Minimization of Automata: Hopcroft's Algorithm revisited

Jean Berstel, Luc Boasson, Olivier Carton
Institut Gaspard-Monge, Université Paris-Est
Liafa, Université Paris VII

June 8, 2009

Outline

(1) Minimal automaton

- Minimal automata
(2) Moore's algorithm
- Moore's algorithm
- Slow automata
- Slow automata and Sturmian trees
(3) Hopcroft's algorithm
- History
- The algorithm

44 Hopcroft's algorithm and Sturmian words

- Cyclic automata
- Definition
- Standard words and Hopcroft's algorithm
- The equation
- Evaluation
- Combinatorics
(5) Final remarks

Automata

Each state q defines a language $L_{q}=\{w \mid q \cdot w$ is final $\}$.

The automaton is minimal if all languages L_{q} are distinct.

Here $L_{2}=L_{4}$. States 2 and 4 are (Nerode) equivalent.

The Nerode equivalence is the coarsest partition that is compatible with the next-state function.

Refinement algorithm

Starts with the partition into two classes 05 and 12346.
Tries to refine by splitting classes which are not compatible with the next-state function.
A first refinement: $12346 \rightarrow 1234 \mid 6$ because $6 \cdot a$ is final.
A second refinement: $05 \rightarrow 0 \mid 5$ because of $0 \cdot a$ is final.

Moore's algorithm

Moore equivalence

The Moore equivalence of order h is the equivalence \sim_{h} defined for $h \geq 0$ by

$$
p \sim_{h} q \Longleftrightarrow L_{p}^{(h)}(\mathcal{A})=L_{q}^{(h)}(\mathcal{A}), \quad \text { with } \quad L_{p}^{(h)}(\mathcal{A})=\left\{w \in A^{*}| | w \mid \leq h, q \cdot w \in F\right\}
$$

Computation rule

For two states p, q and $h \geq 0$

$$
p \sim_{h+1} q \Longleftrightarrow p \sim_{h} q \text { and } p \cdot a \sim_{h} q \cdot a \text { for all } a \in A
$$

Depth

- The depth of a finite automaton \mathcal{A} is the smallest h such that the Moore equivalence \sim_{h} equals the Nerode equivalence \sim.
- The depth is the smallest h such that \sim_{h} equals \sim_{h+1}.
- It is at most $n-2$, where n is the number of states of \mathcal{A}.

Moore's algorithm

: $\mathcal{P} \leftarrow\left\{F, F^{c}\right\} \quad \triangleright$ the initial equivalence \sim_{0}
: repeat
3: $\quad \mathcal{Q} \leftarrow \mathcal{P}$
$\triangleright \mathcal{Q}$ is the old partition, \mathcal{P} is the new one
4: \quad for all $a \in A$ do
5: $\quad \mathcal{P}_{a} \leftarrow a^{-1} \mathcal{P} \quad \triangleright$ action of the letter a
6: $\quad \mathcal{P} \leftarrow \mathcal{P} \wedge \bigwedge_{a \in A} \mathcal{P}_{a} \quad \triangleright$ the new partition
7: until $\mathcal{P}=\mathcal{Q}$

Remarks

- $a^{-1} \mathcal{P}$ is the partition (equivalence) defined by

$$
p \equiv q \bmod \left(a^{-1} \mathcal{P}\right) \Longleftrightarrow p \cdot a \equiv q \cdot a \bmod \mathcal{P}
$$

- If \mathcal{P} is the partition (equivalence) \sim_{h}, then $\mathcal{P}^{\prime}=\mathcal{P} \wedge \bigwedge_{a \in A} \mathcal{P}_{a}$ is \sim_{h+1}.
- The computation of $\mathcal{P}^{\prime}=\mathcal{P} \wedge \bigwedge_{a \in A} \mathcal{P}_{a}$ can be done in time $O(n$ Card $A)$ for an automaton with n states, by a bucket sort.

Proposition

The complexity of Moore's algorithm on an n-state automaton \mathcal{A} is $O(d n)$, where d is the depth of \mathcal{A}.

Example

Average complexity

The alphabet is fixed, and the automata are accessible, deterministic and complete.

Theorem (Bassino, David, Nicaud)

For the uniform distribution over the automata of size n, the average complexity of Moore's algorithm is $O(n \log n)$.

