Hopcroft's automaton minimization algorithm and Sturmian words

Jean Berstel, Luc Boasson, Olivier Carton
Institut Gaspard-Monge, Université Paris-Est
Liafa, Université Paris Diderot

DMTCS'08

Outline

(1) Minimal automaton

- Minimal automata
(2) Hopcroft's algorithm
- The algorithm
- Cyclic automata
(3) Standard words
- Definition
- Standard words and Hopcroft's algorithm
(4) Generating series
- The equation
- Example: Fibonacci
- Acceleration
(5) Closed form
- Circular continuant polynomials
(6) Further results

Automata

> Each state q defines a language $L_{q}=\{w \mid q \cdot w$ is final $\}$.

The automaton is minimal if all languages L_{q} are distinct.

Here $L_{2}=L_{4}$. States 2 and 4 are (Nerode) equivalent.

The Nerode equivalence gives the coarsest partition that is compatible with the next-state function.

Refinement algorithm

Starts with the partition into two classes 05 and 12346.
A first refinement: $12346 \rightarrow 1234 \mid 6$ because of a.
A second refinement: $05 \rightarrow 0 \mid 5$ because of a.

History

- Hopcroft has developed in 1970 a minimization algorithm that runs in time $O(n \log n)$ on an n state automaton (discarding the alphabet).
- No faster algorithm is known for general automata.
- Question: is the time estimation sharp ?
- A first answer, by Berstel and Carton: there exist automata where you need $\Omega(n \log n)$ steps if you are "unlucky". These are related to De Bruijn words.
- A better answer, by Castiglione, Restivo and Sciortino: there exist automata where you need always $\Omega(n \log n)$ steps. These are related to Fibonacci words.
- Here: the same holds for all Sturmian words corresponding to quadratic irrational slopes.
- Later: Hopcroft's algorithm needs always $\Omega(n \log n)$ steps for all Sturmian words with bounded directive sequence, and it may require less steps.

Hopcroft's algorithm

1: $\mathcal{P} \leftarrow\left\{F, F^{c}\right\}$
\triangleright Initialize current partition \mathcal{P}
2: for all $a \in A$ do
3: $\quad \operatorname{ADD}\left(\left(\min \left(F, F^{c}\right), a\right), \mathcal{W}\right) \quad \triangleright$ Initialize waiting set \mathcal{W}
4: while $\mathcal{W} \neq \emptyset$ do
5: $\quad(C, a) \leftarrow \operatorname{Some}(\mathcal{W}) \quad \triangleright$ takes some element in \mathcal{W}
6: for each $B \in \mathcal{P}$ split by (C, a) do
7: $\quad B^{\prime}, B^{\prime \prime} \leftarrow \operatorname{Split}(B, C, a)$
8: \quad Replace B by B^{\prime} and $B^{\prime \prime}$ in \mathcal{P}
9: \quad for all $b \in A$ do
10:
11:
12:
13: $\quad \operatorname{ADD}\left(\left(\min \left(B^{\prime}, B^{\prime \prime}\right), b\right), \mathcal{W}\right)$

Definition

The pair (C, a) splits the set B if both sets $(B \cdot a) \cap C$ and $(B \cdot a) \cap C^{c}$ are nonempty.

Example

Initiale partition P: 05|12346Waiting set \mathcal{W} :
$(05, a),(05, b)$
Pair chosen : $(05, a)$
States in inverse : 06
Class to split: $\quad 12346 \rightarrow 1234 \mid 6$
Pairs to add:
$(6, a)$ and $(6, b)$
Class to split :
$05 \rightarrow 0 \mid 5$
Pair to add:
$(5, a)$ (or $(0, a))$
Pair to replace: $\quad(05, b)$: by $(0, b)$ and $(5, b)$
New partition $\mathcal{P}: \quad 0|1234| 5 \mid 6$
New waiting set $\mathcal{W}:(0, b),(6, a),(6, b),(5, a),(5, b)$

Basic fact

Splitting all sets of the current partition by one block (C, a) has a total cost of $\operatorname{Card}\left(a^{-1} C\right)$.

Cyclic automata

Cyclic automaton \mathcal{A}_{w} for $w=01001010$

States: $Q=\{1,2, \ldots,|w|\}$
One letter alphabet: $A=\{a\}$
Transitions: $\{k \xrightarrow{a} k+1|k<|w|\} \cup\{|w| \xrightarrow{a} 1\}$
Final states: $F=\left\{k \mid w_{k}=1\right\}$

Notation

Q_{u} is the set of starting positions of the occurrences of u in w.

