (0, a))

Pair to replace: (05, b): by (0, b) and (5, b)

New partition \mathcal{P} : 0|1234|5|6New waiting set \mathcal{W} : (0, b), (6, a),

(6, b), (5, a), (5, b)

Basic fact

Splitting all sets of the current partition by one block (C, a) has a total cost of $Card(a^{-1}C)$.

Cyclic automata

Definition

One-letter automaton with states on a unique cycle. The sequence of nonterminal and of terminal states form a circular binary word.

Example: Cyclic automaton A_w for w = 01001010

Initiale partition \mathcal{P} : $Q_0 = 13468, Q_1 = 257$

Waiting set W: 257 States in inverse of Q_1 : 146

Class to split: $13468 \rightarrow Q_{01} = 146, Q_{00} = 38$

New waiting set \mathcal{W} : Q_{00}

New partition \mathcal{P} : $Q_{00} = 38$, $Q_{01} = 146$, $Q_1 = Q_{10} = 257$

States in inverse of Q_{00} : 27

Class to split: $257 \rightarrow Q_{100} = 27, Q_{101} = 5$

New waiting set W: Q_{100}

New partition \mathcal{P} : $Q_{001} = 38, Q_{010} = 146, Q_{100} = 27,$

 $Q_{101} = 5$

Notation

Standard words

Definition and examples

- directive sequence $d = (d_1, d_2, d_3, ...)$ sequence of positive integers
- standard words s_n of binary words defined by $s_0 = 1, s_1 = 0$ and

$$s_{n+1} = s_n^{d_n} s_{n-1} \quad (n \ge 1).$$

- For $d = (\overline{1})$, one gets the Fibonacci words.
- For $d = (\overline{2,3})$, one gets $s_0 = 1$, $s_1 = 0$, $s_2 = 001$, $s_3 = 0010010010$,...

Proposition

A standard word is primitive. If u01 is a standard word, then u is a palindrome, u10 is standard and u01 and u10 are conjugate words.

Proposition (Borel, Reutenauer)

A word w is standard if and only if it has exactly i+1 circular factors of length i, and exactly one circular special factor for each $i=0,\ldots,|w|-2$.

8 / 20

Standard words and Hopcroft's algorithm

Theorem (Castiglione, Restivo, Sciortino)

Let w be a standard word.

- Hopcroft's algorithm on the cyclic automaton A_w is uniquely determined.
- At each step i of the execution, the current partition is composed if the i+1 classes Q_u indexed by the circular factors of length i, and the waiting set is a singleton.
- This singleton is the smaller of the sets Q_{u0} , Q_{u1} , where u is the unique circular special factor of length i-1.

Corollary

Let $(s_n)_{n\geq 0}$ be a standard sequence. Then the complexity of Hopcroft's algorithm on the automaton A_{s_n} is proportional to $\|s_n\|$, where

$$||w|| = \sum_{u \in CF(w)} \min(|w|_{u0}, |w|_{u1}).$$

Standard words and Hopcroft's algorithm

Example

We compute $||w|| = \sum_{u \in CF(w)} \min(|w|_{u0}, |w|_{u1})$ for w = 01001010.

и	$ w _{u0}$	$ w _{u1}$	min
ε	5	3	3
0	2	3	2
10	2	1	1
010	2	1	1
0010	1	1	1
10010	1	1	1
010010	1	1	1
C - +l	anuala 10		

So the number ||w|| equals 10.

Theorem (Our main result)

Let $(s_n)_{n\geq 0}$ be the standard sequence defined by a directive sequence d with bounded elements. Then $||s_n|| = \Theta(n|s_n|)$, and the complexity of Hopcroft's algorithm on the automata \mathcal{A}_{s_n} is in $\Theta(N \log N)$ with $N = |s_n|$.

4□ > 4□ > 4□ > 4□ > 4□ > 1□

<u>Gen</u>erating series

Let $d=(d_1,d_2,\ldots)$ and $(s_n)_{n\geq 0}$ be the standard sequence defined by d. Set $a_n=|s_n|_1$ and $c_n = ||s_n|| = \sum_{u \in CE(s_n)} \min(|s - n|_{u0}, |s_n|_{u1}).$

 c_n is the complexity of Hopcroft's algorithm for s_n , and a_n is (almost) the length of s_n .

The generating series are $A_d(x) = \sum_{n \ge 1} a_n x^n$, $C_d(x) = \sum_{n \ge 0} c_n x^n$.