A semi-automaton is an automaton with the final states not specified. Thus, an automaton is a pair (\mathcal{T}, F), where F is the set of final states.

Proposition

For any semi-automaton \mathcal{T}, the average depth of Moore's algorithm on ($\mathcal{T}, F)$, for the uniform distribution over the sets F of final states, is $O(\log n)$.

- Denote by $\mathcal{F} \geq \ell$ the set of set of states F such that the depth $d(\mathcal{T}, F)$ of Moore's algorithm on (\mathcal{T}, F) is $\geq \ell$. The authors show that

$$
\operatorname{Card}(\mathcal{F} \geq \ell) \leq n^{4} 2^{n-\ell} .
$$

- It follows that

$$
\frac{1}{2^{n}} \sum_{F \in \mathcal{F} \geq \ell} d(\mathcal{T}, F) \leq n^{5} 2^{-\ell} \quad \text { and } \quad \frac{1}{2^{n}} \sum_{F \in \mathcal{F} \leq \ell} d(\mathcal{T}, F) \leq \ell
$$

- The estimation is obtained by choosing $\ell=\lceil 5 \log n\rceil$.

Slow automata

Definition

- An infinite automaton is slow (for Moore) iff each Moore equivalence \sim_{h} has $h+2$ classes.
- An finite automaton with n states is slow iff each Moore equivalence \sim_{h}, for $h \leq n-2$, has $h+2$ classes.

Example

The Dyck automaton is slow. The minimal automaton of the Dyck language is the following.

The Moore equivalences of this automaton

$$
\begin{array}{ll}
\sim_{0}: & 0 \mid 1,2,3,4, \ldots \infty \\
\sim_{1}: & 0|1| 234 \ldots \infty \\
\sim_{2}: & 0|1| 2 \mid 3,4, \ldots \infty \\
\sim_{3}: & 0|1| 2|3| 4, \ldots \infty
\end{array}
$$

Slow automata and Sturmian trees: Trees and factors of a tree

- We consider infinite binary trees t labeled with two colors.
- To each deterministic automaton \mathcal{A} over two letters corresponds an execution tree t defined as follows
- Each word labels a path in the tree
- A node is colored red (black) if the state is accepting (not accepting)
- A factor of height h of a tree t is a subtree of height h that occurs in t.

Sturmian tree

Proposition (Carpi et al)

A complete tree t is rational if there is some integer h such that t has at most h distinct factors of height h.

Definition

A tree is Sturmian if the number of its factors of height h is $h+1$ for each h.

Example (Dyck tree)

A node is • if it is a Dyck word over the alphabet $\{0,1\}$.

The Dyck tree

$$
D_{2}^{*}=\{\varepsilon, 01,0101,0011, \ldots\}
$$

Its factors

Example (Dyck tree)

A node is • if it is a Dyck word over the alphabet $\{0,1\}$.

The Dyck tree

Example (Dyck tree)

A node is • if it is a Dyck word over the alphabet $\{0,1\}$.

The Dyck tree

Example (Dyck tree)

A node is • if it is a Dyck word over the alphabet $\{0,1\}$.

The Dyck tree

Example (Dyck tree)

A node is • if it is a Dyck word over the alphabet $\{0,1\}$.
The Dyck tree

Its factors

Example (Dyck tree)

A node is • if it is a Dyck word over the alphabet $\{0,1\}$.

The Dyck tree

Example (Dyck tree)

A node is • if it is a Dyck word over the alphabet $\{0,1\}$.

The Dyck tree

Example (Dyck tree)

A node is • if it is a Dyck word over the alphabet $\{0,1\}$.

The Dyck tree

Its factors

Example (Dyck tree)

A node is • if it is a Dyck word over the alphabet $\{0,1\}$.

The Dyck tree

Its factors

Example (Dyck tree)

A node is • if it is a Dyck word over the alphabet $\{0,1\}$.

The Dyck tree

Its factors

Example (Dyck tree)

A node is • if it is a Dyck word over the alphabet $\{0,1\}$.

The Dyck tree

Its factors

Slow automata and Sturmian trees

Recall that an infinite automaton is slow iff each equivalence \sim_{h} has $h+2$ classes.

Proposition

A tree t is Sturmian iff the minimal automaton \mathcal{A} accepting the language of red (black) words is slow.