Hopcroft's algorithm on cyclic automata

$\begin{array}{ll}\text { Initiale partition } \mathcal{P}: & Q_{0}=13468, Q_{1}=257 \\ \text { Waiting set } \mathcal{W}: & Q_{1}\end{array}$
States in inverse of Q_{1} : 146
Class to split: $\quad Q_{0}=13468 \rightarrow Q_{01}=146, Q_{00}=38$
New waiting set \mathcal{W} : $\quad Q_{00}$
New partition $\mathcal{P}: \quad Q_{00}=38, Q_{01}=146, Q_{1}=Q_{10}=257$
States in inverse of $Q_{00}: 27$
Class to split:
$Q_{10}=257 \rightarrow Q_{100}=27, Q_{101}=5$
New waiting set \mathcal{W} :
Q_{100}
New partition \mathcal{P} :
$Q_{001}=38, Q_{010}=146, Q_{100}=27, Q_{101}=5$

Standard words

Definition and examples

- directive sequence $d=\left(d_{1}, d_{2}, d_{3}, \ldots\right)$ sequence of positive integers
- standard words s_{n} of binary words defined by $s_{0}=1, s_{1}=0$ and

$$
s_{n+1}=s_{n}^{d_{n}} s_{n-1} \quad(n \geq 1)
$$

- For $d=(\overline{1})$, one gets the Fibonacci words:
$s_{0}=1, s_{1}=0, s_{2}=01, s_{3}=010, s_{4}=01001, s_{5}=01001010$, $s_{6}=0100101001001, \ldots$
- For $d=(\overline{2,3})$, one gets $s_{0}=1, s_{1}=0, s_{2}=001, s_{3}=0010010010, \ldots$.

Characterization: cutting sequences

Proposition

The standard words converge to the cutting sequence of a straight line $y=\beta x$ with the irrational slope $\beta=\left[0, d_{1}, d_{2}, d_{3}, \ldots\right]$.

Standard words and Hopcroft's algorithm

Theorem (Castiglione, Restivo, Sciortino)
Let w be a standard word.

- Hopcroft's algorithm on the cyclic automaton \mathcal{A}_{w} is uniquely determined.
- At each step i of the execution, the current partition is composed if the $i+1$ classes Q_{u} indexed by the circular factors of length i, and the waiting set is a singleton.
- This singleton is the smaller of the sets $Q_{u 0}, Q_{u 1}$, where u is the unique circular special factor of length $i-1$.

Corollary

Let $\left(s_{n}\right)_{n \geq 0}$ be a standard sequence. Then the complexity of Hopcroft's algorithm on the automaton $\mathcal{A}_{s_{n}}$ is proportional to $\left\|s_{n}\right\|$, where $\|w\|=\sum_{u \in C F(w)} \min \left(|w|_{u 0},|w|_{u 1}\right)$.

Main result

Theorem

Let $\left(s_{n}\right)_{n \geq 0}$ be the standard sequence defined by an ultimately periodic directive sequence d. Then $\left\|s_{n}\right\|=\Theta\left(n\left|s_{n}\right|\right)$, and the complexity of Hopcroft's algorithm on the automata $\mathcal{A}_{s_{n}}$ is in $\Theta(N \log N)$ with $N=\left|s_{n}\right|$.

Generating series

Let $d=\left(d_{1}, d_{2}, \ldots\right)$ and $\left(s_{n}\right)_{n \geq 0}$ be the standard sequence defined by d.
Set $a_{n}=\left|s_{n}\right|_{1}$ and $c_{n}=\left\|s_{n}\right\|=\sum_{u \in C F\left(s_{n}\right)} \min \left(\left|s_{n}\right|_{u 0},\left|s_{n}\right|_{u 1}\right)$.
c_{n} is the complexity of Hopcroft's algorithm on $\mathcal{A}_{s_{n}}$, and a_{n} is the size of $\mathcal{A}_{s_{n}}$.
The generating series are $A_{d}(x)=\sum_{n \geq 1} a_{n} x^{n}$,

$$
C_{d}(x)=\sum_{n \geq 0} c_{n} x^{n}
$$

Proposition

For any directive sequence $d=\left(d_{1}, d_{2}, \ldots\right)$, one has

$$
C_{d}(x)=A_{d}(x)+x^{\delta(d)} C_{\tau(d)}(x)+x^{1+\delta(T(d))} C_{\tau(T(d))}(x)
$$

$$
\tau(d)=\left\{\begin{array}{ll}
\left(d_{1}-1, d_{2}, d_{3}, \ldots\right) & \text { if } d_{1}>1 \\
\left(d_{2}, d_{3}, \ldots\right) & \text { otherwise }
\end{array} \quad \delta(d)= \begin{cases}0 & \text { if } d_{1}>1 \\
1 & \text { otherwise }\end{cases}\right.
$$

and $T(d)=\tau^{d_{1}}(d)=\left(d_{2}, d_{3}, \ldots\right)$.