Proposition

For any directive sequence $d = (d_1, d_2, ...)$, one has

$$C_d(x) = A_d(x) + x^{\delta(d)}C_{\tau(d)}(x) + x^{1+\delta(T(d))}C_{\tau(T(d))}(x)$$
.

Here

$$\tau(\textit{d}) = \begin{cases} (\textit{d}_1 - 1, \textit{d}_2, \textit{d}_3, \ldots) & \text{if } \textit{d}_1 > 1 \\ (\textit{d}_2, \textit{d}_3, \ldots) & \text{otherwise} \,. \end{cases} \qquad \delta(\textit{d}) = \begin{cases} 0 & \text{if } \textit{d}_1 > 1 \,, \\ 1 & \text{otherwise} \,. \end{cases}$$

and
$$T(d) = \tau^{d_1}(d) = (d_2, d_3, \ldots).$$

Example: For d = (1, 2, 3, 4, ...), one gets $\tau(d) = (2, 3, 4, ...)$ and $\delta(d) = 1$.

4日 > 4周 > 4 目 > 4 目 > 目

Example: Fibonacci

For $d=(\overline{1})$, one has $\tau(d)=T(d)=d$, and $\delta(d)=1$. The equation becomes

$$C_d(x) = A_d(x) + (x + x^2)C_d(x)$$
,

from which we get $C_d(x)=\frac{A_d(x)}{1-x-x^2}$. Clearly $a_{n+2}=a_{n+1}+a_n$ for $n\geq 0$, and since $a_0=1$ and $a_1=0$, one gets $A_d(x)=\frac{x^2}{1-x-x^2}$. Thus

$$C_d(x) = \frac{x^2}{(1-x-x^2)^2}$$
.

This proves that $c_n \sim Cn\varphi^n$, where φ is the golden ratio. This was proved by Castiglione, Restivo and Sciortino (WORDS'07).

Another example

Proposition

$$C_d(x) = A_d(x) + x^{\delta(d)} C_{\tau(d)}(x) + x^{1+\delta(\tau(d))} C_{\tau(\tau(d))}(x)$$

Example
$$(d = (\overline{2,3}))$$

$$C_{(\overline{2},\overline{3})} = A_{(\overline{2},\overline{3})} + C_{(1,\overline{3},\overline{2})} + xC_{(2,\overline{2},\overline{3})}$$

$$C_{(1,\overline{3},\overline{2})} = A_{(1,\overline{3},\overline{2})} + xC_{(\overline{3},\overline{2})} + xC_{(2,\overline{2},\overline{3})}$$

$$C_{(2,\overline{2},\overline{3})} = A_{(2,\overline{2},\overline{3})} + C_{(1,\overline{2},\overline{3})} + xC_{(1,\overline{3},\overline{2})}$$

$$C_{(\overline{3},\overline{2})} = A_{(\overline{3},\overline{2})} + C_{(2,\overline{2},\overline{3})} + xC_{(1,\overline{3},\overline{2})}$$

$$C_{(1,\overline{2},\overline{3})} = A_{(1,\overline{2},\overline{3})} + xC_{(\overline{2},\overline{3})} + xC_{(1,\overline{3},\overline{2})}$$

Here
$$A_{(\overline{2,3})} = A_{(1,\overline{3,2})}$$
 and $A_{(\overline{3,2})} = A_{(2,\overline{2,3})} = A_{(1,\overline{2,3})}$. Set $D_1 = C_{(1,\overline{3,2})}$ and $D_2 = C_{(2,\overline{2,3})}$. $C_{(\overline{2,3})} = A_{(\overline{2,3})} + D_1 + xD_2$,

where D_1 and D_2 satisfy the equations

$$D_1 = A_{(\overline{2,3})} + xA_{(\overline{3,2})} + 2xD_2 + x^2D_1$$

$$D_2 = 2A_{(\overline{3,2})} + xA_{(\overline{2,3})} + 3xD_1 + x^2D_2.$$

Thus the original system of 5 equations in the C_u is replaced by a system of 2 equations in D_1 and Do.

Acceleration

Let $d = (d_1, d_2, ...)$ be a directive sequence, and for $i \ge 1$, set

$$e_i = T^{i-1}(d) = (d_i, d_{i+1}, \ldots).$$

Set also

$$D_i = x^{\delta(e_i)} C_{\tau(e_i)}, \qquad B_i = (d_i - 1)A_{e_i} + xA_{e_{i+1}}.$$

With these notations, the following system of equation holds.