Indeed, a factor of height h in the tree describes the set $L_{q}^{(h)}(\mathcal{A})$ of words of length at most h accepted by \mathcal{A} when starting in state q.

History of Hopcroft's algorithm

History

- Hopcroft has developed in 1970 a minimization algorithm that runs in time $O(n \log n)$ on an n state automaton (discarding the alphabet).
- No faster algorithm is known for general automata.

Question

- Question: is the time estimation sharp ?
- A first answer, by Berstel and Carton: there exist automata where you need $\Omega(n \log n)$ steps if you are "unlucky". These are related to De Bruijn words.
- A better answer, by Castiglione, Restivo and Sciortino: there exist automata where you need always $\Omega(n \log n)$ steps. These are related to Fibonacci words.
- Here: the same holds for all Sturmian words whose directive sequence have bounded geometric means.

Splitter

$\mathcal{A}=(Q, i, F)$ automaton on the alphabet A. Let \mathcal{P} be a partition of Q.
Definition
A splitter is a pair (P, a), with $P \in \mathcal{P}$ and $a \in A$.

The aim of a splitter is to split another class of \mathcal{P}.

Definition

The splitter (P, a) splits the class $R \in \mathcal{P}$ if

$$
\emptyset \subsetneq P \cap R \cdot a \subsetneq R \cdot a \text { or equivalently if } \emptyset \subsetneq a^{-1} P \cap R \subsetneq R .
$$

Here $a^{-1} P=\{q \mid q \cdot a \in P\}$.

Notation

In any case, we denote by $(P, a) \mid R$ the partition of R composed of the nonempty sets among $a^{-1} P \cap R$ and $R \backslash a^{-1} P$. The splitter (P, a) splits R if $(P, a) \mid R \neq\{R\}$.

Example

- Partition $\mathcal{P}=05 \mid 12346$.
- Splitter $(05, a)$. One has $a^{-1} 05=06$.
- The splitter splits both 05 and 12346. (This is also seen by $05 \cap 05 \cdot a=05 \cap 06 \neq 06$ and $05 \cap 12346 \cdot a=05 \cap 0234 \neq 0234)$
- One gets

$$
(05, a)|05=0| 5 \text { and }(05, a)|12346=1234| 6
$$

Notation

\mathcal{P} is the current partition. \mathcal{W} is the waiting set.

Hopcroft's algorithm

```
\(\mathcal{P} \leftarrow\left\{F, F^{c}\right\}\)
for all \(a \in A\) do
    \(\operatorname{ADD}\left(\left(\min \left(F, F^{c}\right), a\right), \mathcal{W}\right)\)
while \(\mathcal{W} \neq \emptyset\) do
    \((\mathcal{W}, a) \leftarrow\) TAKESOME \((\mathcal{W}) \quad \triangleright\) takes some splitter in \(\mathcal{W}\) and remove it
    for each \(P \in \mathcal{P}\) which is split by \((W, a)\) do
        \(P^{\prime}, P^{\prime \prime} \leftarrow(W, a) \mid P\)
    \(\triangleright\) Compute the split
        Replace \(P\) by \(P^{\prime}\) and \(P^{\prime \prime}\) in \(\mathcal{P}\)
        for all \(b \in A\) do
            if \((P, b) \in \mathcal{W}\) then
            Replace \((P, b)\) by \(\left(P^{\prime}, b\right)\) and \(\left(P^{\prime \prime}, b\right)\) in \(\mathcal{W}\)
        else
            \(\operatorname{AdD}\left(\left(\min \left(P^{\prime}, P^{\prime \prime}\right), b\right), \mathcal{W}\right)\)
```


Example

Basic fact

Splitting all sets of the current partition by one splitter (C, a) has a total cost of $\operatorname{Card}\left(a^{-1} C\right)$.

Cyclic automata

Cyclic automaton \mathcal{A}_{w} for $w=01001010$.

- States: $Q=\{1,2, \ldots,|w|\}$
- One letter alphabet: $A=\{a\}$
- Transitions:
$\{k \xrightarrow{a} k+1|k<|w|\} \cup\{|w| \xrightarrow{a} 1\}$
- Final states: $F=\left\{k \mid w_{k}=1\right\}$

Notation

Q_{u} is the set if starting positions of the occurrences of u in w.

