
Minimization of Automata: Hopcroft’s Algorithm revisited

Jean Berstel, Luc Boasson, Olivier Carton

Institut Gaspard-Monge, Université Paris-Est
Liafa, Université Paris VII

June 8, 2009

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 1 / 39

Outline

1 Minimal automaton
Minimal automata

2 Moore’s algorithm
Moore’s algorithm
Slow automata
Slow automata and Sturmian trees

3 Hopcroft’s algorithm
History
The algorithm

4 Hopcroft’s algorithm and Sturmian words
Cyclic automata
Definition
Standard words and Hopcroft’s algorithm
The equation
Evaluation
Combinatorics

5 Final remarks

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 2 / 39

Automata

1

2

5

3

6

4

0

a

b

a

b

a

b

a

b

a

b

a

b

a, b

Each state q defines a language
Lq = {w | q · w is final}.

The automaton is minimal if all languages Lq are
distinct.

Here L2 = L4. States 2 and 4 are (Nerode)
equivalent.

The Nerode equivalence is the coarsest partition
that is compatible with the next-state function.

Refinement algorithm

Starts with the partition into two classes 05 and 12346.
Tries to refine by splitting classes which are not compatible with the next-state function.
A first refinement: 12346→ 1234|6 because 6 · a is final.
A second refinement: 05→ 0|5 because of 0 · a is final.

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 3 / 39

Moore’s algorithm

Moore equivalence

The Moore equivalence of order h is the equivalence ∼h defined for h ≥ 0 by

p ∼h q ⇐⇒ L
(h)
p (A) = L

(h)
q (A) , with L

(h)
p (A) = {w ∈ A∗ | |w | ≤ h, q · w ∈ F} .

Computation rule

For two states p, q and h ≥ 0

p ∼h+1 q ⇐⇒ p ∼h q and p · a ∼h q · a for all a ∈ A .

Depth

The depth of a finite automaton A is the smallest h such that the Moore equivalence ∼h

equals the Nerode equivalence ∼.

The depth is the smallest h such that ∼h equals ∼h+1.

It is at most n − 2, where n is the number of states of A.

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 4 / 39

Moore’s algorithm

1: ⊲ the initial equivalence ∼0P ← {F , F c}
2: repeat

3: ⊲ Q is the old partition, P is the new oneQ ← P
4: for all a ∈ A do

5: ⊲ action of the letter aPa ← a−1P
6: ⊲ the new partitionP ← P ∧

V

a∈A Pa

7: until P = Q

Remarks

a−1P is the partition (equivalence) defined by

p ≡ q mod (a−1P) ⇐⇒ p · a ≡ q · a mod P

If P is the partition (equivalence) ∼h, then P ′ = P ∧
V

a∈A Pa is ∼h+1.

The computation of P ′ = P ∧
V

a∈A Pa can be done in time O(n Card A) for an automaton
with n states, by a bucket sort.

Proposition

The complexity of Moore’s algorithm on an n-state automaton A is O(dn), where d is the depth
of A.

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 5 / 39

Example

1

2

5

3

6

4

0

a

b

a

b

a

b

a

b

a

b

a

b

a, b

0 1 2 3 4 5 6
a 0 2 3 3 3 6 5
b 0 5 0 4 0 0 0

P =∼0 • • • • • • •
a−1P • • • • • • •
b−1P • • • • • • •
P ′ =∼1 • • • • • • •
a−1P ′ • • • • • • •
b−1P ′ • • • • • • •
∼2 • • • • • • •

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 6 / 39

Average complexity

The alphabet is fixed, and the automata are accessible, deterministic and complete.

Theorem (Bassino, David, Nicaud)

For the uniform distribution over the automata of size n, the average complexity of Moore’s
algorithm is O(n log n).

A semi-automaton is an automaton with the final states not specified. Thus, an automaton is a
pair (T ,F), where F is the set of final states.

Proposition

For any semi-automaton T , the average depth of Moore’s algorithm on (T , F), for the uniform
distribution over the sets F of final states, is O(log n).

Denote by F≥ℓ the set of set of states F such that the depth d(T ,F) of Moore’s algorithm
on (T ,F) is ≥ ℓ. The authors show that

Card(F≥ℓ) ≤ n42n−ℓ .