Example: Fibonacci

For $d=(\overline{1})$, one has $\tau(d)=T(d)=d$, and $\delta(d)=1$. The equation becomes

$$
C_{d}(x)=A_{d}(x)+\left(x+x^{2}\right) C_{d}(x)
$$

from which we get $C_{d}(x)=\frac{A_{d}(x)}{1-x-x^{2}}$. Clearly $a_{n+2}=a_{n+1}+a_{n}$ for
$n \geq 0$, and since $a_{0}=1$ and $a_{1}=0$, one gets $A_{d}(x)=\frac{x^{2}}{1-x-x^{2}}$. Thus

$$
C_{d}(x)=\frac{x^{2}}{\left(1-x-x^{2}\right)^{2}}
$$

This proves that $c_{n} \sim C n \varphi^{n}$, where φ is the golden ratio, and proves the theorem of Castiglione, Restivo and Sciortino.

Another example $d=(\overline{2,3})$

$$
\begin{aligned}
& C_{(\overline{2,3})}=A_{(\overline{2,3})}+C_{(1, \overline{3,2})}+x C_{(2, \overline{2,3})} \\
& C_{(1, \overline{3,2})}=A_{(1, \overline{3,2})}+x C_{(\overline{3,2})}+x C_{(2,2,3)} \\
& C_{(2, \overline{2,3})}=A_{(2, \overline{2,3})}+C_{(1, \overline{2,3})}+x C_{(1, \overline{3,2})} \\
& C_{(\overline{3,2})}=A_{(\overline{3,2})}+C_{(2, \overline{2,3})}+x C_{(1, \overline{3,2})} \\
& C_{(1, \overline{2,3})}=A_{(1, \overline{2,3})}+x C_{(\overline{2,3})}+x C_{(1, \overline{3,2})}
\end{aligned}
$$

Here $A_{(\overline{2,3})}=A_{(1, \overline{3,2})}$ and $A_{(\overline{3,2})}=A_{(2, \overline{2,3})}=A_{(1, \overline{2,3})}$.
Set $D_{1}=C_{(1, \overline{3,2})}$ and $D_{2}=C_{(2, \overline{2,3})}$.

$$
C_{(\overline{2,3})}=A_{(\overline{2,3})}+D_{1}+x D_{2},
$$

where D_{1} and D_{2} satisfy the equations

$$
\begin{aligned}
& D_{1}=A_{(\overline{2,3})}+x A_{(\overline{3,2})}+2 x D_{2}+x^{2} D_{1} \\
& D_{2}=2 A_{(\overline{3,2})}+x A_{(\overline{2,3})}+3 x D_{1}+x^{2} D_{2} .
\end{aligned}
$$

Thus the original system of 5 equations in the C_{u} is replaced by a system of 2 equations in D_{1} and D_{2}.

Acceleration

Let $d=\left(d_{1}, d_{2}, \ldots\right)$ be a directive sequence, and for $i \geq 1$, set

$$
e_{i}=T^{i-1}(d)=\left(d_{i}, d_{i+1}, \ldots\right)
$$

Set also

$$
D_{i}=x^{\delta\left(e_{i}\right)} C_{\tau\left(e_{i}\right)}, \quad B_{i}=\left(d_{i}-1\right) A_{e_{i}}+x A_{e_{i+1}} .
$$

With these notations, the following system of equation holds.

Proposition

The following equations hold

$$
\begin{aligned}
C_{d} & =A_{d}+D_{1}+x D_{2} \\
D_{i} & =B_{i}+d_{i} x D_{i+1}+x^{2} D_{i+2} \quad(i \geq 1)
\end{aligned}
$$

Closed form

Theorem

If d is a purely periodic directive sequence with period k, then

$$
A_{d}(x)=\sum a_{n} x^{n}=x \frac{R(x)}{Q(x)},
$$

where $R(x)$ is a polynomial of degree $<2 k$ and

$$
Q(x)=1-Z\left(d_{1}, \ldots, d_{k}\right) x^{k}+(-1)^{k} x^{2 k}
$$

where $Z\left(x_{1}, \ldots, x_{k}\right)$ is a polynomial in the variables x_{1}, \ldots, x_{k}. Moreover, $a_{n}=\Theta\left(\rho^{n}\right)$, where ρ is the unique real root greater than 1 of the reciprocal polynomial of $Q(x)$. Next,

$$
C_{d}(x)=\sum c_{n} x^{n}=\frac{S(x)}{Q(x)^{2}}
$$

where $S(x)$ is a polynomial, and $c_{n}=\Theta\left(n \rho^{n}\right)$.