Example

$Q_{010}=146$

Hopcrofts' algorithm on a cyclic automaton,

Initiale partition $\mathcal{P}:$	$Q_{0}=13468, Q_{1}=257$
Waiting set $\mathcal{W}:$	$Q_{1}=257$
States in $a^{-1} Q_{1}:$	146
Class to split:	$13468 \rightarrow Q_{01}=146, Q_{00}=38$
New waiting set $\mathcal{W}:$	Q_{00}
New partition $\mathcal{P}:$	$Q_{00}=38, Q_{01}=146, Q_{1}=Q_{10}=257$
States in inverse of $Q_{00}:$	27
Class to split:	$257 \rightarrow Q_{100}=27, Q_{101}=5$
New waiting set $\mathcal{W}:$	Q_{101}
New partition $\mathcal{P}:$	$Q_{001}=38, Q_{010}=146, Q_{100}=27, Q_{101}=5$

Standard words

Definition and examples

- directive sequence $d=\left(d_{1}, d_{2}, d_{3}, \ldots\right)$ sequence of positive integers
- standard words s_{n} of binary words defined by $s_{0}=1, s_{1}=0$ and

$$
s_{n+1}=s_{n}^{d_{n}} s_{n-1} \quad(n \geq 1) .
$$

- For $d=(\overline{1})$, one gets the Fibonacci words.
- For $d=(\overline{2,3})$, one gets $s_{0}=1, s_{1}=0, s_{2}=001, s_{3}=0010010010, \ldots$

Proposition

A standard word is primitive. If $u 01$ is a standard word, then u is a palindrome, $u 10$ is standard and $u 01$ and $u 10$ are conjugate words.

Proposition

The standard words with directive sequence $d=\left(d_{1}, d_{2}, d_{3}, \ldots\right)$ converge to the infinite characteristic Sturmian word with irrational slope $\left[0, d_{1}, d_{2}, d_{3}, \ldots\right]$.

Standard words and Hopcroft's algorithm

Proposition (Borel, Reutenauer)

A word w is standard if and only if it has exactly $i+1$ circular factors of length i, and exactly one circular special factor for each $i=0, \ldots,|w|-2$.

Theorem (Castiglione, Restivo, Sciortino)

Let w be a standard word.

- Hopcroft's algorithm on the cyclic automaton \mathcal{A}_{w} is uniquely determined.
- At each step i of the execution, the current partition is composed if the $i+1$ classes Q_{u} indexed by the circular factors of length i, and the waiting set is a singleton.
- This singleton is the smaller of the sets $Q_{u 0}, Q_{u 1}$, where u is the unique circular special factor of length i-1.

Corollary

Let $\left(s_{n}\right)_{n \geq 0}$ be a standard sequence. Then the complexity of Hopcroft's algorithm on the automaton $\mathcal{A}_{s_{n}}$ is proportional to $\left\|s_{n}\right\|$, where $\|w\|=\sum_{u \in C F(w)} \min \left(|w|_{u 0},|w|_{u 1}\right)$.

Standard words and Hopcroft's algorithm

Example

We compute $\|w\|=\sum_{u \in C F(w)} \min \left(|w|_{u 0},|w|_{u 1}\right)$ for $w=01001010$.

u	$\|w\|_{u 0}$	$\|w\|_{u 1}$	\min
ε	5	3	3
0	2	3	2
10	2	1	1
010	2	1	1
0010	1	1	1
10010	1	1	1
010010	1	1	1

So the number $\|w\|$ equals 10 .

Standard words and Hopcroft's algorithm

Notation

- Let $d=\left(d_{1}, d_{2}, d_{3}, \ldots\right)$ be a directive sequence.
- Let $\left(s_{n}\right)_{n \geq 0}$ be the sequence of standard words generated by d. and defined by

$$
s_{0}=1, \quad s_{1}=0, \quad s_{n+1}=s_{n}^{d_{n}} s_{n-1} \quad(n \geq 1) .
$$

- Let $a_{n}=\left|s_{n}\right|_{1}$ be the number of letters 1 in the word s_{n}.
- Let c_{n} be the running time of Hopcroft's algorithm on the automaton $\mathcal{A}_{s_{n}}$.

Proposition

For any sequence d, one has $c_{n}=\Theta\left(n a_{n}\right)$.