It follows that

1

2n

X

F∈F≥ℓ

d(T ,F) ≤ n52−ℓ and
1

2n

X

F∈F≤ℓ

d(T , F) ≤ ℓ .

The estimation is obtained by choosing ℓ = ⌈5 log n⌉.

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 7 / 39

Slow automata

Definition

An infinite automaton is slow (for Moore) iff each Moore equivalence ∼h has h + 2 classes.

An finite automaton with n states is slow iff each Moore equivalence ∼h, for h ≤ n − 2, has
h + 2 classes.

Example

The Dyck automaton is slow. The minimal automaton of the Dyck language is the following.

∞ 0 1 2 3 . . .0, 1
1

0

1

0

1

0

1

0

1

The Moore equivalences of this automaton

∼0: 0 | 1, 2, 3, 4, . . .∞

∼1: 0 | 1 | 234 . . .∞

∼2: 0 | 1 | 2 | 3, 4, . . .∞

∼3: 0 | 1 | 2 | 3 | 4, . . .∞

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 8 / 39

Slow automata and Sturmian trees: Trees and factors of a tree

We consider infinite binary trees t labeled with two colors.

To each deterministic automaton A over two letters corresponds an execution tree t defined
as follows

◮ Each word labels a path in the tree
◮ A node is colored red (black) if the state is accepting (not accepting)

A factor of height h of a tree t is a subtree of height h that occurs in t.

Factor
of height 3

Factor
of height 2

•

••

••••

••••••••

••••••••••••••••

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 9 / 39

Sturmian tree

Proposition (Carpi et al)

A complete tree t is rational if there is some integer h such that t has at most h distinct factors
of height h.

Definition

A tree is Sturmian if the number of its factors of height h is h + 1 for each h.

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 10 / 39

Example (Dyck tree)

A node is • if it is a Dyck word over the alphabet {0, 1}.

The Dyck tree

D∗
2 = {ε, 01, 0101, 0011, . . .}

0

0 1

1

Its factors

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 11 / 39

Example (Dyck tree)

A node is • if it is a Dyck word over the alphabet {0, 1}.

The Dyck tree Its factors

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 11 / 39

Example (Dyck tree)

A node is • if it is a Dyck word over the alphabet {0, 1}.

The Dyck tree Its factors

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 11 / 39

Example (Dyck tree)

A node is • if it is a Dyck word over the alphabet {0, 1}.

The Dyck tree Its factors

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 11 / 39

Example (Dyck tree)

A node is • if it is a Dyck word over the alphabet {0, 1}.

The Dyck tree Its factors

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 11 / 39

Example (Dyck tree)

A node is • if it is a Dyck word over the alphabet {0, 1}.

The Dyck tree Its factors

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 11 / 39

Example (Dyck tree)

A node is • if it is a Dyck word over the alphabet {0, 1}.

The Dyck tree Its factors

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 11 / 39

Example (Dyck tree)

A node is • if it is a Dyck word over the alphabet {0, 1}.

The Dyck tree Its factors

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 11 / 39

Example (Dyck tree)

A node is • if it is a Dyck word over the alphabet {0, 1}.

The Dyck tree Its factors

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 11 / 39

Example (Dyck tree)

A node is • if it is a Dyck word over the alphabet {0, 1}.

The Dyck tree Its factors

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 11 / 39

Example (Dyck tree)

A node is • if it is a Dyck word over the alphabet {0, 1}.

The Dyck tree Its factors

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 11 / 39

Slow automata and Sturmian trees

Recall that an infinite automaton is slow iff each equivalence ∼h has h + 2 classes.

Proposition

A tree t is Sturmian iff the minimal automaton A accepting the language of red (black) words is
slow.

Indeed, a factor of height h in the tree describes the set L
(h)
q (A) of words of length at most h

accepted by A when starting in state q.

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 12 / 39

History of Hopcroft’s algorithm

History

Hopcroft has developed in 1970 a minimization algorithm that runs in time O(n log n) on an
n state automaton (discarding the alphabet).

No faster algorithm is known for general automata.

Question

Question: is the time estimation sharp ?

A first answer, by Berstel and Carton: there exist automata where you need Ω(n log n) steps
if you are “unlucky”. These are related to De Bruijn words.

A better answer, by Castiglione, Restivo and Sciortino: there exist automata where you need
always Ω(n log n) steps. These are related to Fibonacci words.