Circular continuant polynomials

Replace in the word $x_{1} \cdots x_{n}$ a factor $x_{i} x_{i+1}$ of variables with consecutive indices by 1 . The replacement of $x_{n} x_{1}$ is allowed for circular continuants. The following are the first circular continuant polynomials.

$$
\begin{aligned}
Z\left(x_{1}\right) & =x_{1} \\
Z\left(x_{1}, x_{2}\right) & =x_{1} x_{2}+2 \\
Z\left(x_{1}, x_{2}, x_{3}\right) & =x_{1} x_{2} x_{3}+x_{1}+x_{2}+x_{3} \\
Z\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =x_{1} x_{2} x_{3} x_{4}+x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{1}+2 .
\end{aligned}
$$

The first continuant polynomials are

$$
\begin{aligned}
K\left(x_{1}\right) & =x_{1} \\
K\left(x_{1}, x_{2}\right) & =x_{1} x_{2}+1 \\
K\left(x_{1}, x_{2}, x_{3}\right) & =x_{1} x_{2} x_{3}+x_{1}+x_{3} \\
K\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =x_{1} x_{2} x_{3} x_{4}+x_{1} x_{2}+x_{3} x_{4}+x_{1} x_{4}+1 .
\end{aligned}
$$

They are related by

$$
Z\left(x_{1}, x_{2}, \ldots, x_{n}\right)=K\left(x_{1}, x_{2}, \ldots, x_{n}\right)+K\left(x_{2}, \ldots, x_{n-1}\right)
$$

Further results

Theorem
 For any sequence d, one has $c_{n}=\Theta\left(n a_{n}\right)$.

```
Corollary
If an}\mp@subsup{a}{n}{}\mathrm{ grows at most exponentially, then }\mp@subsup{c}{n}{}=\Theta(\mp@subsup{a}{n}{}\operatorname{log}\mp@subsup{a}{n}{})\mathrm{ and
n=\Theta(\operatorname{log}\mp@subsup{a}{n}{}).
```

Corollary
If the elements of the sequence d are bounded, then $c_{n}=\Theta\left(a_{n} \log a_{n}\right)$.

Corollary

There exist directive sequences d such that $c_{n}=O\left(a_{n} \log \log a_{n}\right)$.

A combinatorial lemma (one of four)

Lemma

Assume $d_{2}>1$, and let t_{n} be the sequence of standard words generated by $\tau T(d)=\left(d_{2}-1, d_{3}, d_{4}, \ldots\right)$. Let β be the morphism defined by

$$
\beta(0)=10^{d_{1}} \text { and } \beta(1)=10^{d_{1}+1}
$$

- Then $s_{n+1} 0^{d_{1}}=0^{d_{1}} \beta\left(t_{n}\right)$ for $n \geq 1$.
- If v is a circular special factor of t_{n}, then $\beta(v) 10^{d_{1}}$ is a circular special factor of s_{n+1}.
- Conversely, if w is a circular special factor of s_{n+1} starting with 1 , then w has the form $w=\beta(v) 10^{d_{1}}$ for some circular special factor v of t_{n}.
- Moreover, $\left|s_{n+1}\right|_{w 0}=\left|t_{n}\right|_{v 1}$ and $\left|s_{n+1}\right|_{w 1}=\left|t_{n}\right|_{v 0}$.

Application of the combinatorial lemma

Example $(d=(\overline{2,3})$, so $\beta(0)=100, \beta(1)=1000)$

$$
\begin{array}{rll}
t_{0} & =1 & s_{0}=1 \\
t_{1} & =0 & s_{1}=0 \\
t_{2} & =001 & s_{2}=001 \\
t_{3} & =(001)^{2} 0 & s_{3}=(001)^{3} \\
s_{3} 00=00.100 .100 .1000=00 \beta(001)=00 \beta\left(t_{2}\right) \\
t_{2}=\underline{001}, s_{3} 00 & =00 \underline{0001001000}=001001001000
\end{array}
$$

