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Minimal automaton Minimal automata

Automata
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Each state q defines a language
Lq = {w | q · w is final}.

The automaton is minimal if all
languages Lq are distinct.

Here L2 = L4. States 2 and 4 are
(Nerode) equivalent.

The Nerode equivalence gives the
coarsest partition that is compatible
with the next-state function.

Refinement algorithm

Starts with the partition into two classes 05 and 12346.
A first refinement: 12346→ 1234|6 because of a.
A second refinement: 05→ 0|5 because of a.
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Minimal automaton Minimal automata

Outline

Hopcroft has developed in 1970 a minimization algorithm that runs in time O(n log n) on an
n state automaton (discarding the alphabet).

No faster algorithm is known for general automata.

Question: is the time estimation sharp ?

A first answer, by Berstel and Carton (CIAA 2004): there exist automata where you need
Ω(n log n) steps if you are “unlucky”. These are related to De Bruijn words.

A better answer, by Castiglione, Restivo and Sciortino (WORDS 2007, LATA 2008): there
exist automata where you need always Ω(n log n) steps. These are related to Fibonacci words.

Castiglione, Restivo and Sciortino (TCS) describe deep connections between statistics related
to Hopcroft’s algorithm and structure of standard words.

Here: Hopcroft’s algorithm needs always Ω(n log n) steps for all Sturmian words with
bounded directive sequence, and it may require less steps.
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Hopcroft’s algorithm The algorithm

The algorithm

HopcroftMinimization()

1 P ← {F , F c}
2 C ← min(F , F c )
3 for a ∈ A do

4 Add((C , a),W) ⊲ adds (C , a) to set W
5 while W 6= ∅ do

6 (C , a)← Some(W) ⊲ takes some element in W
7 for each B ∈ P split by (C , a) do

8 B′,B′′ ← Split(B, C , a)
9 Replace B by B′ and B′′ in P

10 C ← min(B′, B′′)
11 for b ∈ A do

12 if (B, b) ∈ W then

13 Replace (B, b) by (B′, b) and (B′′, b) in W
14 else Add((C , b),W)

Definition

The pair (C , a) splits the set B if both sets (B · a) ∩ C and (B · a) ∩ C c are nonempty.

Notation

P is the current partition. W is the waiting set.
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Hopcroft’s algorithm The algorithm

Example
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Initiale partition P: 05|12346
Waiting set W : (05, a), (05, b)
Pair chosen : (05, a)
States in inverse : 06

Class to split: 12346 → 1234|6
Pairs to add : (6, a) and (6, b)

Class to split : 05→ 0|5
Pair to add: (5, a) (or (0, a))
Pair to replace: (05, b) : by (0, b) and (5, b)
New partition P: 0|1234|5|6
New waiting set W: (0, b), (6, a),

(6, b), (5, a), (5, b)

Basic fact

Splitting all sets of the current partition by one block (C , a) has a total cost of Card(a−1C).
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Hopcroft’s algorithm Cyclic automata

Cyclic automata

Definition

One-letter automaton with states on a unique cycle. The sequence of nonterminal and of
terminal states form a circular binary word.

Example: Cyclic automaton Aw for w = 01001010
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Initiale partition P: Q0 = 13468, Q1 = 257
Waiting set W : 257
States in inverse of Q1: 146

Class to split: 13468→ Q01 = 146, Q00 = 38
New waiting set W: Q00

New partition P: Q00 = 38, Q01 = 146, Q1 = Q10 = 257

States in inverse of Q00: 27
Class to split: 257→ Q100 = 27, Q101 = 5
New waiting set W: Q100

New partition P: Q001 = 38,Q010 = 146, Q100 = 27,

Q101 = 5

Notation

Qu is the set of starting positions of the occurrences of u in w .Berstel, Boasson, Carton (IGM, Liafa) Hopcroft and Sturm Jorcad’08, 17–19/09/08 7 / 20



Standard words Definition

Standard words

Definition and examples

directive sequence d = (d1, d2, d3, . . .) sequence of positive integers

standard words sn of binary words defined by s0 = 1, s1 = 0 and

sn+1 = s
dn
n sn−1 (n ≥ 1) .

For d = (1), one gets the Fibonacci words.

For d = (2, 3), one gets s0 = 1, s1 = 0, s2 = 001, s3 = 0010010010,. . .

