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Each state q defines a language
Lq = {w | q · w is final}.

The automaton is minimal if all languages Lq are
distinct.

Here L2 = L4. States 2 and 4 are (Nerode)
equivalent.

The Nerode equivalence gives the coarsest
partition that is compatible with the next-state
function.

Refinement algorithm

Starts with the partition into two classes 05 and 12346.
A first refinement: 12346→ 1234|6 because of a.
A second refinement: 05→ 0|5 because of a.
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History

Hopcroft has developed in 1970 a minimization algorithm that runs in
time O(n log n) on an n state automaton (discarding the alphabet).

No faster algorithm is known for general automata.

Question: is the time estimation sharp ?

A first answer, by Berstel and Carton: there exist automata where you
need Ω(n log n) steps if you are “unlucky”. These are related to De
Bruijn words.

A better answer, by Castiglione, Restivo and Sciortino: there exist
automata where you need always Ω(n log n) steps. These are related
to Fibonacci words.

Here: the same holds for all Sturmian words corresponding to
quadratic irrational slopes.

Later: Hopcroft’s algorithm needs always Ω(n log n) steps for all
Sturmian words with bounded directive sequence, and it may require
less steps.
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Hopcroft’s algorithm

1: P ← {F , F c} ⊲ Initialize current partition P
2: for all a ∈ A do

3: Add((min(F , F c), a),W) ⊲ Initialize waiting set W
4: while W 6= ∅ do

5: (C , a)← Some(W) ⊲ takes some element in W
6: for each B ∈ P split by (C , a) do

7: B ′, B ′′ ← Split(B, C , a)
8: Replace B by B ′ and B ′′ in P
9: for all b ∈ A do

10: if (B, b) ∈ W then

11: Replace (B, b) by (B ′, b) and (B ′′, b) in W
12: else

13: Add((min(B ′, B ′′), b),W)

Definition

The pair (C , a) splits the set B if both sets (B · a) ∩ C and (B · a) ∩ C c

are nonempty.
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Example
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Initiale partition P: 05|12346
Waiting set W : (05, a), (05, b)
Pair chosen : (05, a)
States in inverse : 06

Class to split: 12346→ 1234|6
Pairs to add : (6, a) and (6, b)

Class to split : 05→ 0|5
Pair to add: (5, a) (or (0, a))
Pair to replace: (05, b) : by (0, b) and (5, b)
New partition P: 0|1234|5|6
New waiting set W: (0, b), (6, a), (6, b), (5, a), (5, b)

Basic fact

Splitting all sets of the current partition by one block (C , a) has a total
cost of Card(a−1C ).
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Cyclic automata

Cyclic automaton Aw for w = 01001010
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States: Q = {1, 2, . . . , |w |}

One letter alphabet: A = {a}

Transitions: {k
a
→ k + 1 | k < |w |} ∪ {|w |

a
→ 1}

Final states: F = {k | wk = 1}

Notation

Qu is the set of starting positions of the occurrences of u in w .
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Hopcroft’s algorithm on cyclic automata
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Initiale partition P: Q0 = 13468, Q1 = 257
Waiting set W : Q1

States in inverse of Q1: 146
Class to split: Q0 = 13468→ Q01 = 146, Q00 = 38
New waiting set W: Q00

New partition P: Q00 = 38, Q01 = 146, Q1 = Q10 = 257

States in inverse of Q00: 27
Class to split: Q10 = 257→ Q100 = 27, Q101 = 5
New waiting set W: Q100

New partition P: Q001 = 38, Q010 = 146, Q100 = 27, Q101 = 5
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Standard words

Definition and examples

directive sequence d = (d1, d2, d3, . . .) sequence of positive integers

standard words sn of binary words defined by s0 = 1, s1 = 0 and

sn+1 = sdn
n sn−1 (n ≥ 1) .

For d = (1), one gets the Fibonacci words:
s0 = 1, s1 = 0, s2 = 01, s3 = 010, s4 = 01001, s5 = 01001010,
s6 = 0100101001001, . . .

For d = (2, 3), one gets s0 = 1, s1 = 0, s2 = 001, s3 = 0010010010,. . .
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Characterization: cutting sequences

y = βx

x = 0 1 0 01 0 10 0 1 0 01

Proposition

The standard words converge to the cutting sequence of a straight line

y = βx with the irrational slope β = [0, d1, d2, d3, . . .].
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Standard words and Hopcroft’s algorithm

Theorem (Castiglione, Restivo, Sciortino)

Let w be a standard word.

Hopcroft’s algorithm on the cyclic automaton Aw is uniquely

determined.

At each step i of the execution, the current partition is composed if

the i + 1 classes Qu indexed by the circular factors of length i , and

the waiting set is a singleton.

This singleton is the smaller of the sets Qu0, Qu1, where u is the

unique circular special factor of length i − 1.

Corollary

Let (sn)n≥0 be a standard sequence. Then the complexity of Hopcroft’s

algorithm on the automaton Asn is proportional to ‖sn‖, where

‖w‖ =
∑

u∈CF (w) min(|w |u0, |w |u1).
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Main result

Theorem

Let (sn)n≥0 be the standard sequence defined by an ultimately periodic

directive sequence d. Then ‖sn‖ = Θ(n|sn|), and the complexity of

Hopcroft’s algorithm on the automata Asn is in Θ(N log N) with N = |sn|.
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Generating series

Let d = (d1, d2, . . .) and (sn)n≥0 be the standard sequence defined by d .
Set an = |sn|1 and cn = ‖sn‖ =

∑

u∈CF (sn)

min(|sn|u0, |sn|u1).

cn is the complexity of Hopcroft’s algorithm on Asn , and an is the size of
Asn .

The generating series are Ad(x) =
∑

n≥1

anx
n , Cd(x) =

∑

n≥0

cnx
n.