Here: the same holds for all Sturmian words whose directive sequence have bounded
geometric means.

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 13 / 39

Splitter

A = (Q, i ,F) automaton on the alphabet A. Let P be a partition of Q.

Definition

A splitter is a pair (P, a), with P ∈ P and a ∈ A.

The aim of a splitter is to split another class of P.

Definition

The splitter (P, a) splits the class R ∈ P if

∅ (P ∩ R · a (R · a or equivalently if ∅ (a−1P ∩ R (R .

Here a−1P = {q | q · a ∈ P}.

Notation

In any case, we denote by (P, a)|R the partition of R composed of the nonempty sets among
a−1P ∩ R and R \ a−1P. The splitter (P, a) splits R if (P, a)|R 6= {R}.

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 14 / 39

Example

1

2

5

3

6

4

0

a

b

a

b

a

b

a

b

a

b

a

b

a, b

Partition P = 05 | 12346.

Splitter (05, a). One has a−105 = 06.

The splitter splits both 05 and 12346. (This is also
seen by 05 ∩ 05 · a = 05 ∩ 06 6= 06 and
05 ∩ 12346 · a = 05 ∩ 0234 6= 0234)

One gets

(05, a)|05 = 0 | 5 and (05, a)|12346 = 1234 | 6

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 15 / 39

Notation

P is the current partition. W is the waiting set.

Hopcroft’s algorithm

1: ⊲ The initial partitionP ← {F , F c}
2: for all a ∈ A do

3: ⊲ The initial waiting setAdd((min(F , F c), a),W)
4: while W 6= ∅ do

5: ⊲ takes some splitter in W and remove it(W , a)← TakeSome(W)
6: for each P ∈ P which is split by (W , a) do

7: ⊲ Compute the splitP′,P′′ ← (W , a)|P
8: ⊲ Refine the partitionReplace P by P′ and P′′ in P
9: for all ⊲ Update the waiting setb ∈ A do

10: if (P, b) ∈ W then

11: Replace (P, b) by (P′, b) and (P′′, b) in W
12: else

13: Add((min(P′, P′′), b),W)

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 16 / 39

Example

1

2

5

3

6

4

0

a

b

a

b

a

b

a

b

a

b

a

b

a, b

Initiale partition P: 05|12346
Waiting set W : (05, a), (05, b)
Splitter chosen : (05, a)
Split states : a−105 = 06

First class to split: 12346→ 1234|6
Splitters to add : (6, a) and (6, b)

Second class to split : 05→ 0|5
Splitter to add: (5, a) (or (0, a))
Splitter to replace: (05, b) : by (0, b) and (5, b)
New partition P: 0|1234|5|6
New waiting set W: (0, b), (6, a), (6, b), (5, a), (5, b)

Basic fact

Splitting all sets of the current partition by one splitter (C , a) has a total cost of Card(a−1C).

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 17 / 39

Cyclic automata

Cyclic automaton Aw for w = 01001010.

1

2

3

4

5

6

7

8

a

a a

a

a

aa

a

States: Q = {1, 2, . . . , |w |}

One letter alphabet: A = {a}

Transitions:
{k

a
−→ k + 1 | k < |w |} ∪ {|w |

a
−→ 1}

Final states: F = {k | wk = 1}

Notation

Qu is the set if starting positions of the occurrences of u in w .

Example

Q010 = 146

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 18 / 39

Hopcrofts’ algorithm on a cyclic automaton,

1

2

3

4

5

6

7

8

a

a a

a

a

aa

a

Initiale partition P: Q0 = 13468, Q1 = 257
Waiting set W : Q1 = 257

States in a−1Q1: 146

Class to split: 13468→ Q01 = 146, Q00 = 38
New waiting set W : Q00

New partition P: Q00 = 38, Q01 = 146, Q1 = Q10 = 257
States in inverse of Q00: 27
Class to split: 257→ Q100 = 27, Q101 = 5
New waiting set W : Q101

New partition P: Q001 = 38, Q010 = 146, Q100 = 27, Q101 = 5

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 19 / 39

Standard words

Definition and examples

directive sequence d = (d1, d2, d3, . . .) sequence of positive integers

standard words sn of binary words defined by s0 = 1, s1 = 0 and

sn+1 = sdn
n sn−1 (n ≥ 1) .

For d = (1), one gets the Fibonacci words.