Proposition

A standard word is primitive. If u01 is a standard word, then u is a palindrome, u10 is standard

and u01 and u10 are conjugate words.

Proposition (Borel, Reutenauer)

A word w is standard if and only if it has exactly i + 1 circular factors of length i , and exactly one

circular special factor for each i = 0, . . . , |w | − 2.
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Standard words Standard words and Hopcroft’s algorithm

Standard words and Hopcroft’s algorithm

Theorem (Castiglione, Restivo, Sciortino)

Let w be a standard word.

Hopcroft’s algorithm on the cyclic automaton Aw is uniquely determined.

At each step i of the execution, the current partition is composed if the i + 1 classes Qu

indexed by the circular factors of length i , and the waiting set is a singleton.

This singleton is the smaller of the sets Qu0, Qu1, where u is the unique circular special

factor of length i − 1.

Corollary

Let (sn)n≥0 be a standard sequence. Then the complexity of Hopcroft’s algorithm on the

automaton Asn is proportional to ‖sn‖, where

‖w‖ =
X

u∈CF(w)

min(|w |u0, |w |u1) .
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Standard words Standard words and Hopcroft’s algorithm

Standard words and Hopcroft’s algorithm

Example

We compute ‖w‖ =
P

u∈CF(w) min(|w |u0, |w |u1) for w = 01001010.

u |w |u0 |w |u1 min
ε 5 3 3
0 2 3 2

10 2 1 1
010 2 1 1

0010 1 1 1
10010 1 1 1

010010 1 1 1
So the number ‖w‖ equals 10.

Theorem (Our main result)

Let (sn)n≥0 be the standard sequence defined by a directive sequence d with bounded elements.

Then ‖sn‖ = Θ(n|sn|), and the complexity of Hopcroft’s algorithm on the automata Asn is in

Θ(N log N) with N = |sn|.
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Generating series The equation

Generating series

Let d = (d1, d2, . . .) and (sn)n≥0 be the standard sequence defined by d. Set an = |sn|1 and
cn = ‖sn‖ =

P

u∈CF (sn)

min(|s − n|u0, |sn|u1).

cn is the complexity of Hopcroft’s algorithm for sn, and an is (almost) the length of sn.

The generating series are Ad (x) =
X

n≥1

anx
n , Cd (x) =

X

n≥0

cnx
n.

Proposition

For any directive sequence d = (d1, d2, . . .), one has

Cd (x) = Ad (x) + xδ(d)Cτ(d)(x) + x1+δ(T (d))Cτ(T (d))(x) .

Here

τ(d) =

(

(d1 − 1, d2, d3, . . .) if d1 > 1

(d2, d3, . . .) otherwise .
δ(d) =

(

0 if d1 > 1 ,

1 otherwise.

and T (d) = τd1(d) = (d2, d3, . . .).

Example: For d = (1, 2, 3, 4, . . .), one gets τ(d) = (2, 3, 4, . . .) and δ(d) = 1.
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Generating series Example: Fibonacci

Example: Fibonacci

For d = (1), one has τ(d) = T (d) = d, and δ(d) = 1. The equation becomes

Cd (x) = Ad (x) + (x + x2)Cd (x) ,

from which we get Cd (x) =
Ad (x)

1− x − x2
. Clearly an+2 = an+1 + an for n ≥ 0, and since a0 = 1

and a1 = 0, one gets Ad (x) =
x2

1− x − x2
. Thus

Cd (x) =
x2

(1− x − x2)2
.

This proves that cn ∼ Cnϕn, where ϕ is the golden ratio. This was proved by Castiglione, Restivo
and Sciortino (WORDS’07).
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Generating series Example: Fibonacci

Another example

Proposition

Cd (x) = Ad (x) + xδ(d)Cτ(d)(x) + x1+δ(T (d))Cτ(T (d))(x)

Example (d = (2, 3))
C(2,3) = A(2,3) + C(1,3,2) + xC(2,2,3)

C(1,3,2) = A(1,3,2)+ xC(3,2) + xC(2,2,3)

C(2,2,3) = A(2,2,3)+ C(1,2,3) + xC(1,3,2)

C(3,2) = A(3,2) + C(2,2,3) + xC(1,3,2)

C(1,2,3) = A(1,2,3)+ xC(2,3) + xC(1,3,2)

Here A(2,3) = A(1,3,2) and A(3,2) = A(2,2,3) = A(1,2,3). Set D1 = C(1,3,2) and D2 = C(2,2,3).