Theorem

One has $n=\Theta\left(\log a_{n}\right)$ and consequently $c_{n}=\Theta\left(a_{n} \log a_{n}\right)$ if and only if the sequence of geometric means $\left(\left(d_{1} d_{2} \cdots d_{n}\right)^{1 / n}\right)_{n \geq 1}$ of the directive sequence d is bounded.

Standard words and Hopcroft's algorithm

Corollary

If the sequence d has bounded elements, then $c_{n}=\Theta\left(a_{n} \log a_{n}\right)$.

Corollary

There are directive sequences d such that $c_{n}=O\left(a_{n} \log \log a_{n}\right)$,

Indeed, if $d_{n}=2^{2^{n}}$, then $a_{n} \geq 2^{2^{n}}$ and consequently $n \leq \log \log a_{n}$.

In fact, any running time close to a_{n} can be achieved by taking a rapidly growing directive sequence.

Generating series

Notation

$d=\left(d_{1}, d_{2}, \ldots\right)$ directive sequence.
$\left(s_{n}\right)_{n \geq 0}$ standard sequence defined by d.
$a_{n}=\left|s_{n}\right|_{1}$.
c_{n} the complexity of Hopcroft's algorithm for s_{n}.

Definition

The generating series of length and cost are

$$
A_{d}(x)=\sum_{n \geq 1} a_{n} x^{n}, \quad C_{d}(x)=\sum_{n \geq 0} c_{n} x^{n} .
$$

Generating series

$A_{d}(x)=\sum_{n \geq 1} a_{n} x^{n}$ generating series of lengths. $C_{d}(x)=\sum_{n \geq 0} c_{n} x^{n}$ generating series of costs.

Proposition

$$
C_{d}(x)=A_{d}(x)+x^{\delta(d)} C_{\tau(d)}(x)+x^{1+\delta(T(d))} C_{\tau(T(d))}(x) .
$$

Here

$$
\tau(d)=\left\{\begin{array}{ll}
\left(d_{1}-1, d_{2}, d_{3}, \ldots\right) & \text { if } d_{1}>1 \\
\left(d_{2}, d_{3}, \ldots\right) & \text { otherwise } .
\end{array} \quad \delta(d)= \begin{cases}0 & \text { if } d_{1}>1 \\
1 & \text { otherwise }\end{cases}\right.
$$

and

$$
T(d)=\tau^{d_{1}}(d)=\left(d_{2}, d_{3}, \ldots\right)
$$

Example

For $d=(1,2,3,4, \ldots)$, one gets $\tau(d)=(2,3,4, \ldots)$ and $\delta(d)=1$.

Example: Fibonacci

Proposition

$$
C_{d}(x)=A_{d}(x)+x^{\delta(d)} C_{\tau(d)}(x)+x^{1+\delta(T(d))} C_{\tau(T(d))}(x) .
$$

Example

For $d=(\overline{1})$ (Fibonacci), one has $\tau(d)=T(d)=d$, and $\delta(d)=1$. The equation becomes

$$
C_{d}(x)=A_{d}(x)+\left(x+x^{2}\right) C_{d}(x),
$$

from which we get

$$
C_{d}(x)=\frac{A_{d}(x)}{1-x-x^{2}} .
$$

Next $a_{n+2}=a_{n+1}+a_{n}$ for $n \geq 0$, and since $a_{0}=1$ and $a_{1}=0$, one gets

$$
A_{d}(x)=\frac{x^{2}}{1-x-x^{2}}
$$

Thus

$$
C_{d}(x)=\frac{x^{2}}{\left(1-x-x^{2}\right)^{2}} .
$$

This proves that $c_{n} \sim C_{n} \varphi^{n}$, where φ is the golden ratio, and proves a theorem of Castiglione, Restivo and Sciortino.