For d = (2, 3), one gets s0 = 1, s1 = 0, s2 = 001, s3 = 0010010010,. . .

Proposition

A standard word is primitive. If u01 is a standard word, then u is a palindrome, u10 is standard
and u01 and u10 are conjugate words.

Proposition

The standard words with directive sequence d = (d1, d2, d3, . . .) converge to the infinite
characteristic Sturmian word with irrational slope [0, d1, d2, d3, . . .].

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 20 / 39

Standard words and Hopcroft’s algorithm

Proposition (Borel, Reutenauer)

A word w is standard if and only if it has exactly i + 1 circular factors of length i , and exactly one
circular special factor for each i = 0, . . . , |w | − 2.

Theorem (Castiglione, Restivo, Sciortino)

Let w be a standard word.

Hopcroft’s algorithm on the cyclic automaton Aw is uniquely determined.

At each step i of the execution, the current partition is composed if the i + 1 classes Qu

indexed by the circular factors of length i , and the waiting set is a singleton.

This singleton is the smaller of the sets Qu0, Qu1, where u is the unique circular special
factor of length i − 1.

Corollary

Let (sn)n≥0 be a standard sequence. Then the complexity of Hopcroft’s algorithm on the
automaton Asn is proportional to ‖sn‖, where ‖w‖ =

P

u∈CF(w) min(|w |u0, |w |u1).

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 21 / 39

Standard words and Hopcroft’s algorithm

Example

We compute ‖w‖ =
P

u∈CF(w) min(|w |u0, |w |u1) for w = 01001010.

u |w |u0 |w |u1 min
ε 5 3 3
0 2 3 2

10 2 1 1
010 2 1 1

0010 1 1 1
10010 1 1 1

010010 1 1 1
So the number ‖w‖ equals 10.

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 22 / 39

Standard words and Hopcroft’s algorithm

Notation

Let d = (d1, d2, d3, . . .) be a directive sequence.

Let (sn)n≥0 be the sequence of standard words generated by d. and defined by

s0 = 1 , s1 = 0 , sn+1 = sdn
n sn−1 (n ≥ 1) .

Let an = |sn|1 be the number of letters 1 in the word sn.

Let cn be the running time of Hopcroft’s algorithm on the automaton Asn .

Proposition

For any sequence d, one has cn = Θ(nan).

Theorem

One has n = Θ(log an) and consequently cn = Θ(an log an) if and only if the sequence of
geometric means

`

(d1d2 · · · dn)1/n
´

n≥1
of the directive sequence d is bounded.

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 23 / 39

Standard words and Hopcroft’s algorithm

Corollary

If the sequence d has bounded elements, then cn = Θ(an log an).

Corollary

There are directive sequences d such that cn = O(an log log an),

Indeed, if dn = 22n
, then an ≥ 22n

and consequently n ≤ log log an.

In fact, any running time close to an can be achieved by taking a rapidly growing directive
sequence.

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 24 / 39

Generating series

Notation

d = (d1, d2, . . .) directive sequence.
(sn)n≥0 standard sequence defined by d.
an = |sn|1.
cn the complexity of Hopcroft’s algorithm for sn.

Definition

The generating series of length and cost are

Ad (x) =
X

n≥1

anx
n , Cd (x) =

X

n≥0

cnx
n.

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 25 / 39

Generating series

Ad (x) =
X

n≥1

anx
n generating series of lengths. Cd (x) =

X

n≥0

cnx
n generating series of costs.

Proposition

Cd (x) = Ad (x) + xδ(d)Cτ(d)(x) + x1+δ(T (d))Cτ(T (d))(x) .

Here

τ(d) =

(

(d1 − 1, d2, d3, . . .) if d1 > 1

(d2, d3, . . .) otherwise .
δ(d) =

(

0 if d1 > 1 ,

1 otherwise.

and

T (d) = τd1 (d) = (d2, d3, . . .).

Example

For d = (1, 2, 3, 4, . . .), one gets τ(d) = (2, 3, 4, . . .) and δ(d) = 1.

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 26 / 39

Example: Fibonacci

Proposition

Cd (x) = Ad (x) + xδ(d)Cτ(d)(x) + x1+δ(T (d))Cτ(T (d))(x) .