Proposition

The following equations hold

$$C_d = A_d + D_1 + xD_2$$

 $D_i = B_i + d_i x D_{i+1} + x^2 D_{i+2}$ $(i \ge 1)$

Continuant Polynomials

Definition

The continuant polynomials $K_n(x_1,...,x_n)$, for $n \ge -1$ are a family of polynomials in the variables $x_1,...,x_n$ defined by $K_{-1}=0$, $K_0=1$ and, for $n \ge 1$, by

$$K_n(x_1,\ldots,x_n) = x_1K_{n-1}(x_2,\ldots,x_n) + K_{n-2}(x_3,\ldots,x_n).$$

The first continuant polynomials are

$$K_1(x_1) = x_1$$

$$K_2(x_1, x_2) = x_1 x_2 + 1$$

$$K_3(x_1, x_2, x_3) = x_1 x_2 x_3 + x_1 + x_3$$

$$K_4(x_1, x_2, x_3, x_4) = x_1 x_2 x_3 x_4 + x_1 x_2 + x_3 x_4 + x_1 x_4 + 1.$$

Combinatorial Interpretation

The Morse code

$$K_5(x_1, x_2, x_3, x_4, x_5) = x_1 x_2 x_3 x_4 x_5 + x_3 x_4 x_5 + x_1 x_4 x_5$$

+ $x_1 x_2 x_5 + x_1 x_2 x_3 + x_5 + x_3 + x_1$

X₁ X₂ X₃ X₄ X₅

*X*₁*X*₂*X*₃*X*₄*X*₅

X3X4X5

 $x_1 x_4 x_5$

 $x_1 x_2 x_5$ $x_1 x_2 x_3$

*X*5

X3

*x*₁

Equivalent definitions

$$\begin{split} &K_n(x_1,\ldots,x_n) = x_1 K_{n-1}(x_2,\ldots,x_n) + K_{n-2}(x_3,\ldots,x_n)\,, \\ &K_n(x_1,\ldots,x_n) = K_{n-1}(x_1,\ldots,x_{n-1}) x_n + K_{n-2}(x_1,\ldots,x_{n-2}) \end{split}$$

See Graham, Knuth, Patashnik, Concrete Mathematics, for other properties.

Continuant polynomials and continued fractions

Let $d = (d_1, d_2, d_3, \dots)$ be a sequence of positive numbers. The continued fraction defined by d is denoted $\alpha = [d_1, d_2, d_3, ...]$ and is defined by

$$\alpha = d_1 + \frac{1}{d_2 + \frac{1}{d_3 + \cdots}}.$$

The finite initial parts $[d_1, d_2, \dots, d_n]$ of d define rational numbers

$$d_1 + rac{1}{d_2 + rac{1}{d_3 + rac{1}{\ddots + rac{1}{d_n}}}} = rac{K_n(d_1, \ldots, d_n)}{K_{n-1}(d_2, \ldots, d_n)} \, .$$

Continuant polynomials and standard words

One has

$$a_{n+2} = K_n(d_2, \dots, d_{n+1}) \quad (n \ge -1)$$

and

$$A_d(x) = x^2 \sum_{n \geq 0} K_n(d_2, \dots, d_{n+1}) x^n.$$

The series C_d also has an expression with continuants

$$C_d = x^2 \sum_{n \geq 0} (K_n(d_2, \ldots, d_{n+1}) + N_{n+1}(d_1, \ldots, d_{n+1}) + N_n(d_1, \ldots, d_n)) x^n.$$

where

$$L_n(x_1,...,x_n) = K_n(x_1,...,x_n) - K_{n-1}(x_2,...,x_n).$$

$$N_n(x_1,\ldots,x_n) = \sum_{i=0}^{n-1} K_i(x_1,\ldots,x_i) L_{n-i}(x_{i+1},\ldots,x_n).$$

Theorem

For any sequence d, one has $c_n = \Theta(na_n)$.

It suffices to show that $N_n(d_1, \ldots, d_n) = \Theta(nK_n(d_1, \ldots, d_n))$.

Corollary

If a_n grows at most exponentially, then $c_n = \Theta(a_n \log a_n)$ and $n = \Theta(\log a_n)$.

Corollary

If the elements of the sequence d are bounded, then $c_n = \Theta(a_n \log a_n)$.

Corollary

There exist directive sequences d such that $c_n = O(a_n \log \log a_n)$.