C(2,3) = A(2,3) + D1 + xD2 ,

where D1 and D2 satisfy the equations

D1 = A(2,3) + xA(3,2) + 2xD2 + x2D1

D2 = 2A(3,2) + xA(2,3) + 3xD1 + x2D2 .

Thus the original system of 5 equations in the Cu is replaced by a system of 2 equations in D1

and D2.
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Generating series Acceleration

Acceleration

Let d = (d1, d2, . . .) be a directive sequence, and for i ≥ 1, set

ei = T i−1(d) = (di , di+1, . . .) .

Set also
Di = xδ(ei ))Cτ(ei )

, Bi = (di − 1)Aei + xAei+1 .

With these notations, the following system of equation holds.

Proposition

The following equations hold

Cd = Ad + D1 + xD2

Di = Bi + dixDi+1 + x2Di+2 (i ≥ 1)
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Continuant polynomials Continuant polynomials and standard words

Continuant Polynomials

Definition

The continuant polynomials Kn(x1, . . . , xn), for n ≥ −1 are a family of polynomials in the
variables x1, . . . , xn defined by K−1 = 0, K0 = 1 and, for n ≥ 1, by

Kn(x1, . . . , xn) = x1Kn−1(x2, . . . , xn) + Kn−2(x3, . . . , xn) .

The first continuant polynomials are

K1(x1) = x1

K2(x1, x2) = x1x2 + 1

K3(x1, x2, x3) = x1x2x3 + x1 + x3

K4(x1, x2, x3, x4) = x1x2x3x4 + x1x2 + x3x4 + x1x4 + 1 .
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Continuant polynomials Continuant polynomials and standard words

Combinatorial Interpretation

The Morse code

K5(x1, x2, x3, x4, x5) = x1x2x3x4x5 + x3x4x5 + x1x4x5

+ x1x2x5 + x1x2x3 + x5 + x3 + x1

x1 x2 x3 x4 x5

x1x2x3x4x5

x3x4x5

x1x4x5

x1x2x5

x1x2x3

x5

x3

x1
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Continuant polynomials Continuant polynomials and standard words

Equivalent definitions

Kn(x1, . . . , xn) = x1Kn−1(x2, . . . , xn) + Kn−2(x3, . . . , xn) ,

Kn(x1, . . . , xn) = Kn−1(x1, . . . , xn−1)xn + Kn−2(x1, . . . , xn−2)

See Graham, Knuth, Patashnik, Concrete Mathematics, for other properties.
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Continuant polynomials Continuant polynomials and standard words

Continuant polynomials and continued fractions

Let d = (d1, d2, d3, . . .) be a sequence of positive numbers. The continued fraction defined by d

is denoted α = [d1, d2, d3, . . .] and is defined by

α = d1 +
1

d2 +
1

d3 + · · ·

.

The finite initial parts [d1, d2 . . . , dn] of d define rational numbers

d1 +
1

d2 +
1

d3 +
.. . +

1

dn

=
Kn(d1, . . . , dn)

Kn−1(d2, . . . , dn)
.
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Continuant polynomials Continuant polynomials and standard words

Continuant polynomials and standard words

One has
an+2 = Kn(d2, . . . , dn+1) (n ≥ −1)

and
Ad (x) = x2

X

n≥0

Kn(d2, . . . , dn+1)x
n .

The series Cd also has an expression with continuants

Cd = x2
X

n≥0

(Kn(d2, . . . , dn+1) + Nn+1(d1, . . . , dn+1) + Nn(d1, . . . , dn))x
n .

where

Ln(x1, . . . , xn) = Kn(x1, . . . , xn)− Kn−1(x2, . . . , xn) .

Nn(x1, . . . , xn) =

n−1
X

i=0

Ki (x1, . . . , xi )Ln−i (xi+1, . . . , xn) .
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Continuant polynomials Results

Theorem

For any sequence d, one has cn = Θ(nan).

It suffices to show that Nn(d1, . . . , dn) = Θ(nKn(d1, . . . , dn).

Corollary

If an grows at most exponentially, then cn = Θ(an log an) and n = Θ(log an).

Corollary

If the elements of the sequence d are bounded, then cn = Θ(an log an).

Corollary

There exist directive sequences d such that cn = O(an log log an).
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