Example

For d = (1) (Fibonacci), one has τ(d) = T (d) = d, and δ(d) = 1. The equation becomes

Cd (x) = Ad (x) + (x + x2)Cd (x) ,

from which we get

Cd (x) =
Ad (x)

1− x − x2
.

Next an+2 = an+1 + an for n ≥ 0, and since a0 = 1 and a1 = 0, one gets

Ad (x) =
x2

1− x − x2
.

Thus

Cd (x) =
x2

(1− x − x2)2
.

This proves that cn ∼ Cnϕn, where ϕ is the golden ratio, and proves a theorem of Castiglione,
Restivo and Sciortino.

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 27 / 39

Another example

Example (d = (2, 3))

C(2,3) = A(2,3) + C(1,3,2) + xC(2,2,3)

C(1,3,2) = A(1,3,2)+ xC(3,2) + xC(2,2,3)

C(2,2,3) = A(2,2,3)+ C(1,2,3) + xC(1,3,2)

C(3,2) = A(3,2) + C(2,2,3) + xC(1,3,2)

C(1,2,3) = A(1,2,3)+ xC(2,3) + xC(1,3,2)

In this case, the system can be replaced by

C(2,3) = A(2,3) + D1 + xD2 ,

where D1 and D2 satisfy the equations

D1 = A(2,3) + xA(3,2) + 2xD2 + x2D1

D2 = 2A(3,2) + xA(2,3) + 3xD1 + x2D2 .

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 28 / 39

Continuant Polynomials

Definition

The continuant polynomials Kn(x1, . . . , xn), for n ≥ −1 are a family of polynomials in the
variables x1, . . . , xn defined by K−1 = 0, K0 = 1 and, for n ≥ 1, by

Kn(x1, . . . , xn) = x1Kn−1(x2, . . . , xn) + Kn−2(x3, . . . , xn) .

The first continuant polynomials are

K1(x1) = x1

K2(x1, x2) = x1x2 + 1

K3(x1, x2, x3) = x1x2x3 + x1 + x3

K4(x1, x2, x3, x4) = x1x2x3x4 + x1x2 + x3x4 + x1x4 + 1 .

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 29 / 39

Combinatorial Interpretation

The Morse code or the “leapfrog” construction

K5(x1, x2, x3, x4, x5) = x1x2x3x4x5 + x3x4x5 + x1x4x5

+ x1x2x5 + x1x2x3 + x5 + x3 + x1

x1 x2 x3 x4 x5

x1x2x3x4x5

x3x4x5

x1x4x5

x1x2x5

x1x2x3

x5

x3

x1

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 30 / 39

Equivalent definitions

Kn(x1, . . . , xn) = x1Kn−1(x2, . . . , xn) + Kn−2(x3, . . . , xn) ,

Kn(x1, . . . , xn) = Kn−1(x1, . . . , xn−1)xn + Kn−2(x1, . . . , xn−2)

See Graham, Knuth, Patashnik, Concrete Mathematics, for other properties.

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 31 / 39

Continuant polynomials and continued fractions

Let d = (d1, d2, d3, . . .) be a sequence of positive numbers. The continued fraction defined by d
is denoted α = [d1, d2, d3, . . .] and is defined by

α = d1 +
1

d2 +
1

d3 + · · ·

.

The finite initial parts [d1, d2 . . . , dn] of d define rational numbers

d1 +
1

d2 +
1

d3 +
.. . +

1

dn

=
Kn(d1, . . . , dn)

Kn−1(d2, . . . , dn)
.

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 32 / 39

Continuant polynomials and standard words

One has
an+2 = Kn(d2, . . . , dn+1) (n ≥ −1)

and
Ad (x) = x2

X

n≥0

Kn(d2, . . . , dn+1)x
n .

The series Cd also has an expression with continuants

Cd = x2
X

n≥0

(Kn(d2, . . . , dn+1) + Nn+1(d1, . . . , dn+1) + Nn(d2, . . . , dn+1))x
n .

where

Ln(x1, . . . , xn) = Kn(x1, . . . , xn)− Kn−1(x2, . . . , xn) .

Nn(x1, . . . , xn) =

n−1
X

i=0

Ki (x1, . . . , xi)Ln−i (xi+1, . . . , xn) .