Proposition

For any directive sequence d = (d1, d2, . . .), one has

Cd(x) = Ad(x) + xδ(d)Cτ(d)(x) + x1+δ(T (d))Cτ(T (d))(x) .

τ(d) =

{

(d1 − 1, d2, d3, . . .) if d1 > 1

(d2, d3, . . .) otherwise .
δ(d) =

{

0 if d1 > 1 ,

1 otherwise.

and T (d) = τd1(d) = (d2, d3, . . .).
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Example: Fibonacci

For d = (1), one has τ(d) = T (d) = d , and δ(d) = 1. The equation
becomes

Cd(x) = Ad(x) + (x + x2)Cd(x) ,

from which we get Cd(x) =
Ad(x)

1− x − x2
. Clearly an+2 = an+1 + an for

n ≥ 0, and since a0 = 1 and a1 = 0, one gets Ad(x) =
x2

1− x − x2
. Thus

Cd(x) =
x2

(1− x − x2)2
.

This proves that cn ∼ Cnϕn, where ϕ is the golden ratio, and proves the
theorem of Castiglione, Restivo and Sciortino.

Berstel, Boasson, Carton (IGM, Liafa) Hopcroft and Sturm DMTCS’08 14 / 21



Another example d = (2, 3)

C(2,3) = A(2,3) + C(1,3,2) + xC(2,2,3)

C(1,3,2) = A(1,3,2)+ xC(3,2) + xC(2,2,3)

C(2,2,3) = A(2,2,3)+ C(1,2,3) + xC(1,3,2)

C(3,2) = A(3,2) + C(2,2,3) + xC(1,3,2)

C(1,2,3) = A(1,2,3)+ xC(2,3) + xC(1,3,2)

Here A(2,3) = A(1,3,2) and A(3,2) = A(2,2,3) = A(1,2,3).
Set D1 = C(1,3,2) and D2 = C(2,2,3).

C(2,3) = A(2,3) + D1 + xD2 ,

where D1 and D2 satisfy the equations

D1 = A(2,3) + xA(3,2) + 2xD2 + x2D1

D2 = 2A(3,2) + xA(2,3) + 3xD1 + x2D2 .

Thus the original system of 5 equations in the Cu is replaced by a system
of 2 equations in D1 and D2.
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Acceleration

Let d = (d1, d2, . . .) be a directive sequence, and for i ≥ 1, set

ei = T i−1(d) = (di , di+1, . . .) .

Set also
Di = xδ(ei )Cτ(ei ) , Bi = (di − 1)Aei

+ xAei+1 .

With these notations, the following system of equation holds.

Proposition

The following equations hold

Cd = Ad + D1 + xD2

Di = Bi + dixDi+1 + x2Di+2 (i ≥ 1)
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Closed form

Theorem

If d is a purely periodic directive sequence with period k, then

Ad(x) =
∑

anx
n = x

R(x)

Q(x)
,

where R(x) is a polynomial of degree < 2k and

Q(x) = 1− Z (d1, . . . , dk)xk + (−1)kx2k

where Z (x1, . . . , xk) is a polynomial in the variables x1, . . . , xk . Moreover,

an = Θ(ρn), where ρ is the unique real root greater than 1 of the

reciprocal polynomial of Q(x). Next,

Cd(x) =
∑

cnx
n =

S(x)

Q(x)2
,

where S(x) is a polynomial, and cn = Θ(nρn).
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Circular continuant polynomials

Replace in the word x1 · · · xn a factor xixi+1 of variables with consecutive
indices by 1. The replacement of xnx1 is allowed for circular continuants.
The following are the first circular continuant polynomials.

Z (x1) = x1

Z (x1, x2) = x1x2 + 2

Z (x1, x2, x3) = x1x2x3 + x1 + x2 + x3

Z (x1, x2, x3, x4) = x1x2x3x4 + x1x2 + x2x3 + x3x4 + x4x1 + 2 .

The first continuant polynomials are

K (x1) = x1

K (x1, x2) = x1x2 + 1

K (x1, x2, x3) = x1x2x3 + x1 + x3

K (x1, x2, x3, x4) = x1x2x3x4 + x1x2 + x3x4 + x1x4 + 1 .

They are related by

Z (x1, x2, . . . , xn) = K (x1, x2, . . . , xn) + K (x2, . . . , xn−1) .
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Further results

Theorem

For any sequence d, one has cn = Θ(nan).

Corollary

If an grows at most exponentially, then cn = Θ(an log an) and

n = Θ(log an).

Corollary

If the elements of the sequence d are bounded, then cn = Θ(an log an).

Corollary

There exist directive sequences d such that cn = O(an log log an).
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A combinatorial lemma (one of four)

Lemma

Assume d2 > 1, and let tn be the sequence of standard words generated by

τT (d) = (d2 − 1, d3, d4, . . .). Let β be the morphism defined by

β(0) = 10d1 and β(1) = 10d1+1

Then sn+10
d1 = 0d1β(tn) for n ≥ 1.

If v is a circular special factor of tn, then β(v)10d1 is a circular special

factor of sn+1.

Conversely, if w is a circular special factor of sn+1 starting with 1,

then w has the form w = β(v)10d1 for some circular special factor v

of tn.

Moreover, |sn+1|w0 = |tn|v1 and |sn+1|w1 = |tn|v0.
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Application of the combinatorial lemma

Example (d = (2, 3), so β(0) = 100, β(1) = 1000)

t0 = 1 s0 = 1
t1 = 0 s1 = 0
t2 = 001 s2 = 001
t3 = (001)20 s3 = (001)3

s300 = 00.100.100.1000 = 00β(001) = 00β(t2)

t2 = 001, s300 = 001001001000 = 001001001000
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