Another example

Example $(d=(\overline{2,3}))$

$$
\begin{aligned}
& C_{(\overline{2,3})}=A_{(\overline{2,3})}+C_{(1, \overline{3,2})}+x C_{(2, \overline{2,3})} \\
& C_{(1, \overline{3,2})}=A_{(1, \overline{3,2})}+x C_{(\overline{3,2})}+x C_{(2, \overline{2,3})} \\
& C_{(2, \overline{2,3})}=A_{(2, \overline{2,3})}+C_{(1, \overline{2,3})}+x C_{(1, \overline{3,2})} \\
& C_{(\overline{3,2})}=A_{(\overline{3,2})}+C_{(2, \overline{2,3})}+x C_{(1, \overline{3,2})} \\
& C_{(1, \overline{2,3})}=A_{(1, \overline{2,3})}+x C_{(\overline{2,3})}+x C_{(1, \overline{3,2})}
\end{aligned}
$$

In this case, the system can be replaced by

$$
C_{(\overline{2,3})}=A_{(\overline{2,3})}+D_{1}+x D_{2},
$$

where D_{1} and D_{2} satisfy the equations

$$
\begin{aligned}
& D_{1}=A_{(\overline{2,3})}+x A_{(\overline{3,2})}+2 x D_{2}+x^{2} D_{1} \\
& D_{2}=2 A_{(\overline{3,2})}+x A_{(\overline{2,3})}+3 x D_{1}+x^{2} D_{2} .
\end{aligned}
$$

Continuant Polynomials

Definition

The continuant polynomials $K_{n}\left(x_{1}, \ldots, x_{n}\right)$, for $n \geq-1$ are a family of polynomials in the variables x_{1}, \ldots, x_{n} defined by $K_{-1}=0, K_{0}=1$ and, for $n \geq 1$, by

$$
K_{n}\left(x_{1}, \ldots, x_{n}\right)=x_{1} K_{n-1}\left(x_{2}, \ldots, x_{n}\right)+K_{n-2}\left(x_{3}, \ldots, x_{n}\right) .
$$

The first continuant polynomials are

$$
\begin{aligned}
& K_{1}\left(x_{1}\right)=x_{1} \\
& K_{2}\left(x_{1}, x_{2}\right)=x_{1} x_{2}+1 \\
& K_{3}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}+x_{1}+x_{3} \\
& K_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2} x_{3} x_{4}+x_{1} x_{2}+x_{3} x_{4}+x_{1} x_{4}+1 .
\end{aligned}
$$

Combinatorial Interpretation

The Morse code or the "leapfrog" construction

$$
\begin{aligned}
K_{5}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) & =x_{1} x_{2} x_{3} x_{4} x_{5}+x_{3} x_{4} x_{5}+x_{1} x_{4} x_{5} \\
& +x_{1} x_{2} x_{5}+x_{1} x_{2} x_{3}+x_{5}+x_{3}+x_{1}
\end{aligned}
$$

Equivalent definitions

$$
\begin{aligned}
& K_{n}\left(x_{1}, \ldots, x_{n}\right)=x_{1} K_{n-1}\left(x_{2}, \ldots, x_{n}\right)+K_{n-2}\left(x_{3}, \ldots, x_{n}\right), \\
& K_{n}\left(x_{1}, \ldots, x_{n}\right)=K_{n-1}\left(x_{1}, \ldots, x_{n-1}\right) x_{n}+K_{n-2}\left(x_{1}, \ldots, x_{n-2}\right)
\end{aligned}
$$

See Graham, Knuth, Patashnik, Concrete Mathematics, for other properties.

Continuant polynomials and continued fractions

Let $d=\left(d_{1}, d_{2}, d_{3}, \ldots\right)$ be a sequence of positive numbers. The continued fraction defined by d is denoted $\alpha=\left[d_{1}, d_{2}, d_{3}, \ldots\right]$ and is defined by

$$
\alpha=d_{1}+\frac{1}{d_{2}+\frac{1}{d_{3}+\cdots}} .
$$

The finite initial parts $\left[d_{1}, d_{2} \ldots, d_{n}\right]$ of d define rational numbers

$$
d_{1}+\frac{1}{d_{2}+\frac{1}{d_{3}+\ddots+\frac{1}{d_{n}}}}=\frac{K_{n}\left(d_{1}, \ldots, d_{n}\right)}{K_{n-1}\left(d_{2}, \ldots, d_{n}\right)} .
$$

Continuant polynomials and standard words

One has

$$
a_{n+2}=K_{n}\left(d_{2}, \ldots, d_{n+1}\right) \quad(n \geq-1)
$$

and

$$
A_{d}(x)=x^{2} \sum_{n \geq 0} K_{n}\left(d_{2}, \ldots, d_{n+1}\right) x^{n} .
$$