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 33 / 39

A combinatorial lemma (one of four)

Lemma

Assume d2 > 1, and let tn be the sequence of standard words generated by
τT (d) = (d2 − 1, d3, d4, . . .). Let β be the morphism defined by

β(0) = 10d1 and β(1) = 10d1+1

Then sn+10
d1 = 0d1β(tn) for n ≥ 1.

If v is a circular special factor of tn, then β(v)10d1 is a circular special factor of sn+1.

Conversely, if w is a circular special factor of sn+1 starting with 1, then w has the form
w = β(v)10d1 for some circular special factor v of tn.

Moreover, |sn+1|w0 = |tn|v1 and |sn+1|w1 = |tn|v0.

Example (d = (2, 3), so β(0) = 100, β(1) = 1000)

t0 = 1 s0 = 1
t1 = 0 s1 = 0
t2 = 001 s2 = 001
t3 = (001)20 s3 = (001)3

s300 = 00.100.100.1000 = 00β(001) = 00β(t2)

t2 = 001, s300 = 001001001000 = 001001001000

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 34 / 39

Factorizations of cyclic words

0

0

10

0

1

0

0 1

0

0
1

0

1

0

1

1

0

0
1

Factorization

Every circular word containing a 0 and a 1
has two circular factorizations: cut before
each 0 and cut before each 1.

In the case of Sturmian words, the factors
are

0 and 01 and 10p and 10p+1 or vice-versa.

Moreover, the words obtained by decoding
are again Sturmian!

Example

s = 0010010010 = 0|01|0|01|0|01|0 =
00|100|100|10 = ϕ(1010101) = β(001)

The words 1010101 and 001 are Sturmian.

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 35 / 39

Reduction tree of Sturmian words (Castiglione, Restivo Sciortino)

(0010010010)

(1010101) (001)

(0001) (001) (10) (0)

(110) (0) (10) (0) (0) (0)

(10) (0) (0) (0)

(0) (0)

Definition

The reduction tree is the tree labeled with circular Sturmian words obtained by iterating the
decoding.

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 36 / 39

Derivation tree of Sturmian words (Castiglione, Restivo Sciortino)

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

{1, 2, 4, 5, 7, 8, 10} {3, 6, 9}

{1, 4, 7, 10} {2, 5, 8} {3, 6} {9}

{1, 4, 7} {10} {2, 5} {8} {3} {6}

{4, 7} {1} {2} {5}

{4} {7}

Definition

The derivation tree is the tree labeled with the classes of the partitions obtained by Hopcroft’s
algorithm.

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 37 / 39

Derivation and reduction trees

(0010010010)

(1010101) (001)

(0001) (001) (10) (0)

(110) (0) (10) (0) (0) (0)

(10) (0) (0) (0)

(0) (0)

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

{1, 2, 4, 5, 7, 8, 10} {3, 6, 9}

{1, 4, 7, 10} {2, 5, 8} {3, 6} {9}

{1, 4, 7} {10} {2, 5} {8} {3} {6}

{4, 7} {1} {2} {5}

{4} {7}

Theorem (Castiglione, Restivo Sciortino)

The reduction tree and the derivation tree are isomorphic for circular Sturmian words.

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 38 / 39

Final remarks

Slow automata

An automaton A is slow for Hopcroft if, at each step of the algorithm,

all splitters in the waiting set either do not split or split at most one class

all splitters that split a class split the same class into the same two new classes.

Example

Whenever Hopcroft’s algorithm is determined and a class is split into two new classes. This holds
for cyclic automata defined by standard words, and also for a new class of automata defined by
Castiglione, Restivo, Sciortino On extremal cases of Hopcroft’s algorithm, CIAA2009.

Proposition

An automaton is slow for Moore if and only if it is slow for Hopcroft.

Although Hopcroft’s algorithm seems to be a refinement of Moore’s algorithm, one has:

There exist automata for which some partitions computed in Moore’s algorithm are not obtained
in any execution of the Hopcroft algorithm.

Berstel, Boasson, Carton (IGM, Liafa) Minimization of Automata June 8, 2009 39 / 39

	Minimal automaton
	Minimal automata

	Moore's algorithm
	Moore's algorithm
	Slow automata
	Slow automata and Sturmian trees

	Hopcroft's algorithm
	History
	The algorithm

	Hopcroft's algorithm and Sturmian words
	Cyclic automata
	Definition
	Standard words and Hopcroft's algorithm
	The equation
	Evaluation
	Combinatorics

	Final remarks