The series C_{d} also has an expression with continuants

$$
C_{d}=x^{2} \sum_{n \geq 0}\left(K_{n}\left(d_{2}, \ldots, d_{n+1}\right)+N_{n+1}\left(d_{1}, \ldots, d_{n+1}\right)+N_{n}\left(d_{2}, \ldots, d_{n+1}\right)\right) x^{n}
$$

where

$$
\begin{aligned}
& L_{n}\left(x_{1}, \ldots, x_{n}\right)=K_{n}\left(x_{1}, \ldots, x_{n}\right)-K_{n-1}\left(x_{2}, \ldots, x_{n}\right) . \\
& N_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{n-1} K_{i}\left(x_{1}, \ldots, x_{i}\right) L_{n-i}\left(x_{i+1}, \ldots, x_{n}\right) .
\end{aligned}
$$

A combinatorial lemma (one of four)

Lemma

Assume $d_{2}>1$, and let t_{n} be the sequence of standard words generated by $\tau T(d)=\left(d_{2}-1, d_{3}, d_{4}, \ldots\right)$. Let β be the morphism defined by

$$
\beta(0)=10^{d_{1}} \text { and } \beta(1)=10^{d_{1}+1}
$$

- Then $s_{n+1} 0^{d_{1}}=0^{d_{1}} \beta\left(t_{n}\right)$ for $n \geq 1$.
- If v is a circular special factor of t_{n}, then $\beta(v) 10^{d_{1}}$ is a circular special factor of s_{n+1}.
- Conversely, if w is a circular special factor of s_{n+1} starting with 1 , then w has the form $w=\beta(v) 10^{d_{1}}$ for some circular special factor v of t_{n}.
- Moreover, $\left|s_{n+1}\right|_{w 0}=\left|t_{n}\right|_{v 1}$ and $\left|s_{n+1}\right|_{w 1}=\left|t_{n}\right|_{v 0}$.

Example $(d=(\overline{2,3})$, so $\beta(0)=100, \beta(1)=1000)$

$$
\begin{array}{cl}
t_{0}=1 & s_{0}=1 \\
t_{1}=0 & s_{1}=0 \\
t_{2}=001 & s_{2}=001 \\
t_{3}=(001)^{2} 0 & s_{3}=(001)^{3} \\
s_{3} 00=00.100 .100 .1000=00 \beta(001)=00 \beta\left(t_{2}\right) \\
t_{2}=\underline{00} 1, s_{3} 00=00 \underline{1001001000}=001001001000
\end{array}
$$

Factorizations of cyclic words

Factorization

- Every circular word containing a 0 and a 1 has two circular factorizations: cut before each 0 and cut before each 1 .
- In the case of Sturmian words, the factors are
0 and 01 and 10^{p} and 10^{p+1} or vice-versa.
- Moreover, the words obtained by decoding are again Sturmian!

Example

$$
\begin{aligned}
& s=0010010010=0|01| 0|01| 0|01| 0= \\
& 00|100| 100 \mid 10=\varphi(1010101)=\beta(001)
\end{aligned}
$$

The words 1010101 and 001 are Sturmian.

Reduction tree of Sturmian words (Castiglione, Restivo Sciortino)

Definition

The reduction tree is the tree labeled with circular Sturmian words obtained by iterating the decoding.

Derivation tree of Sturmian words (Castiglione, Restivo Sciortino)

Definition

The derivation tree is the tree labeled with the classes of the partitions obtained by Hopcroft's algorithm.

Derivation and reduction trees

Theorem (Castiglione, Restivo Sciortino)

The reduction tree and the derivation tree are isomorphic for circular Sturmian words.

Final remarks

Slow automata

An automaton \mathcal{A} is slow for Hopcroft if, at each step of the algorithm,

- all splitters in the waiting set either do not split or split at most one class
- all splitters that split a class split the same class into the same two new classes.

Example

Whenever Hopcroft's algorithm is determined and a class is split into two new classes. This holds for cyclic automata defined by standard words, and also for a new class of automata defined by Castiglione, Restivo, Sciortino On extremal cases of Hopcroft's algorithm, CIAA2009.

Proposition

An automaton is slow for Moore if and only if it is slow for Hopcroft.
Although Hopcroft's algorithm seems to be a refinement of Moore's algorithm, one has:
There exist automata for which some partitions computed in Moore's algorithm are not obtained in any execution of the Hopcroft algorithm.

